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Abstract In the context of the anaerobic ammo-
nium oxidation process (anammox), great scientific 
advances have been made over the past two decades, 
making anammox a consolidated technology widely 
used worldwide for nitrogen removal from waste-
waters. This review provides a detailed and com-
prehensive description of the anammox process, the 
microorganisms involved and their metabolism. In 
addition, recent research on the application of the 
anammox process with alternative electron acceptors 
is described, highlighting the biochemical reactions 

involved, its advantages and potential applications for 
specific wastewaters. An updated description is also 
given of studies reporting the ability of microorgan-
isms to couple the anammox process to extracellular 
electron transfer to insoluble electron acceptors; par-
ticularly iron, carbon-based materials and electrodes 
in bioelectrochemical systems (BES). The latter, 
also referred to as anodic anammox, is a promising 
strategy to combine the ammonium removal from 
wastewater with bioelectricity production, which is 
discussed here in terms of its efficiency, economic 
feasibility, and energetic aspects. Therefore, the infor-
mation provided in this review is relevant for future 
applications.

Keywords Ammonium removal · Anammox · 
Bioelectrochemical systems · Extracellular electron 
transfer · Wastewater treatment.
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AQC  anthraquinone-2-carboxylicacid
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EPS  extracellular polymeric substances 
Feammox  anaerobic ammonium oxidation cou-

pled todissimilatory iron reduction
FISH  fluorescence in-situ hybridization
GO  Graphene oxide
HDH  hydrazine dehydrogenase
HZS  hydrazine synthase
LAW  2-hydroxy-1-4-naphthoquinone
MEC  microbial electrolysiscells
MFC  microbial fuel cells
NOM  natural organic matter
N/DN  nitrification/denitrification
NiR  nitrite reductase
NR  nitrate reductase
PNA  partial nitritation andanammox
rGO  reduced graphene oxide
SHE  standard hydrogen electrode
sulfammox  sulfate-reducing ammonium oxidation
TN  total nitrogen
WWTPs  wastewater treatment plants

Introduction

Anammox is a microbial process driven by auto-
trophic bacteria, referred to as anammox bacteria, 
which remove nitrogen contained in wastewater 
in the form of ammonium  (NH4

+-N) and nitrite 
 (NO2

−-N) (Mulder 1995). In this process, nitrite 
serves as electron acceptor combined with ammo-
nium to produce molecular nitrogen (the only 
environmentally friendly form of nitrogen), under 
anaerobic conditions, with the release of a small 
fraction of nitrate  (NO3

−-N) as a by-product (Qiao 
et  al. 2009; Kartal et  al. 2013). Regarding bio-
mass production, it occurs through bicarbonate or 
carbon dioxide as the sole carbon source (Weralu-
pitiya et al. 2021). The stoichiometry of the overall 
anammox reaction is represented by the following 
equation (Eq.  1) (Strous et  al. 1998).This over-
all reaction is the net sum of two partial reactions, 
the ammonium oxidation coupled to nitrite reduc-
tion (Eq. 2) and bicarbonate fixation into cell mass 
(Eq.  3). Anammox′ is considered an economic, 
efficient, and environmentally friendly process 
(Yuan et  al. 2021) because compared with the tra-
ditional nitrification-denitrification, anammox saves 
resources by requiring less aeration, no sources of 
organic carbon, and by producing less sludge than 

the traditional systems, which in turn lower operat-
ing costs and greenhouse gases emissions (Nsenga 
Kumwimba et al. 2020).

Anammox bacteria

Anammox bacteria are anaerobic, chemolithoauto-
trophic and spherical microorganisms that belong to 
the order Brocadiales within the phylum Plancto-
mycetes (Jetten et al. 2009). It has been proven that 
the distribution of anammox bacteria is ubiquitous 
in environments as diverse as freshwater reserves, 
marine environments, terrestrial ecosystems, waste-
water treatment systems and sediments (Strous et al. 
1999; Schmid et  al. 2001; Kuypers et  al. 2003; Li 
et al. 2010; Brandsma et al. 2011; Speth et al. 2017).

So far, more than 25 anammox species have been 
discovered, which belong to six genera. Among 
them, five genera have been enriched from acti-
vated sludge and freshwater environments: Brocadia 
(Strous et al. 1999), Kuenenia (Schmid et al. 2000), 
Jettenia (Quan et al. 2008), Anammoxoglobus (Kar-
tal et  al. 2007) and Anammoximicrobium (Khra-
menkov et al. 2013). The sixth, Scalindua (Kuypers 
et  al. 2003), is frequently detected in natural habi-
tats, especially in marine sediments and oxygen 
minimum zones.

The distinctive red color of the anammox bacte-
ria is due to the high cytochrome c proteins in their 
cells (Jetten et  al. 2009). Because of the high num-
ber of cytochromes expressed by the bacteria, it has 
been proposed that these proteins participate in the 
transport of electrons among the various parts of 
the metabolic machinery (van Niftrik et  al. 2008). 
In fact, it was reported that the cytochromes c found 

(1)

NH
+
4
+ 1.32NO

−
2
+ 0.066HCO

−
3
+ 0.13H

+

→ 1.02N
2
+ 0.26NO

−
3
+ 0.06CH

2
O

0.5
N

0.15

+ 2.03 H
2
O ΔG’0 = −275 kJ∕mol

(2)
NH

+
4
+ NO

−
2
→ N

2
+ 2H

2
O ΔG’0 = − 357 kJ∕mol

(3)

0.27NO
−
2
+ 0.066HCO

−
3
→ 0.26NO

−
3

+ 0.066CH
2
O

0.5
N

0.15
ΔG’0 = + 82 kJ∕mol



49Biodegradation (2024) 35:47–70 

1 3
Vol.: (0123456789)

in anammox bacteria appear to be homologous to 
the multi-heme cytochromes of Geobacter and She-
wanella, which are responsible for boosting the trans-
fer of electrons with solid-phase electron acceptors 
(Ferousi et al. 2017).

Additional microorganisms detected in anammox 
processes

Even though most investigations have postulated 
anammox bacteria as the main microorganisms respon-
sible for performing the anammox process, they are 
extremely difficult to isolate. As a result, it is common 
that heterotrophs are also present in anammox systems. 
Molecular methods have shown that heterotrophic 
bacteria belonging to different phyla (Acidobacteria, 
Bacteroidetes Chloroflexi, Chlorobi, Nitrospirae and 
Proteobacteria) also comprise an important fraction 
of the community performing this process (Gonzalez-
Martinez et  al. 2015; Gonzalez-Gil et  al. 2015; Law-
son et al. 2017). Although these microorganisms have 
differences in nutrition and metabolic profiles, and 
they form a complex interaction network (Zhang et al. 
2020), their role in anammox processes is not yet clear. 
However, some interactions have been proposed: (1) 
anammox bacteria and heterotrophic bacteria may sup-
port nitrogen removal from wastewater because hetero-
trophic community could contribute to the removal of 
debris and peptides produced by the anammox bacteria 
(Lawson et al. 2017), and (2) the heterotrophic micro-
organisms may encode the ability to breathe the nitrate 
produced during the synthesis of anammox biomass 
by partial denitrification (the reduction of nitrate back 
to nitrite), the produced nitrite can then be reduced by 
anammox (Speth et al. 2017). In contrast, the interac-
tions can also be negative, like competition for sub-
strates, which promotes changes in the abundance of 
anammox bacteria and decreases in nitrogen removal 
efficiency during the anammox process (Feng et  al. 
2019; Zhang et al. 2020).

Anammox metabolism

Catabolism

Anammox catabolism takes place within the 
anammoxosome (Niftrik et  al. 2004). So far, two 

catabolic pathways have been described in anam-
mox bacteria. In route 1, van de Graaf et al. (1997) 
proposed a three-step model with  N2H4 as an inter-
mediate; here the reduction of  NO2

− -N occurs with 
four electrons to form hydroxylamine  (NH2OH), 
later an enzyme complex bound to the bacterial 
membrane converts  NH4

+–N and  NH2OH into  N2H4 
(Eqs.  4 and 5). Then, the hydrazine is oxidized to 
 N2 in the periplasm (Eq. 6) and the electron equiva-
lents are generated, that are transferred through an 
electron transport chain to NiR in the cytoplasm, 
site where the reduction of   NO2–    –N to  NH2OH 
occurs (Schalk et al. 1998; Kuenen 2008).

In the second, based on genomic, physiological, 
and biochemical analysis of the species Ca.Kuene-
nia, an alternate catabolism was proposed, which 
involved not only  N2H4 as an intermediate but also 
nitric oxide (NO), under three coupled redox reac-
tions (Strous et al. 2006). Here the reaction begins 
when most nitrite is reduced by using Nir enzymes 
to NO, using an electron Eq. (7). Next, the enzyme 
HZS, using three electrons, catalyzes the forma-
tion of  N2H4 by using NO as the terminal electron 
acceptor to oxidize ammonium Eq. (8). Finally, the 
enzyme HDH oxidizes  N2H4 to  N2  Eq.  (9) releas-
ing four electrons that are available to start the 
process again, that is, the reduction of  NO2– –N 
(one-electron) and the synthesis of  N2H4 in the 
cytoplasm (three-electrons), thus completing the 
catabolic cycle of the bacterium and forming a pro-
ton gradient across the anammoxosomal membrane, 
which also provides the energy that is used to drive 
the synthesis of ATP that energizes the cell (Kartal 
et al. 2011; Kartal and Keltjens 2016).
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Although both are different catabolic pathways, 
there is general agreement that  N2H4 participates as 
an intermediate in the catabolism and that  NO2− -N 
is not converted directly to  N2H4, but previously to 
 NH2OH or NO. In this sense, Strous et  al. (2006) 
outlined three possible metabolic routes followed 
by the formation of  N2H4 (Fig. 1), including its pro-
duction from (1)  NH2OH, (2) NO and (3) through 
the presence of NO and  NH2OH, simultaneously.

Anabolism

According to van de Graaf et  al. (1996), the reduc-
ing equivalents necessary to reduce bicarbonate to 
biomass Eq.  (3) are released during the oxidation of 
 NO2––N to  NO3–-N Eq. (10), a reaction catalyzed by 
the enzyme NR (Strous et al. 1998).

Consequently, biomass growth is associated with 
nitrate production by oxidizing a small part of nitrite 
(Eq. 3). Since approximately four moles of nitrite are 
oxidized for each mole of fixed carbon. The meta-
bolic pathway that involves  NO3

−−N production 
was outlined by van de Graaf et  al. (1997) (Fig.  2). 
First, ammonium is oxidized with hydroxylamine to 
form hydrazine (Step 1). The reducing equivalents 
derived from hydrazine reduce  NO2– -N to form more 
 NH2OH (Steps 2 and 4) and  N2 (Steps 2 and 3). At 
the same time, a part of the  NO2

−-N is oxidized to 
nitrate to generate the reducing equivalents necessary 
for the growth of biomass (Step 5).

(10)NO
−
2
→ NO

−
3
+ 2H

+ + 2e

Anaerobic ammonium oxidation coupled 
to the reduction of alternative electron acceptors

Although nitrite is widely accepted as the main elec-
tron acceptor in anammox process, its presence in 
wastewater rarely occurs at significant levels. Some 
studies have reported that other electron acceptors, 
including nitric oxide, sulfate, Fe(III), carbonaceous 
materials and lately electrodes of BES may support 
ammonium oxidation under anaerobic conditions. 
Thus, studying and applying all these processes not 
only contributes to our understanding of the N cycle 
and its environmental interactions, but also resolve 
the problem of industrial wastewater with high nitro-
gen content and specific pollutants (e.g. sulfate) 
through co-treatment.

Nitric oxide

Unlike  NO2
−-N, nitric oxide (NO) is widely available 

in water because its formation occurs continuously in 

Fig. 1  Catabolic scheme 
proposed by Strous et al. 
(2006) for the formation of 
the intermediate  N2H4

Fig. 2  Anammox metabolic pathway that includes nitrate for-
mation proposed by Van de Graaf et al. (1997)
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the N conversion cycle, it is considered a reactive and 
toxic compound for certain microorganisms, but not 
for anammox bacteria (Kartal et  al. 2010; Rikmann 
et al. 2012). To date, only one study has shown that 
NO may be used as an electron acceptor for  NH4

+ 
oxidation under anaerobic conditions (Hu et al. 2019). 
Results showed that up to 120 mg  NH4

+-N/d can be 
oxidized with the reduction of 318 mg NO-N/l. The 
ratio of reduced NO to oxidized  NH4

+ was 1.59 (close 
to the predicted stoichiometry, see Eq. (11). These 
findings revealed that Ca. Kuenenia stuttgartiensis is 
a NO-dependent anammox bacterium in the absence 
of nitrite. The use of NO as electron acceptor was 
also confirmed by transcriptional activity because the 
proteins involved in nitrite uptake and consumption 
were transcriptionally down-regulated.

Reaction 11 indicated that nitrate was not produced, 
and the only product was  N2. Lack of nitrate in the 
effluent refutes the assumption that, under anaerobic 
conditions, anammox bacteria acquire electrons for 
reducing equivalents necessary for cell carbon fixa-
tion. At least for this species,  NO2

−-N seems not to be 
essential for biomass synthesis. In the case of  N2O, its 
accumulation was insignificant and was related to the 
metabolism of other community members.

Although now there is only one study suggest-
ing that nitric oxide may be used as electron accep-
tor for  NH4

+-N oxidation, investigation and further 
implementation of this process is required to promote 
this process at full-scale, which may be suitable to 
mitigate NO release. Additionally, further studies are 
needed to elucidate details on the metabolic pathway 
and the potential interactions between anammox bac-
teria with other microbial communities.

Sulfammox

Sulfate-reducing ammonium oxidation (sulfammox) 
is a biologically mediated process that uses sulfate 
 (SO4

2−) as electron acceptor and  NH4
+-N as electron 

donor to produce  N2 under anaerobic conditions (Bi 
et al. 2020). The discovery of the sulfammox has been 

(11)
6NO + 4NH

+
4
→ 5N

2
+ 6H

2
O + 4H

+

ΔG’0 = − 1784 kJ∕mol

proposed as a novel link between the N and S biogeo-
chemical cycles (Rios-Del Toro et  al. 2018a) and a 
promising process for the treatment of some indus-
trial wastewater with high concentrations of ammo-
nium and sulfate, such as those derived from effluents 
from seafood, chemical, textile, paper, fermentation, 
and sugar production factories (Rikmann et al. 2012, 
2016). Although the mechanism of sulfammox is not 
well understood, Fdz-Polanco et al. (2001) proposed 
a hypothesis to explain the pathway in which  NH4

+-N 
oxidation is linked to  SO4

2− reduction, with  N2 and 
elemental sulfur  (S0) as reaction products (Eq. 15):

The overall sulfammox reaction occurs in three 
consecutive biochemical reactions. Initially,  NH4

+-N 
is oxidized to nitrite inside the bacterial cell while 
sulfate is reduced to sulfide  (S2−) (Eq.  (12)). Subse-
quently, part of the nitrite is reduced by sulfide with 
nitrogen gas and elemental sulfur as terminal prod-
ucts (Eq. 13). Finally, the remaining fraction of nitrite 
that was not used continues its conversion to nitrogen 
gas through the conventional anammox (Eq. 14).

Schrum et al. (2009), on the other hand, suggested 
that other mechanisms were involved in the simulta-
neous removal of  NH4

+-N and  SO4
2− under the same 

environmental conditions. Based on this assumption, 
a higher  NH4

+-N/SO4
2− ratio promotes the forma-

tion of sulfide  (HS−) (Eq.  18). Firstly,  NH4
+-N oxi-

dation to  NO2
−-N occurs while sulfate is reduced 

to  HS− (Eq.  (16), and then the nitrite reacts with 
 NH4

+-N via the traditional anammox (Eq. 17).
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In this process,  HS− production is associated 
with the presence of organic substrates (“CH2O”) in 
organotrophic environments, because sulfate conver-
sion is attributed to the heterotrophic sulfate reduction 
by organic matter (Eq. 21). This pathway involves the 
 NH4

+-N oxidation to  NO3
−-N using sulfate as elec-

tron acceptor (Eq. 19) coupled to heterotrophic deni-
trification (Eq.  20). In fact, Dominika et  al. (2021), 
highlighted the importance of the sulfide-dependent 
autotrophic denitrification during the process because 
without any component, sulfammox cannot occur.

According to Yang et  al. (2009), a pure chemi-
cal reaction between ammonium and sulfate under 
abiotic conditions is not possible. In this regard, 
it is important to know which microorganisms are 
involved in this biological process to glimpse the 
possible metabolic pathways. So far, the knowledge 
regarding microorganisms is still limited because 
only two functional bacteria capable of actively par-
ticipating in the process have been described. The 
first, is an anammox functional bacterium isolated 
and sequenced more than a decade ago, named Ca. 
Anammoxoglobus sulfate, able of oxidizing  NH4

+-N 
into  NO2

−-N (Liu et al. 2008). The second one, Bacil-
lus benzoevorans, a bacterium isolated from a lab-
oratory-scale reactor that simultaneously removed 
ammonium and sulfate (Cai et  al. 2010). However, 
other microbes, such as Planctomycetes, Verrucomi-
crobia, Sulfurimonas, Desulfuromonadales, Desul-
fovibrio, Desulfuromonas, Desulfurobulbus, Rhodo-
bacteraceae and Thiobacillus have been reported as 
potentially involved in the sulfammox process (Rik-
mann et  al. 2016; Prachakittikul et  al. 2016; Wang 
et  al. 2017; Rios-Del Toro et  al. 2018a; Qin et  al. 
2021).

Although the sulfammox process has received 
wide attention over the last few years, the knowledge 
regarding metabolic pathways, microbial community 
structure and its interactions is still limited. Besides, 
the genomic and physiological evidence for putative 

(19)SO
2−
4

+ NH
+
4

→ NO
−
3
+ HS

− + H
2
O + H

+

(20)
5
��
CH

2
O

�� + 4NO
−
3
+ 4H

+
→ 5CO

2
+ 2N

2
+ 7H

2
O

(21)
4SO

2−
4

+ 4NH
+
4
+ 5

��
CH

2
O

��
→ 4HS

−

+ 2N
2
+ 5CO

2
+ 11H

2
O

enzymes involved in the sulfammox process has not 
yet been identified. Therefore, molecular microbio-
logical tools must be implemented to identify func-
tional microorganisms and their roles in N cycle (Liu 
et al. 2021).

Feammox

Ferric iron reduction coupled to anaerobic ammonium 
oxidation (feammox) is a ferric iron-dependent auto-
trophic process for biological nitrogen removal (Hu 
et  al. 2022). Its relevance is the connection between 
the biogeochemical cycles of Fe and N, which contrib-
utes to nitrogen loss in ecosystems as diverse as paddy 
soils, wetland soils, riparian zones, anaerobic tropical 
soils, agricultural drainage ditches, eutrophic lakes, 
and marine sediments (Shrestha et al. 2009; Wang et al. 
2018; Rios-Del Toro et  al. 2018a; Ding et  al. 2021). 
Feammox is a type of extracellular respiration because, 
as solid electron acceptors, Fe(III) oxides cannot diffuse 
into the cells to receive electrons from  NH4

+-N oxida-
tion to reduce ferric iron (Sun et al. 2023).

In this process, Fe(OH)3 or other Fe(III) oxides act 
as electron acceptor to oxidize  NH4

+-N and produce 
 N2,  NO2

−-N and  NO3
−-N (Eqs. 22, 23, 24), according 

to the energy required. Ammonium oxidation to  N2 
(−245  kJ/mol) is thermodynamically more favorable 
than the  NH4

+-N oxidation to  NO2
−-N (−164 kJ/mol) 

and to  NO3
−-N (−207 kJ/mol) (Zhao et al. 2022). Kim 

et al. (2002), on the other hand, stated that the forma-
tion of the products is highly pH dependent. Equa-
tion (22) could occur under a wide range of pH, while 
Eqs. (23) and (24) can only exist below pH 6.5 (Yang 
et al. 2012). In summary, feammox yields less energy to 
oxidize ammonium and could be applied to a wide pH 
range as compared to the traditional anammox (Puyol 
et al. 2014; Ren et al. 2020).
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Until now, the biochemical mechanisms of 
 NH4

+-N oxidation in feammox have not been fully 
revealed, but three pathways to reduce Fe(III) by 
feammox microorganisms have been suggested. 
Among them, direct electron transfer occurs when 
microorganisms and iron oxides are in direct con-
tact through the cell membrane or, more precisely, a 
redox-active membrane organelle (e.g., cytochromes), 
forming an extracellular electron transfer pathway 
between the intracellular respiratory chain and exter-
nal iron (Harnisch et al. 2011; Xia et al. 2022). Indi-
rect electron transfer via exogenous compounds hap-
pens once redox active electron shuttles (e.g., biochar, 
humic substances, activated carbon, and quinones) 
reversibly carry the electrons released by ammonium 
oxidation and transfer them to solid Fe(III) oxides, 
resulting in their microbial reduction (Xia et al. 2022; 
Sun et al. 2023). The last mechanism of Fe(III) reduc-
tion is via chelating agents or protein nanowires, in 
which the chelating agent promotes the iron dissolu-
tion and facilitates the interactions between Fe(III) 
oxides and the microbes (Chakraborty et  al. 2011). 
The last mechanism implies that protein nanowires 
carry out a long-range electron transfer to Fe(III) 
oxides by conductive filaments synthesized by micro-
organisms (Malvankar and Lovley 2014; Xia et  al. 
2022; Sun et al. 2023).

Feammox has attracted more attention in explor-
ing its basic principle and identifying its micro-
organisms over the last few years. So far, it has 
been reported that two types of functional bacte-
ria, Acidimicrobiaceae sp. A6 (Ruiz-Urigüen et  al. 
2018) and a new strain FC61, Klebsiella sp. (Su 
et  al. 2016), can oxidize ammonium by using fer-
ric iron as electron acceptor under anaerobic condi-
tions (Zhao et  al. 2022). Even though both strains 
have been isolated, their functional genes and 
enzymes have not been identified. Because of the 
limited information regarding functional isolated 
strains, investigations have shown that some iron-
reducing bacteria (IRB) may be involved in the 
feammox reaction, including Nitrososphaeraceae, 
Pseudomonas, Geobacter spp.  (Li et  al. 2019b), 
Shewanella spp.(Newsome et  al. 2018), Acidobac-
teria, Bacteroidetes (Ding et al. 2017), Fervidicella 
(Yao et  al. 2020), Anaerospora, Comamonadaceae 
(Bao and Li 2017), Actinomarinales, Microbacte-
riaceae, Pseudonocardiaceae, Nocardiopsaceae, 
Eggerthellaceae (Rios-Del Toro et  al. 2018a), 

Anaeromyxobacter, Desulfosporosinus, Declo-
romonas and Geothrix (Zhou et al. 2016a, b).

In the case of Geobacter spp. and Shewanella spp, 
it has been proposed that both may play an important 
role in the feammox process, based on the positive 
correlations among: (i) the abundance of these taxa, 
(ii) the rates of Fe(III) reduction, and (iii) the rates 
of 30N2 production (Li et al. 2015). Apart from IRB, 
some species of anammox bacteria (including Ca. 
Kuenenia stuttgartiensis, Ca. Scalindua wagneri, Ca. 
Brocadia sinica and Ca. Brocadia fulgida) have been 
associated with the reduction of Fe(III) to Fe(II) and 
the loss of nitrogen using organic matter and  NO2

−-N 
as electron donor and electron acceptor, respectively 
(Zhao et al. 2014; Li et al. 2018; Hu et al. 2022; Xia 
et al. 2022).

So far, some potential feammox microbes have 
been reported. However, the microbial community 
structure is still unclear. Besides, little is known 
about the metabolic pathway and the mechanisms of 
 NH4

+-N oxidation because it is difficult to explain 
the metabolism and physiology at the level of organ-
ism, based on enrichment experiments in mixed cul-
tures. Hence, the study of genomes involved in the 
process through metagenomic approaches is crucial 
in the future to provide a comprehensive overview 
of the microbial community that promotes feammox, 
infer its metabolic potential, suggest putative electron 
transfer routes, and explore the potential roles of the 
community members and the interspecies interactions 
(Tan et al. 2022).

Humic substances (NOM‑ANAMMOX)

As the most typical electron shuttle in nature, humic 
substances (humics) are heterogeneous, high-molecu-
lar weight, organic materials that represent the main 
redox fraction of natural organic matter (NOM) in 
soils, sediments, and aquatic environments (Lov-
ley et  al. 1996: Sun et  al. 2022). Humics have been 
shown to act as electron acceptors during microbial 
respiration (Valenzuela et  al. 2020). Microbial elec-
tron transfer to humics could be significant in envi-
ronments even at low concentrations of humics (Scott 
et al. 1998). Quinone moieties in humics are the most 
important electron-accepting and shuttling groups 
for microbial extracellular respiration (Wolf et  al. 
2009). Thus, quinone groups have been considered as 
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“humus-like” to study their participation as electron 
acceptors for respiration, redox mediators for reduc-
tion processes, and as electron donors to microorgan-
isms (Field et al. 2000; Wang et al. 2018).

Under anaerobic conditions, humics drive nitrogen 
loss through different pathways. Firstly, they serve as 
electron acceptor during  NH4

+ oxidation (Rios-Del 
Toro et  al. 2018b). In addition, their reduced form 
(e.g., hydroquinones) act as electron donor for the 
reduction of nitrogen species (e.g., nitrate or  N2O) 
and finally, they can be used as redox mediators for 
accelerating electron transport from cells to the final 
electron acceptor (Aranda-Tamaura et  al. 2007; van 
der Zee and Cervantes 2009; Valenzuela et al. 2020).

Despite the versatility of humics and their quinone 
analogues, their application in the anammox process 
has been poorly investigated. Qiao et al. (2014) dem-
onstrated that model quinone compounds (AQDS, 
LAW and AQC) increased the enzymatic activity 
of anammox biomass. In another study, Zhou et  al. 
(2016a, b) reported that AQDS improved the produc-
tion rates of 30N2 and 29N2, as well as Fe(II) produc-
tion, which potentially increased the feammox-medi-
ated nitrogen loss up to 340%. Rios-Del Toro et  al. 
(2018b) provided the first direct evidence that qui-
none moieties in NOM can serve as electron accep-
tor to drive anammox by the microbial community 
in marine sediments. Using stoichiometry and spec-
troscopy, they demonstrated the microbial reduction 
of NOM coupled to anaerobic  NH4

+-N oxidation. The 
overall reaction for this NOM-dependent anammox 
process is given below (Eq. 25). The results showed 
that  N2 production rates were three times higher than 
the performance achieved in experiments without 
exogenous NOM.

This reaction displays the energy yield obtained for 
the whole range of redox potential reported for NOM 
(from − 300 mV to  + 150 mV, Rios-Del Toro et  al. 
2018b). Where Q-NOMox refers to quinone equiva-
lents (2 electron equivalents per quinone moiety) and 
 QH2-NOMred represents quinone equivalents accumu-
lated as reduced NOM.

Finally, Dey et  al. (2021) demonstrated a promo-
tion in the biological nitrogen fixation by adding 

(25)

NH
+
4
+ 1.5Q − NOM

ox
→ 0.5N

2

+ 1.5QH
2
− NOM

red
+ 4H

+

ΔG�0 = + 5.8 to − 124 kJ∕mol

humin (a type of humics) as a redox mediator in an 
anaerobic consortium. Tests using intact and oxidized 
humin did not show any change in nitrogenase activ-
ity, which suggests that humin was used as a redox 
mediator rather than as a carbon source for cellular 
metabolism. Although, in this research, the NOM was 
not involved in the anammox process, its environmen-
tal relevance is indisputable since the evidence shows 
that NOM plays an active role in N cycle, both in 
mechanisms of loss and fixation of nitrogen.

The evidence suggests that humics and their qui-
none analogues support the anoxic oxidation of 
ammonium. To date, no functional bacteria have been 
reported to play a key role in ammonium oxidation 
with NOM as electron acceptor. However, taxonomic 
characterization shows that most predominant bacte-
rial phylotypes detected during the NOM-dependent 
anammox processes are associated with Phycisphaer-
aceae, Moraxellaceae, Actinomarinales, Acidiferro-
bacteraceae, Acetobacteraceae, Rhodobacteraceae, 
Anaerolineaceae, Acidithiobacillaceae, Pelobacte-
raceae, Desulfovibrio, and some denitrifiers (Qiao 
et  al. 2014; Rios-Del Toro et  al. 2018b; Dey et  al. 
2021). Additionally, Nitrosopumilaceae (an archaeal 
family) has been highly enriched during this process 
(Rios-Del Toro et  al. 2018b). In terms of anammox 
bacteria, Ca. Kuenenia, Ca. Brocadia and Ca. Jette-
nia are the dominant populations in the presence of 
humics (Qiao et al. 2014; Rios-Del Toro et al. 2018b; 
Dey et  al. 2021). However, further investigations 
related to the NOM-anammox process are necessary, 
to characterize and isolate the potential functional 
bacteria, genes, and enzymes to expand our under-
standing of this process.

Graphene oxide

Graphene oxide (GO) is a derivative of graphite, com-
posed of monolayers of carbon atoms and oxygenated 
functional groups (e.g., hydroxyl, epoxy, carbonyl, 
and carboxyl) that can donate and accept electrons, 
which can mediate microbial extracellular electron 
transport (Colunga et  al. 2015; Toral-Sánchez et  al. 
2017). Because of their exceptional electron transfer 
ability, research in wastewater treatment has focused 
on the application of GO and its reduced form (rGO) 
to promote efficient nitrogen removal, particularly by 
anammox. Indeed, the electron transfer capacity in 
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rGO appears to be about three orders of magnitude 
higher than that of GO (Yin et  al. 2016b). In 2013, 
batch experiments showed that GO promote  NH4

+ 
oxidation due to an improved anammox enzyme 
activity and a high secretion of EPS, which facilitated 
the adhesion bacteria to the surface of GO (Wang 
et  al. 2013). To date, it is known that EPS provide 
nutrition to microorganisms, facilitate their develop-
ment as high-size macroflocs, improve the retention 
of biomass, and develop resistance to negative envi-
ronmental factors (Suárez-Iglesias et al. 2017; Wells 
et al. 2017).

Years later, it was found that the nitrogen removal 
efficiency was improved up to 17% after adding the 
optimal dose of 100  mg/l of GO to anammox sys-
tems, which was rapidly convert to rGO (Yin et  al. 
2015a, b). Therefore, the activities of hydrazine 
hydrolase, nitrite reductase and nitrate reductase were 
stimulated up to 2.7 times due to the acceleration of 
electron transfer rate (Yin et  al. 2015a; Zhang et  al. 
2022). Increase in the enzyme activity due to GO 
remained even at low temperatures (Wang et al. 2014; 
Tomaszewski et  al. 2019). Improvements following 
the addition of GO and rGO are of utmost importance 
since acceleration of the activity of anammox bacte-
ria is also reflected by a decrease on the lag phase. 
Recently, Shaw et  al. (2020) demonstrated that GO 
can act as electron acceptor for sustaining the anam-
mox process by EET. The results showed that with-
out nitrite and nitrate in the synthetic medium, some 
anammox bacteria (Ca. Brocardia and Ca. Kuenenia) 
could transfer electrons to GO. It was the first study 
that suggested that anammox bacteria have EET capa-
bility, because they oxidized  NH4

+-N to  N2 using the 
insoluble material as electron acceptor and formed 
rGO. The latter was proposed after the medium 
changed to a dark black color (due to the formation 
of insoluble precipitates). Wang et  al. (2013) also 
observed a change in the color of synthetic waste-
water, due to the reduction of GO by the anammox 
microorganisms. This hypothesis was subsequently 
confirmed by Raman spectroscopy analysis. Fur-
thermore, given the size of GO sheets, its internal 
incorporation into the cells was not possible. Thus, 
extracellular electron transfer can only explain its 
reduction to rGO.

Anammox in bioelectrochemical systems

Recently, ammonium removal in BES has been 
proposed as an alternative to conventional nitro-
gen-removing systems for wastewater treatment. In 
this technology, nitrogen is removed from waste-
water coupled to electricity generation in a MFC 
or hydrogen production in a MEC (Katuri et  al. 
2019). Ammonium is considered a potential fuel 
for SBE because (1) it is a major pollutant in waste-
waters, (2) its oxidation exhibits a negative Gibss 
free energy (−357  kJ/mol), indicating that it is a 
spontaneous reaction that occurs without external 
energy input, and (3) during its oxidation, ammo-
nium releases a large number of electrons, which 
can be used to synthesize ATP, produce electric-
ity or promote specific reduction reactions in the 
cathodic chamber (He et  al. 2009; Xie et  al. 2013; 
Zhan 2020). Although, in MFC and MEC, there is 
a constant interaction between microorganisms and 
the electrodes (electron acceptor), each one presents 
differences in its operation and reaction products, 
which are detailed below.

MFC is a promising system for concurrent waste-
water treatment and electricity generation by using 
microorganisms as catalysts to oxidize ammonium 
and convert its chemical energy into electrical energy 
(Kong et al. 2022). In these BES, the reaction occurs 
spontaneously, releasing energy that can be used as an 
electrical source (Li et al. 2016). Figure 3 illustrates 
the coupling of MFC and anammox: (1) anode used 
as electron acceptor for direct  NH4

+-N oxidation by 
EAB (Zhan 2020), (2) cathode used as electron donor 
to drive reduction reactions (Kokabian et  al. 2018), 
(3) external circuit, which is responsible for the ade-
quate passage of electrons collected from the anode 
to the cathode (Oliot et  al. 2016), (4) selective pro-
ton membrane used as an electrolyte to transport pro-
tons from the anode to the cathode, which separates 
the two chamber (Zhang et al. 2013), and (6) external 
resistance that is used to determine the electron flow 
rate in the MFC (Zhou et  al. 2022). Regarding its 
operation, electrons released during  NH4

+-N oxida-
tion are collected at the anode (anodic-anammox) and 
transferred to the cathode by the external circuit. In 
the cathode chamber, there is an oxidizing compound, 
typically oxygen, which reacts with the protons com-
ing from the anode chamber to form water as a by-
product (Zekker et al. 2020).
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On the other hand, in a microbial electrolysis 
cell (MEC), the difference between the anode and 
the cathode potentials is insufficient, therefore an 
external power supply is necessary to induce non-
spontaneous reactions or to accelerate spontane-
ous reactions (Li et  al. 2016). Recently, the cou-
pling of MEC-anammox has been proposed as a 
novel bioelectrochemical approach for nitrogen 
removal because, although the ammonium oxida-
tion in MFC has been confirmed, the potential dif-
ference between the electrodes was not sufficient, 
so that a small power should be supplied to facili-
tate  NH4

+-N oxidation (Koffi and Obake 2021). 
In terms of configuration and operation, MEC are 
similar to MFC (Fig.  3). However, the external 
power supply (5) is an important feature of this 
technology. Ammonium oxidation takes occurs 
in the anode chamber, the electrons derived from 
 NH4

+-N oxidation are captured by the anode and 
then transferred to the cathode through the external 
circuit and released in the cathode chamber to pro-
mote specific reduction reactions (e.g., reduction of 
nitrite and nitrate, or protons, to form nitrogen gas 
or hydrogen, respectively).

Microbial fuel cells

Theoretically, the anammox reaction has a nega-
tive Gibbs free energy of −357 kJ/mol under stand-
ard conditions (at pH 7.0, temperature of 25 °C, and 
air pressure of 1 atm) (Gao and Tao 2011), which is 
superior to the one reported for the aerobic oxidation 
process (− 235 kJ/mol), which makes ammonium an 
appropriate substrate for BES, that is, serving as an 
electron donor. In addition, ammonium has the lowest 
oxidation state (− 3) of nitrogen, therefore the number 
of electrons released during its oxidative reaction is 
higher; thus, ammonium can also serve as a substrate 
for other electroactive bacteria (Jetten et al. 2001; Xie 
et al. 2013).

MFC coupled to the anammox process for simul-
taneous nitrogen removal and power generation are 
emerging as promising technologies in the last years 
(Kong et  al. 2022). Researchers have made great 
efforts on nitrogen removal by applying this coupling. 
He et al. (2009) were among the first to report anam-
mox-dependent electricity production at a MFC. They 
proved that adding ammonium along with  NO2

−-N 
and  NO3

−-N to the BES increased current production 
(up to 0.078 mA). Batch experiments showed that 

Fig. 3  Schematic diagram 
of a MFC and a MEC 
coupled to anammox. The 
anode chamber illustrates 
the anammox reaction using 
the electrode as electron 
acceptor, considering the 
mechanisms reported by 
Shaw et al. (2020). The 
cathode chamber shows 
potential reactions that can 
take place: water production 
(1), hydrogen production 
(2) and denitrification (3)
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removing  NH4
+-N from the feeding medium resulted 

in the interruption of current production, which con-
firmed that ammonium was the main supplier of elec-
trons in the MFC. In addition, by means of control 
experiments with different salts of ammonium in its 
chemical structure, it was ruled out that the current 
production was the result of the increase in the ionic 
strength of the medium. Molecular analysis based 
on 16  S rRNA gene sequencing revealed that aero-
bic ammonium oxidizing bacteria and denitrifying 
bacteria were found on the surface of the electrodes, 
whereas no species associated with anammox-type 
bacteria were detected. The nitrogen removal effi-
ciency of the BES was 69%, while the coulombic 
efficiency was only 0.34%. Lee et  al. (2013) also 
observed simultaneous electricity production and 
nitrogen removal in an anammox biocathode MFC. 
The results showed increases of more than 50% in 
the power density (12 mW/m2) and nitrogen removal 
efficiency greater than 90% (0.055 kgN/m3∙d). In 
the same year, Xie et  al. (2013) also achieved high 
ammonium conversion to nitrogen gas (~ 100%) and 
power densities of 9.7 mW/m2 in a MFC. However, 
the results were associated with the presence of dis-
solved oxygen, which contributed to the distribution 
of electrons through the system.

To date, the maximum power density reported 
for an MFC linked to anammox is 172.2 mW/m2, 
in which this system was operated with anaerobic 
digestate as inoculum (which also served as a carbon 
source for biomass synthesis). However, the power 
density was associated with the presence of intrinsic 
organic matter in the digestate, which explained the 
colonization of G. sulfurreducens (electrogenic bac-
teria) on the surface of the electrode and the removal 
of the organic carbon content by up to 60%. Nitrogen 
was removed by 40%, and Ca. Brocadia anammox-
idans was identified as a member of the microbial 
community that played a role in nitrogen removal (di 
Domenico et  al. 2015). Hassan et  al. (2018) applied 
a MFC for energy generation from landfill leachate 
treatment using anammox sludge to promote  NH4

+ 
oxidation. In the anodic chamber, ammonium was 
used as fuel during anammox process because an 
increase of up to 240 mg/l of ammonium, promoted 
an enhancement in the efficiency of the MFC. After 
finishing the experiments, ammonium and nitrite 
were removed from the medium by 66% and 86%, 
respectively. Sequencing analysis showed that in 

addition to anammox bacteria, denitrifying bacteria 
(of the phylum Proteobacteria) and electrogenic bac-
teria (Geobacter sp) were abundant in the microbial 
community of the anode.

Microbial electrolysis cells

The first application of a MEC coupled to the anam-
mox process was reported by Zhan et  al. (2012), 
whose research consisted in designing a single com-
partment microbial cell to evaluate the effect of low 
voltage application on ammonium removal rate. The 
MEC contained an anodic and a cathodic electrode, 
on which nitrifying and denitrifying biofilms were 
enriched, respectively. The data showed that the 
potential difference between the electrodes in these 
BES was deficient, so that a small power (< 0.8 V vs. 
SHE) was supplied externally using a direct current 
power supply to facilitate  NH4

+-N oxidation. After 
increasing the voltage from 0.2–0.4  V vs. SHE in 
the anode, the nitrogen removal rate and the electri-
cal current increased from 70–92% and from 4.4–14 
mA, respectively, while the coulombic efficiency was 
94%. The explanation for the process improvement 
is because the increase in voltage causes a change in 
the electrode potential, so that it is more capable of 
receiving or transferring charges (electrons). In this 
case, the electrons released from  NH4

+-N are used for 
 NO2

−-N and  NO3
−-N reduction in the cathode.

Another investigation showed that in the absence 
of nitrite, the anode served as the electron acceptor in 
a dual chamber electrolysis cell. Analytical methods 
showed that nitrate and nitrite (at low concentrations) 
were the main products of  NH4

+ oxidation. 16 S ribo-
somal RNA analysis defined Nitrosomonas euro-
paea, and phylotypes from the genera Empedobacter, 
Comamonas and Paracocus as the main members of 
the enriched microbial community on the surface of 
the electrode, which explained the accumulation of 
nitrate (Qu et al. 2014).

Similarly, Zhang et  al. (2014) proposed the 
anode as the electron acceptor in a two-chamber 
MEC. The results showed that by applying a volt-
age of 0.8 V vs. SHE in the anode, ammonium was 
removed up to 83% and the current production was 
increased three times, with respect to lower applied 
voltages (0 and 0.4 V). At the end,  NO3

−-N accumu-
lation confirmed the prevalence of nitrification, due 
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to the contamination of autotrophic microorganisms 
in the cathodic compartment. The microbial com-
munity was dominated by Nitrosomonas europaea. 
Two additional investigations coupled anammox to 
a MEC. In the first investigation, Zhu et al. (2016) 
emphasized that controlling the anodic potential in a 
BES increases the ammonium removal efficiency as 
compared to a conventional anammox reactor with-
out electrodes because the efficiency of the process 
increased by at least 29% once a given anode poten-
tial was set at 0.2 V vs. SHE. Independent experi-
ments confirmed the electrochemical removal mech-
anism of the process once the anodic potential was 
excluded because the nitrogen removal declined to 
the level observed in the control reactor. By means 
of scanning electron microscopy and FISH molec-
ular analysis, the abundance of anammox bacteria 
(56%) and aerobic ammonium-oxidizing bacteria 
adhered to the surface of the anode was confirmed. 
This is an important evidence because it suggests 
that anammox bacteria are electrically active. In the 
second study, Li et al. (2016) designed a BES made 
up of a MEC and a MFC; the latter was conceived 
to remove the organic load and to provide the volt-
age required by the MEC. Batch tests showed that at 
least 85% of the nitrogen was removed from the sys-
tem during the first 10 days of operation, which rep-
resented a higher efficiency as compared to the 62% 
achieved by the conventional anammox process. 
Further evidence showed that anammox efficiency 
can be increased by applying direct current to the 
process, especially through increasing the key enzy-
matic activity in anammox bacteria and facilitating 
substrate turnover, which achieved better nitrogen 
removal efficiency (Yin et al. 2015b, 2016a).

In a similar way, Vilajeliu-Pons et  al. (2018) 
observed that with an applied anode potential of 
+ 0.8 V vs. SHE, in a dual-chamber MEC, hydrogen 
production was favored in the cathodic compart-
ment and ammonium removal rates were compara-
ble to those achieved with conventional anammox, 
but with lower energy consumption (35 times 
lower) and without accumulation of nitrite, nitrate 
or nitric oxide. Nitrogen isotopic labelling revealed 
that hydroxylamine was the main intermediate of 
ammonium electrochemical oxidation. Further-
more, phylogenetic analysis revealed the presence 
of nitrifying-, anammox- (Brocardia and Kuenenia), 

denitrifying-, feammox- and Firmicutes phylum in 
the anode biofilm of the dual-chamber BES reactor.

Recently, anammox bacteria have been reported 
to transfer extracellular electrons for ammonium 
oxidation to nitrogen gas with an electrode of a 
MEC as the sole electrode acceptor. In this study, 
Shaw et  al. (2020) clearly demonstrated that BES 
enriched with Ca. Brocardia, Ca. Scalindua and 
Ca. Kuenenia promoted successful  NH4

+-N oxi-
dation and generation of current without nitrite as 
electron acceptor. The maximum current produc-
tion was observed with an applied anode potential 
of + 0.6  V vs. SHE. Isotopic labeling experiments 
showed that hydroxylamine and hydrazine were the 
intermediates in the process, while nitrous oxide 
was not detected. Furthermore, nitrite and nitrate 
concentrations always remained below the detection 
limit using the working electrode as the sole elec-
tron acceptor, suggesting that both compounds did 
not play a significant role in the BES. The reactions 
proposed by the researchers are presented below 
(Eqs. 26, 27, 28, 29). This mechanism begins with 
the  NH4

+-N oxidation to  NH2OH. Next, the remain-
ing fraction of  NH4

+-N reacts with  NH2OH to form 
hydrazine. Finally, the  N2H4 is oxidized to  N2.

The dependence of the bacteria on the electrodes 
was confirmed by different control experiments, 
which included the addition of inhibitors of specific 
enzymes, under the operation of the system in open 
and closed circuits, carrying out experiments with 
sterile biomass and excluding ammonium from the 
feeding medium. All tests confirmed that the cur-
rent production was associated with a biotic reac-
tion. During the experiments, the magnitude of 
current production was proportional to the ammo-
nium concentration, that is, when ammonium was 
depleted, current production ceased, but restarted 
after ammonium was reintroduced.

(26)NH
+
4
+ H

2
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2
OH + 3H

+ + 2e
−
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2
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2
H

4
+ H

2
O + H

+

(28)N
2
H

4
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2
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4
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2
+ 8H

+ + 6e
−
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In the most recent study, Koffi and Obake 
(2020) anoxic  NH4

+-N oxidation and TN removal 
rates were determined at various applied voltages 
(0–1.2  V), provided by a MFC. Maximum ammo-
nium removal rate (151  g  NH4

+-N/m3d) and TN 
removal rate (95 g-TN/m3∙d) without aeration at the 
cell applied voltage of 0.8 V. In addition, by means 
of the operation of the cell in open and closed cir-
cuit, the bioelectrochemical nature of process was 
verified (that is, with the anode as an electron 
acceptor). The production of nitrogen gas as the 
only product and the absence of nitrite and nitrate 
in the system confirmed that the anammox process 
was efficient. In addition, 15 N isotope trace experi-
ments and microbial community analysis showed 
that the most dominant populations detected in the 
anode belonged to the phyla Proteobacteria, Bac-
teroidetes, Actinobacteria, Chloroflexi, Firmicutes 
and Planctomycetes. Denitrifying heterotrophic and 
anammox bacteria were associated with the removal 
of nitrogen. In the case of anammox bacteria, the 
genus Ca. Brocadia was detected in the anode and 
in the cathode biofilm. Based on this information, 
the researchers suggest that the anammox process 
may contribute to ammonium electrochemical oxi-
dation in this MFC supported by a MEC system.

Nitrogen recovery in bioelectrochemical systems

With the high demand for food from the growing 
world population, the production of chemical fertiliz-
ers has increased by almost 2% annually (Ledezma 
et  al. 2015). Conventionally, fertilizers are made 
from nitrogen, an essential nutrient for plant growth, 
but whose presence in soils is limited (van der Hoek 
et al. 2018). Although the atmosphere is an abundant 
source of nitrogen (its content is ~ 80%), this is in a 
stable and non-reactive form  (N2), which most plants 
cannot assimilate; therefore, to be accessible to crops, 
it must be converted into more reactive species, such 
as  NO3

−-N,  NO2
−-N or  NH4

+-N. This conversion is 
known as nitrogen fixation and occurs in two ways: 
in nature, atmospheric nitrogen is transformed into 
ammonium and nitrate by prokaryotes (Eq. 30) con-
taining nitrogenase (98%) or by atmospheric depo-
sition through electric lightning (2%) (Sengupta 
et  al. 2015). Artificially, the Haber-Bosch process 
is used to fix atmospheric nitrogen in the form of 

ammonia (Freguia et al. 2019), by combining  N2 and 
 H2 (Eq.  31) at high temperature (400–600  °C) and 
high pressure (20–40 MPa). This results in a process, 
which is so energy-intensive that it demands 1–2% 
of the world’s electricity consumption (with a typi-
cal energy usage of 9–14.2 kWh/kg  NH3-N) (Maurer 
et al. 2003; Erisman et al. 2008; Kugler et al. 2014). 
Furthermore, hydrogen used for this reaction is pro-
cessed from natural gas or oil directly, resulting in 
carbon dioxide as a by-product and an electrical cost 
of approximately 10 kWh/kg  NH3-N (Nancharaiah 
et al. 2016).

In addition to the remarkable demand for energy 
destined to produce nitrogen fertilizers, their increas-
ingly high consumption leads to the discharge of sub-
stantial amounts of nitrogen into water streams (it is 
estimated that 11–16% of the flow of anthropogenic 
nutrients is directed through wastewater facilities) 
(Billen et  al. 2013). Besides, it has been forecasted 
that amount of ammonium that will end up in domes-
tic wastewater will rise to 35 million tons per year by 
2050 (Bodirsky et  al. 2014). Thus, the treatment of 
nitrogen-polluted wastewater is attracting increasing 
attention as a crucial step in recovering and recycling 
nitrogen. While nitrogen that enters to the wastewater 
streams is removed by effective processes, such as N/
DN or anammox, most of this nitrogen is converted to 
nitrogen gas and is lost to the atmosphere instead of 
being reused by means of biological fixation (van der 
Hoek et al. 2018).

In this sense, recovering nitrogen from wastewa-
ter is considered as a more sustainable approach than 
removing it, due to the high costs and environmen-
tal pollution involved in artificial nitrogen fixation 
(Kelly and He 2014). Nitrogen recovery in BES has 
been proposed as a competitive technology to tradi-
tional ammonium removal from wastewater streams, 
taking advantage of the reactions that occur in the 
electrodes of the systems. Wong et  al. (2014) dem-
onstrated that a bioanode could promote BNF using 
glucose and diazotrophic microorganisms in nitro-
gen-deficient wastewater. The open circuit operation 
of the BES helped to remove glucose from the water 

(30)
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and to obtain acetate as a key by-product. Once the 
BES operation was switched to closed circuit, ace-
tate accumulation began to decrease (up to 30 times) 
suggesting that the biofilm oxidized acetate under 
nitrogen deficient conditions. Microbial analysis 
showed that Clostridium (an electrochemically active 
genus capable of fixing  N2) dominated the electrode-
enriched biofilm in abundance (78%), while the rest 
(22%) comprised other bacterial groups (Bacilli, Bac-
teroidia, Alphaproteobacteria, Betaproteobacteria, 
Gammaproteobacteria and Deltaproteobacteria).

In a similar study, Rago et  al. (2019) designed a 
single chamber microbial electro-synthesis to produce 
biomass associated with BNF through electrostimu-
lation. The results showed that using a carbon cloth-
based cathode under constant polarization (− 0.7  V 
vs. SHE) promoted the enrichment of nitrogen-fixing 
autotrophic microorganisms on the surface of the 
electrode, in addition to increasing cellular synthe-
sis by at least eighteen times. Through metagenomic 
analysis, nucleotide sequences that encoded different 
subunits of the nitrogenase complex were related to 
different archaea and bacteria (potentially involved 
in nitrogen fixation), which includes Methanobrevi-
bacter arboriphilus, Ca. Accumulibacter spp., She-
wanella mangrovi and Methylomonas koyamae.

Xiao et  al. (2016) used a three-chamber MFC 
aimed at simultaneously removing and recovering 
nitrogen from synthetic wastewater, to use it as a 
fertilizer, but without energy input. The anodic and 
cathodic chambers were separated by an intermedi-
ate chamber containing selective cationic and anionic 
exchange membranes, for the migration of ammo-
nium and nitrate, respectively. The system was oper-
ated in batch mode, with microorganisms in the anode 
chamber and with ferric nitrate as electron acceptor in 
the cathode chamber, the latter also served as a refer-
ence to evaluate the efficiency of the system in nitrate 
recovery. The output voltage ranged from 600–700 
mV with an external load of 500 Ω. The data showed 
that around 47% of the ammonium and 83% of the 
nitrate were recovered in the central compartment, 
confirming that the BES design was efficient in simul-
taneously removing and recovering nitrogen.

Monetti et  al. (2019) designed a three-chamber 
bioelectrochemical system to bioelectroconcentrate 
nutrients (including nitrogen) from domestic waste-
water. The experimental data revealed that the system 
showed limited nutrient recoveries due to the poor 

ionic conductivity of the electrolyte, which resulted 
in low current densities (< 2  A/m2). As soon as it 
was observed, a potentiostat/galvanostat operated in 
chronoamperometry mode was used to deliver higher 
current densities, which increased nitrogen removal 
by 48%, but with the precipitation of calcium and 
magnesium salts in the anionic membrane. This phe-
nomenon was explained by the non-selective migra-
tion of cations in the central compartment caused by 
precipitation of these salts, which reduced the selec-
tive permeability of the membrane. In addition, the 
application of high current densities (~ 20 A/m2) not 
only impacted the selectivity of the membrane, but 
also demanded a higher energy consumption and led 
to higher ohmic losses, causing uncontrolled poten-
tials that promoted the electrolysis of the water and 
the disintegration of the graphite electrode.

Comparison of power demand among biological 
treatment processes for ammonium removal

WWTPs are recognized as large independent energy 
consumers because the effluent quality relates to 
significant power input (Gu et  al. 2017; Wang et  al. 
2019). It is estimated that the operation of WWTPs 
represent 3–5% of the world’s electricity consump-
tion (Foladori et  al. 2015; Dai et  al. 2019; Ye et  al. 
2019). The numbers indicate that up to 50% of the 
total energy supplied in a conventional WWTPs 
is used to satisfy the aeration demand for carbon 
and nitrogen oxidation processes (Gude et  al. 2015; 
Ghimire and Gude 2019). Another study suggests that 
the contribution of biotreatment processes to total 
electric power consumption may reach up to 80% 
(Rodziewicz et  al. 2022). In fact, it is expected that 
its consumption will be higher in the future due to 
the increase in pollutant load and stringent environ-
mental regulations (Wang et al. 2019). Thus, energy 
efficiency has attracted more attention from an envi-
ronmental and economic point of view (Longo et al. 
2016). Hence, developing and implementing efficient, 
energy-producing processes that reduce aeration costs 
in WWTPs is important to increase the economic fea-
sibility of the treatment system, given that the nitro-
gen removal process plays a key role in the achieve-
ment of energy-neutral WWTPs.

In the case of nitrogen removal processes, N/DN 
is a nitrogen removal pathway that requires high 
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energy consumption due to the use of electricity for 
aeration (Maurer et al. 2003). Likewise, the external 
carbon sources for the denitrification process can lead 
to operating costs of up to € 3.64/kg  Nremoved (Arias 
et  al. 2018). In a typical WWTP with nitrification-
denitrification, the energy consumption can reach 
14.6 kWh/kg  Nremoved (Panepinto et  al. 2016; Wang 
et al. 2019; Rodziewicz et al. 2022). In a simulation 
model, energy consumption during N removal can 
reach 52 kWh/kg  Nremoved using indicators for loads 
of total nitrogen removed from dairy wastewater in 
biological processes (Żyłka et al. 2021).

As for anammox, it shows an improved energy 
footprint over N/DN. Thus, this technology is consid-
ered as the most promising and energy saving nitro-
gen removal process (Zhang et  al. 2021). Evidence 
demonstrates that it is possible to save energy by up 
to 44% if the anammox process is implemented in the 
mainline of a full-scale conventional treatment plant 
and that it also increases the biogas production yield 
(+ 9 kWh/per year), which results in an efficient pro-
cess with net positive energy output (Maktabifard 
et al. 2018).

Evidence suggests that wastewater itself has more 
energy than it needs for treatment (Yuan and He 
2015). Just ammonium has gained increasing atten-
tion as a carbon-free energy source. It is estimated 
that up to 5.5 kWh per g  NH4

+-N is theoretically 
available from ammonium oxidation (Yüzbaşıoğlu 
et al. 2022). Thus, harvesting energy from ammonium 
in WWTPs can contribute to reduce even more the 
energy demand (Cano et al. 2023).

In fact, the advantages of anammox have driven 
the development of innovative alternatives that cou-
ple this process to other technologies, such as con-
ventional nitrification. In this sense, Jonasson (2007) 
stated that it is possible to reduce the total electricity 
consumption of a treatment plant by up to 12% after 
substituting the N/DN by PNA. This energy saving 
occurs whenever the PNA demands lower oxygen 
consumption (−60%) since only approximately half of 
the ammonium needs to be oxidized to nitrite, equiva-
lent to 0.75 moles of  O2 per mole of  NH4

+oxidized 
(Soliman and Eldyasti 2018). Similarly, Arias et  al. 
(2018) confirmed the superior energy footprint of 
the PNA-based technology called ANR. The cost of 
electrical power of the ELAN process was 0.27 €/m3, 
which represents an energy cost four times lower than 
that demanded by the conventional N/DN (1.09 €/

m3). This observation had previously been stated by 
Lackner et  al. (2014). In their case, the power con-
sumption of the N/DN was 4 kWh/kg  Nremoved, which 
represented at least half of the electricity consump-
tion reported for the PNA (0.8–2 kWh/kg N). Never-
theless, energy costs can be even lower if the electri-
cal cost of bioelectrochemical systems is considered. 
Although, power supplies, recirculation pumps and 
cathodic aeration pumps are the main energy consum-
ers in BES (Dong et  al. 2015), the data show lower 
energy requirements (see Table 1).

From the energy footprint perspective, MFC seem 
to be the best technology to remove ammonium from 
wastewater; their energy consumption ranges between 
0.9 and 1.2 kWh/kg N. However, energy savings are 
still on the horizon, since the low consumption of 
electricity has been obtained with laboratory-scale 
experiments, so it is still necessary to verify the 
energy demand that scaling would entail (Xia et  al. 
2018). Regarding MEC, although there are suffi-
cient studies that apply this technology for nitrogen 
removal, now there is only one study that states the 
power expenditure involved in its operation. Accord-
ing to Pous et al. (2015), the energy consumption of 
a MEC during nitrogen removal is approximately 6.8 
kWh/kg  Nremoved, which is higher than that required 
by most technologies applied for nitrogen removal. In 
this case, the high energy expenditure is explained by 
the aeration of the cell and by the application of exter-
nal voltage. Therefore, while the potential for apply-
ing BES for nitrogen removal from wastewaters is 
very promissory, further works should be conducted 
to optimize and scale up these treatment systems.

Potential applications of other electron acceptors 
in nitrogen‑rich wastewater

Anammox coupled to the reduction of other electron 
acceptors, distinct to nitrite, has great potential for 
ammonium removal from specific wastewaters. These 
microbial processes represent a novel alternative to 
replace conventional aerobic and anaerobic ammo-
nium oxidation in wastewaters. As microbe-driven 
processes, their potential applications in the removal 
of nitrogen from wastewater must be detailed.

Feammox has great potential advantages for 
wastewater treatment: (1) It could treat industrial 
wastewater with high content of heavy metals, as 



62 Biodegradation (2024) 35:47–70

1 3
Vol:. (1234567890)

microorganisms involved in this reaction could also 
reduce additional elements besides Fe (Huang and 
Jaffé 2015; Weng et al. 2017; Xiu et al. 2020); (2) it 
does not require aeration, reducing energy consump-
tion and wastewater treatment costs (Liang et  al. 
2022; Hu et  al. 2022); (3) it can be carried out in a 
wide pH range, especially under acidic conditions; (4) 
its main product is  N2, which is harmless to humans 
and the environment. Furthermore, if  NO2

−-N and 
 NO3

−-N are formed, they can be treated by anammox 
and nitrate-dependent Fe(II) oxidation, respectively 
(Yang 2020; Zhu et  al. 2022; Sun et  al. 2023); and 
finally, 5) the generated Fe(II) can be removed by 
conventional techniques, such as electrocoagulation 
and oxidation-precipitation-filtration processes (Zhu 
et al. 2021).

Sulfammox is also a promising approach for treat-
ing nitrogen rich-wastewater, particularly those con-
taining high amounts of sulfurous compounds. This 
process offers unique advantages for its practical 
application because: (1) It could be suitable for the 
simultaneous removal of ammonium and sulfate in 
different wastewaters, such as those from aquaculture 
and fish-processing plants, chemical, pharmaceuti-
cal, paper mills, sugar production, and textile indus-
tries (Yang et al. 2009; Rios-Del Toro and Cervantes 
2019); (2) compared to conventional anammox, 

sulfammox is easier to control as nitritation is not 
needed (Zhang et  al. 2009; Dominika et  al. 2021); 
(3) sulfammox and anammox could coexist and com-
pletely remove nitrogen, as the nitrite produced by 
sulfammox can be used by anammox (Rikmann et al. 
2016); (4) since it is a reducing process, the formation 
of toxic sulfide is avoided (Dominika et  al. 2021); 
(5) it can prevent interference with the conventional 
anammox caused by inhibition of  S2− (Xu et  al. 
2020), and (6) elemental sulfur has been identified 
as an intermediate product from Sulfammox process 
and is therefore conceivable as a valuable by-product 
(Rios-Del Toro and Cervantes 2019).

Humic substances and graphene oxide have 
recently been identified as a major opportunity for 
improving wastewater treatment, because of their 
enormous potential for developing efficient nitrogen 
removal techniques. Due to their cost and great reus-
ability, they are advantageous in wastewater treat-
ment, because (1) They exhibit a long-term catalytic 
effect on the activity of growth cells and activity of 
anammox bacteria due to their unique structures and 
properties (Ruiz et al. 2011); (2) their abundant oxy-
genated functional groups can serve both as electron 
shuttle and as electron acceptor in extracellular elec-
tron transfer among bacteria, which accelerate the 
anammox activity and increase the nitrogen removal 

Table 1  Power 
consumption for biological 
nitrogen removal processes

Process O2 consumption 
(mole per mole of 
 NH4

+)

Energy consump-
tion (kWh/KgN-
removed)

Reference

N/DN 2 2.7 Schaubroeck et al. (2015)
2.4 Figueroa et al. (2012)
2.4–4.3 Joss et al. (2009)
6 Wett et al. (2015)
3.5 Vineyard et al. (2020)
33 Fenu et al. (2019)

PNA 1.5 1.5 Schaubroeck et al. (2015)
1 Joss et al. (2009)
1.2 Wett et al. (2015)
4.2 Lackner et al. (2014)
1 Figueroa et al. (2012)

Conventional anammox 0.75 1.5 Vineyard et al. (2020)
1.9 Lackner et al. (2014)

Anammox-MFC 0.75 0.9 Yang et al. (2017)
1.2 Vilajeliu-Pons et al. (2018)

Anammox-MEC 0.75 6.8 Pous et al. (2015)
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rate (Khadem et  al. 2017; Li et  al. 2019a); (3) they 
can remove not only nitrogen but also other pollut-
ants, such as hazardous organic and inorganic chemi-
cals in specific industrial wastewater by adsorption or 
photodegradation (Kochany and Lipczynska-Koch-
any 2009); and (4) their application can change EPS 
concentration, leading to bacterial aggregation (Lu 
et  al. 2021). Additionally, humics and GO can also 
be immobilized in the anode of BES to enhance the 
anaerobic ammonium oxidation in the anodic cham-
ber. This is because these electron acceptors share 
oxygenated functional groups (e.g. quinones), which 
are also present in graphitic anodes.

Alternatively, bioelectrochemical systems have 
been proposed as a new treatment technology for the 
removal of ammonium from wastewater in which the 
anode serves as the electron acceptor. The application 
of BES for this purpose offers new advantages, such 
as: (1) ammonium oxidation can release a large num-
ber of electrons, so it is considered a potential fuel 
in bioelectrochemical systems (He et  al. 2009); (2) 
another benefit is that ammonium is oxidized with-
out oxygen, which reduces energy and causes less 
electron loss (Zhang et al. 2022); (3) anammox bac-
teria have recently been considered as electrochemi-
cally active bacteria that can simultaneously remove 
nitrogen and produce electricity from wastewater 
(Shaw et a. 2020); and (4) nitrate and nitrite formed 
during  NH4

+-N oxidation can be reduced to  N2 at the 
cathodic chamber (complete denitrification), which 
increases the efficiency of nitrogen removal (Rod-
ríguez Arredondo et al. 2015).

Perspectives and future research

Anammox is a cost-effective alternative to conven-
tional nitrogen removal systems. However, the fre-
quent absence of nitrite in wastewater has led the 
scientific community to search for other electron 
acceptors, suitable to support the anoxic oxidation 
of ammonium. From this point of view, new nitrogen 
removal processes have demonstrated the ability of 
microorganisms to couple anammox to their respira-
tory chains with various electron acceptors, includ-
ing nitric oxide, graphene oxide, sulfate (sulfammox), 
iron (feammox), natural organic matter (NOM-anam-
mox), and electrodes of BES (anodic-anammox). 
Although coupling anammox with other electron 

acceptors has great potential to solve the problem 
of specific industrial wastewaters with high nitrogen 
content, the knowledge and understanding of these 
processes are still limited. Thus, there is still a long 
way to go before the technologies can be applied in 
practice. Thus, more research is required to elucidate 
the potential mechanisms, microbial interactions, and 
their metabolic pathways that mediate these processes 
to expand the understanding in terms of the biological 
nitrogen removal processes and their future applica-
tion in wastewater treatment systems. These advances 
will undoubtedly turn the process into an efficient and 
cost-effective technology.
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