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Abstract
To what extent is the relative biodiversity of some flagship conservation sites a result of 
differential attention? Knysna estuarine bay is the topmost ranked South African estuary 
for conservation importance and biodiversity. It is also one of the most intensively stud-
ied, and hence differential sampling effort could partly be responsible for its apparent rela-
tive richness. To assess the extent to which this might be true, identical sampling area, 
effort and methodology were employed to compare the benthic macrofauna of one spe-
cific major Knysna habitat (Zostera capensis seagrass beds) with equivalent ones in two 
nearby lesser-studied estuaries, the Keurbooms/Bitou and Swartvlei. Investigation showed 
all three localities to share a common species pool, but different elements of it dominated 
the shared habitat type in each. The seagrass and adjacent sandflat macrobenthos proved 
just as biodiverse in unprotected Keurbooms/Bitou as in the Protected Area of Knysna, 
but that in Swartvlei (also a Protected Area) was impoverished in comparison, presumably 
consequent on mouth closure and the prevailing lower salinity. Despite marked geomor-
phological and hydrological differences, all three estuaries share a suite of unusual faunal 
elements and such particularly close faunal similarity suggests the importance of historical 
biogeographic processes. The analysis emphasises the need for caution when assessing the 
relative conservation importance or other merits of different individual systems in a data-
limited environment.

Keywords Keurbooms · Knysna · Swartvlei · Macrobenthos · Sampling intensity · Zostera 
capensis

Introduction

The Swartvlei, Knysna and Keurbooms/Bitou estuaries discharge into the Indian Ocean 
along a 50 km warm-temperate stretch of the south coast of South Africa’s Western Cape 
between 34° 02′ S, 22° 48′ E and 34° 03′ S, 23° 23′ E (Fig. 1). They share the distinction of 
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being the only known localities of the rare and endangered fully-estuarine seahorse, Hip-
pocampus capensis (Teske et al. 2003). Not unrelatedly, all three also support important 
beds of Cape dwarf-eelgrass, Zostera (Zosterella) capensis. Globally this seagrass is clas-
sified as vulnerable but in South Africa it too is endangered (Skowno et  al. 2019), and 
between them these estuaries currently support 60% of country’s acreage of Z. capensis, 
with Knysna in particular being its South African stronghold (Adams 2016). For this and 
other reasons, all three estuaries are in the top twenty most ecologically significant South 
African ones (out of 290+), Knysna being ranked 1st, Swartvlei 6/7th, and Keurbooms 
16-18th (Turpie et al. 2002; Turpie 2004; Turpie and Clark 2007). Swartvlei and Knysna 
lie within the Garden Route National Park and hence have Protected Area status; the joint 
Keurbooms/Bitou estuary, however, receives no formal protection, although it is managed 
under the prescriptions of the National Estuarine Management Protocol (Western Cape 
Government 2018).

Although geographically adjacent, their present nature, size, shape and hydrography 
differ quite markedly. Knysna is a large estuarine bay (sensu van Niekerk et al. 2020a) 
with a water surface area of some 19  km2 and a narrow but permanently open con-
nection to the ocean through a sandstone gorge (Russell et  al. 2010; Whitfield et  al. 
2023). Like most South African estuaries (Whitfield 2005), freshwater inflow is rela-
tively small, and the whole system is dominated by sea water, with a very large tidal 
prism, although it is a drowned river-valley estuary in the terminology of Whitfield 
and Elliott (2011). Swartvlei is a small (2  km2), narrow channel linking a large estua-
rine lake to the ocean (Hill 1975), and its mouth is often closed as a result of longshore 

Fig. 1  Part of the south coast of the Western Cape, South Africa, showing the location of the three estuaries 
under study (Google Earth Pro satellite image © 2020 Landsat/Copernicus), and within each estuary detail 
of its mouth region with the sites investigated marked (Google Earth Pro satellite images © 2023 Maxar 
Technologies). Scale lines on the individual estuaries are all 2 km
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sand-movement at times of low freshwater discharge (Whitfield et al. 1983; Whitfield 
1989). The system is essentially the mouth of a bahira lagoon (Tagliapietra et al. 2009) 
formed when rising sea levels broke through the 200 m high pre-existing coastal dune 
system to flood part of the hinterland (Illenberger 1996; Bateman et  al. 2011). The 
slightly larger (3  km2) joint estuary of the Keurbooms and Bitou rivers is a typical bar-
built system mainly in the form of a longshore back-barrier coastal lagoon (Schumann 
2021), and hence is usually termed the Keurbooms Lagoon. Its relatively large fresh-
water input maintains an open mouth which migrates in position along the 4 km long 
enclosing sand bar (Duvenage & Morant 1984; Adams et al. 2015).

Work in 1947 as part of a survey of all South Africa’s major estuaries led to the 
Knysna estuarine bay early being regarded as supporting the richest estuarine fauna 
in the country, both in terms of numbers of individual animals and number of spe-
cies (Day et  al. 1951). Accordingly, over the next 70 + years it received very much 
more scientific attention than neighbouring Swartvlei or Keurbooms/Bitou (see sum-
mary in Whitfield et  al. 2023), and it remains top of the overall national estuarine 
biodiversity rankings (jointly with the Swartkops, Klein and Kosi estuaries) (Turpie 
2004; Turpie and Clark 2007). To some extent the pre-eminence of Knysna’s biodiver-
sity could therefore be a reflection of years of differential research effort (Awad et al. 
2002; Azovsky 2011). It is possible, however, to place the apparent relative richness 
of Knysna in a truer context by comparing individual shared habitat types in com-
parably-sized locations in the three estuaries, using sampling regimes of equivalent 
nature, intensity, and extent. The present study seeks to achieve this, based on his-
torical datasets recently collected from Z. capensis localities along the main channel 
at Knysna (see Barnes and Claassens 2020; and Barnes 2022: Mendeley Data, VI, doi: 
https:// doi. org/ 10. 17632/ nmwsr pd738.1 and https:// doi. org/ 10. 17632/ nj2mv v8fn5.1), 
and equivalent new data collected from Knysna and from a comparable locality at each 
of Swartvlei and Keurbooms/Bitou in 2023. The null hypothesis that there are no dif-
ferences in abundance and biodiversity between a given characteristic and important 
habitat type in a representative locality in the flagship Knysna estuary and in compa-
rable sites of equivalent area in the other two ‘lesser’ estuaries was tested using the 
benthic macrofauna as an example.

Of particular biodiversity interest are a number of ‘Knysna specialities’—species 
that dominate that estuarine system but appear neither in the authoritative Day (1981a) 
Appendix  9.1 list of the 120 invertebrates that are the “characteristic macrobenthic 
species in estuaries of southern Africa” nor in the Knox et  al. (2004) list of species 
occurring in the other South African estuaries along the 1000  km of warm-temper-
ate coast centred on Knysna, i.e. between Cape Point (34° 22′ S, 18° 30′ E) and the 
Mbashe estuary (32° 17′ S, 28° 54′ E). Such seagrass-associated Knysna specialities 
include the three endemic South African microgastropods Alaba pinnae (in densities 
of up to 39,000  m−2), ‘Assiminea’ capensis (sensu Criscione and Ponder 2013) (up to 
32,000  m−2), and ‘Hydrobia’ knysnaensis (sensu Wilke et al. 2013) (up to 16,000  m−2), 
and the polychaete Paradoneis lyra capensis (up to 7000  m−2) [‘Assiminea’ and ‘Hyd-
robia’ are here names of convenience, both species await the description of the new 
genera required for them, and in the case of ‘Assiminea’ possibly a new subfamily or 
family (Fukuda and Ponder 2010)]. A second null hypothesis that the dominance of 
these species is in fact not restricted to Knysna but extends to all three local estuaries 
was therefore also examined.

https://doi.org/10.17632/nmwsrpd738.1
https://doi.org/10.17632/nj2mvv8fn5.1
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Materials and methods

Protocol and study areas

Previous work on dwarf-eelgrass benthic macrofaunas within individual paralic systems 
has demonstrated a high degree of assemblage constancy across quite wide ranges of envi-
ronmental conditions (Barnes 2022, 2023; Barnes et al. 2022). Hence precise site location 
within the estuaries concerned was not considered to be too critical a potential variable. 
Two of the localities recently surveyed by Barnes and Claassens (2020) and Barnes (2022), 
‘Brenton’ (34° 03.5′ S, 23° 02.0′ E) and ‘Steenbok’ (34° 03.7′ S, 23° 02.9′ E), appear rep-
resentative of the non-backwater regions of Knysna’s marine basin [i.e. areas subject to the 
‘marine-bay hydrological and ecological regime’ of Largier et al. (2000) with their marine 
or aeolian sandy sediments (Reddering and Esterhuysen 1987)], and they support the near-
est permanent seagrass beds to the estuarine mouth along Knysna’s main channel. These 
represented Knysna, in the case of assemblage metrics by the average of their values. 

Localities at Swartvlei and Keurbooms/Bitou selected for comparison were also located 
in equivalent positions along their main channels in the most marine influenced zone of 
each estuary and in positions sheltered from high-velocity tidal fluxes of water through the 
mouth but nevertheless closest to it; these were at 34° 01.5′ S, 22° 48.6′ E and 34° 02.7′ 
S, 23° 22.5′ E, respectively. At each locality, the Zostera capensis beds were sampled dur-
ing the austral summer (January–March) at two replicate sites, > 100 m apart. During the 
sampling period, the mouth of the Swartvlei estuary was closed, as is often the case (Kok 
and Whitfield 1986; Russell and Randall 2017), and therefore although subtidal seagrass 
beds could be sampled, there was no intertidal zone. At Keurbooms/Bitou, however, it was 
possible to sample at two tidal-heights: one some 1.5 m below low water spring (LWS) tide 
level, and the other intertidally at LWS. In addition, adjacent intertidal areas of bare sedi-
ment near LWS were sampled for comparison with the equivalent Brenton data of Barnes 
(2022) and new data were collected to represent the Steenbok site. Samples were taken at 
least 2 m away from habitat interfaces to avoid any possible edge effects (Nakaoka 2005; 
Barnes and Hamylton 2016), and each seagrass site was represented by 16 replicate cores 
at ~ 1 m intervals parallel to the water line and each bare-sand one by 20 such samples. 
These replicate sample numbers at individual Swartvlei and Keurbooms/Bitou sites were 
fixed to conform to those in the specific historical Knysna datasets being compared, so that 
all site comparisons were based on the same number of samples and total sampled area. 
Subtidal sampling was effected by high-tide snorkelling, and intertidal sites were sampled 
during low tide.

Also to conform to the dataset previously collected from Knysna, individual cores were 
of 0.0054  m2 area and 10 cm depth, thus collecting the smaller and most numerous mem-
bers of the macrofauna that constitute the large majority of invertebrate biodiversity, at 
least insofar as molluscs are representative (Albano et  al. 2011). All samples were col-
lected during daylight hours, the intertidal ones just before tidal ebb from the area of shore 
concerned whilst it was still covered by > 15 cm of water, and were gently sieved on site 
through 710 µm mesh. Retained material from each core: (1) was placed in a large poly-
thene bag of local estuary water within which all seagrass was shaken vigorously to dis-
lodge all but sessile animals and then discarded; (2) was then re-sieved and transported 
immediately to a local laboratory, and (3) was there placed in a 30 × 25  cm translucent 
dish over a LED light pad in which the living fauna was located by visual inspection. 
Samples from the bare sediment were treated similarly except that stage 1 was omitted. 
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As macrofaunal assemblage characteristics may vary with the degree of seagrass cover 
(McCloskey and Unsworth 2015), all seagrass samples were taken from areas with cover-
ages greater than the McKenzie (2003) maximum 75% standard for estuarine dwarf eel-
grass. The earlier samples from Knysna were previously collected and sorted in identical 
fashion and taken during the same months of the year.

Because of taxonomic uncertainty, including amongst numerically-dominant local ani-
mal groups (see e.g. Simon et  al. 2022), identification of collected fauna was generally 
attempted only to morphologically-based operational taxonomic units (‘morphotaxa’), an 
appropriate procedure to detect spatial patterns of numbers of taxa and their differential 
abundance (Dethier and Schoch 2006; Gerwing et  al. 2020). Although this incurs a risk 
of failing to distinguish any closely similar species, experience of taxonomic resolution/
sufficiency in equivalent soft-sediment macrobenthic studies (e.g. Warwick 1988; Tata-
ranni et al. 2009) indicates that operating at various levels from species up to family all 
produce similar conclusions. Wherever possible, however, all animals of particular interest 
were identified to those species currently recognised. Nomenclature below is as given by 
the World Register of Marine Species (WoRMS, www. marin espec ies. org, accessed March 
2023), except in respect of ‘Assiminea’ capensis (see Barnes 2018) which is listed in 
WoRMS as Rissoa capensis and as a taxon inquirendum [= the ‘A’. aff capensis of Miranda 
et  al. 2014, but not their ‘A’. cf capensis]. Sessile and mobile species can differentially 
influence spatial patterns of biodiversity (Davidson et al. 2004), and this study excluded 
any sessile or semi-sessile animals that had become detached from the seagrass leaves dur-
ing sampling.

Data analysis

Numbers per unit area (per core, site, and locality) of each component zoobenthic morpho-
taxon were subjected to similarity analysis, and assemblage metrics were derived and com-
pared via PAST 4.11 software (Hammer et al. 2001) or Microsoft Excel for Mac 16.71 with 
the StatPlus:mac Pro 8.0.4 add-on, all metrics being based on animal abundance. Rank-
ing of dominant species was determined by the Barnes (2014) index of numerical impor-
tance (INI), and differences in rank orders were tested using the Friedman non-parametric 
ANOVA.

Univariate metrics assessed were those known to have a major influence on local-scale 
biodiversity patterns (Blowes et  al. 2022); i.e. (1) overall faunal numbers, (2) observed 
numbers of morphotaxa, i.e. Hill’s N0 [‘species density’ sensu (Gotelli and Colwell 2001)], 
and (3) relative evenness (= equitability) of taxon abundances (Pielou’s J). In addition, (4) 
the Gatti et al. (2020) AED biodiversity index incorporating Hill’s N0, N1 and N2 metrics 
was also assessed, as was (5) patchiness in assemblage abundance (as estimated by Lloyd’s 
Ip).

Multivariate comparison of assemblage composition used hierarchical clustering 
analysis of  S17 Bray–Curtis similarity carried out on standardised taxon abundances (i.e. 
all samples adjusted to the same total abundance to reflect solely differential taxonomic 
composition), one- and two-way ANOSIM and PerMANOVA, SIMPER, and IndVal, all 
with 9999 permutations. In order to compare numbers of species in seagrass and bare 
sand, those in the sand were reduced to numbers per 32 cores by sample rarefaction using 
Mao’s tau (Colwell et al. 2004). β diversity was assessed as the beta-2 index of Harrison 
et  al. (1992), which uses presence-absence data, ranges from 0 (complete similarity) to 
1 or 100% (complete dissimilarity), and is a ‘narrow sense’ non-directional index in the 

http://www.marinespecies.org
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terminology of Koleff et al. (2003); all species represented only by a singleton individual 
in the entire database under analysis were omitted from β diversity calculations because of 
the computational errors associated with the occurrence of numerous rare species (Colwell 
and Coddington 1994).

Results

Subtidal seagrass

The benthic macrofauna of subtidal seagrass beds nearest to the mouth of the Knysna 
system was dominated by gastropod molluscs (particularly Alaba), as were those of 
Swartvlei and Keurbooms/Bitou although in those localities the dominant gastropod 
taxa were ‘Assiminea’ and ‘Hydrobia’ at Swartvlei, and Nassarius and Turritella at 
Keurbooms/Bitou (Table  1). Thus there were very low levels of compositional simi-
larity between the three (PerMANOVA F = 45.4; P < < 0.0001) (Table  2). Composi-
tional differences between replicate sites within localities were also marked (mean 

Table 1  Divergence in the five most dominant macrofaunal taxa in subtidal and intertidal Zostera capensis 
beds and in adjacent intertidal bare sediment near the mouths of the three estuaries, together with their per-
centage importance ranking

The taxon displaying the highest indicator value (IndVal) at each locality bears a single asterisk, and that 
most responsible for the difference between the localities (SIMPER) bears two
† Distinguishing the juveniles of Simplisetia and of some other nereids, especially Perinereis, is very dif-
ficult, and where various coexisting nereids other than Ceratonereis and Platynereis were present they were 
treated as a single taxon

Subtidal seagrass
KNYSNA (average) SWARTVLEI KEURBOOMS/BITOU
Alaba*,** 42.8% ‘Assiminea’ ** 23.5% Nassarius* 19.3%
‘Assiminea’ 6.3% Capitella 16.6% Capitella 12.4%
Grandidierella 6.2% ‘Hydrobia’ * 13.4% Turritella 12.0%
?Cylindroleberis 4.7% Prionospio 12.2% Paratylodiplax 6.9%
Turritella 3.7% chironomid larva 8.0% Prionospio 5.6%

Intertidal seagrass
KNYSNA (average) KEURBOOMS/BITOU
Alaba 11.9% Nereid spp.† 25.9%
Simplisetia** 9.7% Capitella * 13.4%
?Cylindroleberis 6.8% Nassarius 8.9%
Paradoneis 5.2% Alaba 6.1%
Grandidierella* 5.0% Cirriformia 4.9%

Adjacent bare sediment
KNYSNA (average) KEURBOOMS/BITOU
Paradoneis * 25.5% ‘Assiminea’ *, ** 38.6%
Simplisetia 13.6% Simplisetia 12.0%
Orbinia 5.9% Prionospio 8.3%
Iphinoe 5.5% Schistomeringos 5.9%
Prionospio 5.2% Nassarius 5.9%
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Bray–Curtis 0.61), although much less than between localities. Overall, the fau-
nal composition in Swartvlei and Keurbooms/Bitou was more similar to that in the 
upper estuarine and middle lagoonal reaches of the Knysna system, as documented by 
Barnes and Claassens (2020), than to the marine zone near its mouth (Fig. 2), although 
Bray–Curtis similarity values concerned were all low to very low. Their assemblage 
metrics were also divergent (Table  3); and there were significant differences both in 

Table 2  (Dis)similarity of the benthic macrofaunal assemblages of subtidal and intertidal Zostera capensis 
beds and of intertidal bare sediment near the mouths of the three estuaries, as determined by ANOSIM R, 
standardised Bray–Curtis similarity, and β diversity

All three metrics are presented as similarity values (where necessary by subtracting them from 1) so that 0 
indicates complete dissimilarity and 1 complete similarity

ANOSIM 1-R Bray–Curtis 1-β diversity

Subtidal seagrass
 Knysna: Swartvlei 0.136 0.063 0.933
 Swartvlei: Keurbooms/Bitou 0.231 0.316 0.886
 Knysna: Keurbooms/Bitou 0.143 0.085 0.817

Intertidal (LWS) seagrass
 Knysna: Keurbooms/Bitou 0.588 0.298 0.679

Adjacent intertidal bare sand
 Knysna: Keurbooms/Bitou 0.298 0.234 0.872

Fig. 2  Pattern of standardised Bray–Curtis similarity of the subtidal seagrass macrobenthos in the Swartv-
lei, Keurbooms/Bitou, and Knysna estuaries (data from different reaches of the Knysna estuary after Barnes 
and Claassens 2020)
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overall abundance (ANOVA F2,93 = 20.8; P <  < 0.0001) and in number of species per 
core sample (ANOVA F2,93 = 19.7; P <  < 0.0001; all Tukey pairwise test P ≤ 0.02). 
The only similarity was in the overall macrofaunal abundance per sample at Swartvlei 
and Keurbooms/Bitou (Tukey pairwise P > 0.5).

Intertidal seagrass

The intertidal macrobenthos of seagrass beds nearest to the mouth of the Knysna 
system was co-dominated by a range of taxa including the Alaba that dominated 
subtidal regions and the nereid Simplisetia. Nereid polychaetes and, to a considerably 
lesser degree, Alaba also dominated that at Keurbooms/Bitou (Table 1). As with the 
subtidal seagrass fauna, however, there were very low levels of compositional simi-
larity between the two localities (PerMANOVA F = 22.5; P < < 0.0001) (Table  2). 
Nevertheless, the rank orders in importance of their total assemblage components 
(marginally) did not differ (Friedman P = 0.06); their assemblage metrics were com-
parable (Table  3); and there was no difference in overall macrobenthic abundance 
per core sample (ANOVA F1,62 = 1.05; P > 0.3). Numbers of species per core, how-
ever, was significantly smaller at Keurbooms/Bitou (ANOVA F1,62 = 10.6; P < 0.002). 
Compositional differences between replicate sites within localities were also marked 
(Bray–Curtis 0.45–0.52), although less than between localities. In a Keurbooms/Bitou 
vs Knysna comparison, locality and seagrass water depth (i.e. intertidal vs subtidal) 
were subequally important influences on the associated macrofaunal assemblages 
(two-way ANOSIM: locality R = 0.36, P < 0.0001; water depth R = 0.44, P < 0.0001).

Table 3  Biodiversity metrics of the benthic macrofaunal assemblages of equal-area samples of subtidal and 
intertidal Zostera capensis beds and of intertidal bare sediment near the mouths of the three estuaries: num-
bers of morphospecies, overall numbers of macrobenthos  m−2, evenness, Lloyd’s index of patchiness, and 
the Gatti et al (2020) AED index

Numbers of morphotaxa in the bare sand are adjusted to that in the same number of samples as in the sea-
grass by Mao’s tau rarefaction. Note the greater assemblage patchiness in the Knysna and Swartvlei subtidal 
than intertidally, and in intertidal sand than in adjacent seagrass. The very low level of evenness in the 
Knysna subtidal is consequent on the overwhelming dominance of Alaba pinnae there

Nos spp. Nos ind.  m−2 J Evenness Ip Patchiness AED 
index

Subtidal seagrass
 Knysna 61 27,598 0.22 1.74 63.2
 Keurbooms/Bitou 50 5683 0.64 1.10 60.4
 Swartvlei 19 9652 0.65 1.94 23.6

Intertidal seagrass
 Knysna 52 6739 0.66 1.10 67.1
 Keurbooms/Bitou 53 7812 0.57 1.05 62.7

Adjacent intertidal bare sand
 Knysna 35 4213 0.50 1.23 40.5
 Keurbooms/Bitou 33 4505 0.47 1.31 38.4
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Adjacent intertidal bare sand

Areas of bare sand adjacent to the intertidal seagrass beds investigated were visibly struc-
tured by Upogebia burrows, except at Steenbok. Their faunal assemblages were over-
whelmingly dominated numerically by the gastropod mollusc ‘Assiminea’ in Keurbooms/
Bitou, and in Knysna by the polychaetes Paradoneis, Simplisetia, Orbinia and Prionospio 
(Table 1). Simplisetia and Prionospio were also important components of the Keurbooms/
Bitou sands but there were very low levels of compositional similarity between the two 
localities (PerMANOVA F = 25.7; P < < 0.0001) (Table 2). Nevertheless, the rank orders in 
importance of their total assemblage components did not differ (Friedman P = 0.18); their 
assemblage metrics were comparable (Table 3); and there was (marginally) no difference 
in overall macrobenthic abundance per core sample (ANOVA F1,78 = 3.69; P = 0.06). Num-
bers of species per core, however, was significantly smaller at Keurbooms/Bitou (ANOVA 
F1,78 = 9.2; P < 0.004). Compositional differences between replicate sites within localities 
were also marked, particularly in Knysna (Bray–Curtis 0.21).

Overall comparisons

Table 2 summarises a marked divergence in assessment of degrees of compositional simi-
larity using different measures: presence/absence-based β-diversity indicates high levels of 
similarity between the three estuarine faunas, whereas abundance-based ANOSIM, Per-
MANOVA and Bray–Curtis suggest the opposite. This is consequent on all three faunas 
sharing a very similar taxonomic composition (and see Fig. 3), but showing marked differ-
ences in the relative abundance of individual shared taxa, both of morphospecies (Table 1) 
and of higher groupings (Fig.  4). In terms of major taxa, worms dominated the species 
lists, although in most cases gastropods dominated in numbers of individuals; crustaceans 
were relatively poorly represented on both counts. The total number of species present at 
the equal-area localities in Knysna and Keurbooms/Bitou (total in all three habitat types) 
was: 84 (mean of Brenton and Steenbok data) and 81, respectively (AED biodiversity indi-
ces of 88 and 85). All species recorded from Keurbooms/Bitou are also known to occur in 
Knysna except for an unidentified small anthurid isopod (? Haliophasma sp.) and a poly-
clad flatworm; likewise all subtidal species from Swartvlei also occur in Knysna. Overall, 
‘Knysna specialities’ formed three of the five most abundant intertidal soft-sediment spe-
cies in the investigated regions of the Knysna and Keurboom/Bitou estuaries, contribut-
ing > 55% of total invertebrate numbers.

Ordination of the complete quantitative datasets from Knysna and Keurbooms/Bitou 
(Fig.  5) reveals a close similarity between the two Knysna subtidal localities (together 
with a lesser affinity with one of the associated intertidal seagrass sites), but no other pat-
terns of similarity at a level greater than a Bray–Curtis value ≈0.6. The two subtidal sites 
at Keurbooms/Bitou (again together with one of the associated intertidal seagrass sites), 
and the two bare sand sites at the same locality do each show some degree of affinity, but 
the remaining intertidal sand and seagrass sites show no clear assortment based on habi-
tat type or locality. Comparably, two-way ANOSIM of the dataset shows that both estu-
ary (R = 0.70, P < 0.0001) and habitat type (R = 0.64, P < 0.0001) have a similar effect on 
assemblage composition.

Assemblage structure as represented by species abundance distributions, in which abun-
dance is assessed as numerical importance values (INI) (standardised as per Passy 2016) 
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(Fig. 6), shows that notwithstanding the differences in the nature of their dominant species 
(Table 1), the intertidal seagrass assemblages of Knysna and Keurbooms/Bitou share an effec-
tively identical structure. The location of its curve and the few datapoints also highlight the 
poverty of the Swartvlei subtidal seagrass system.

Fig. 3  Stacked-column diagrams illustrating the taxonomic composition of the macrobenthic faunas of 
subtidal and intertidal seagrass and of associated areas of intertidal bare sediment: 1. Proportions of com-
ponent morphospecies in different major taxa at the various localities. Note the marked similarity across all 
localities and habitats
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Discussion

Comparisons of estuarine biodiversities

Although the high levels of local-scale heterogeneity seen in other seagrass systems (Alsaf-
far et  al. 2020; Barry et  al. 2021; Barnes 2023) occurred in these three adjacent estuar-
ies too, their macrobenthic soft-sediment faunas are clearly nested within the same spe-
cies pool—a pool furthermore that shows marked local geographical turnover from that 
generally regarded as being characteristic of South African estuaries. At their near-mouth 

Fig.4  Stacked-column diagrams illustrating the taxonomic composition of the macrobenthic faunas of 
subtidal and intertidal seagrass and of associated areas of intertidal bare sediment: 2. Proportional abun-
dance of animals in different major taxa at the various localities. Gastropods averaged 61% of all individu-
als except in the intertidal seagrass at Keurbooms/Bitou and the adjacent sand at Knysna which were domi-
nated by worms (72% and 91% of the totals respectively)
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localities surveyed here, this common pool was dominated by the five species Alaba pin-
nae, Simplisetia erythraeensis, ‘Assiminea’ capensis, Nassarius kraussianus and Parado-
neis lyra capensis, which together comprised > 70% of total assemblage numbers, and of 
which only Simplisetia and Nassarius are more widely typical of South African estuaries 
(Day 1981a). Again as seen elsewhere (e.g. Barry et  al. 2021), differences between the 
three systems were then mainly a matter of variation in the relative importance of indi-
vidual members of their shared numerically-dominant taxa.

Swartvlei is the most species poor, as might be expected in a temporarily closed system 
(Perissinotto et  al. 2010; van Niekerk et  al. 2020a), although its low overall abundance 
is somewhat unusual (Teske and Wooldridge 2001; Froneman 2018). Knysna supported 
the greatest subtidal macrofaunal abundances although intertidal densities were much more 
finely balanced, and in respect of species density Keurbooms/Bitou ranked subequally 
with its more-intensively-studied neighbour for both seagrass and bare-sand biodiversity. 
Such would not have been concluded on the basis of the few earlier accounts of its benthos 
which suggested a relatively restricted fauna, totalling only some 40 soft-sediment species 
for the whole Keurbooms/Bitou system (Turpie et al. 2004). Indeed in its assessment sum-
mary, the 2018 management plan for the estuary (Western Cape Government 2018: p. 28) 
comments that on the basis of the available information both the abundance and species 
density of the benthic invertebrates are low and well below levels that might be expected. 
In complete contrast, the present survey recorded 81 macrofaunal morphotaxa from within 
only a small section of the Keurbooms/Bitou estuary (< 500  m2), of which more than half 
were not previously known to occur there. The comparable samples from the two Knysna 
localities yielded a similar mean of 84 such taxa. Further, intertidal invertebrate densities 
at Keurbooms/Bitou were effectively the same as those in equivalent situations in Knysna, 
which generally supports some 4500–7000  m−2 (Barnes 2021).

The explanation of this disparity in estimations of the biodiversity supported by Keur-
booms/Bitou can really only be insufficiency and/or inadequacy of earlier sampling; the 
one exception being that recently carried out in the region > 4 km upstream of the mouth 
(de Villiers et al. 2021)—a zone likely to support relatively low values of species richness 

Fig. 5  Pattern of standardised Bray–Curtis faunal similarity across localities and habitat types in the 
Knysna and Keurbooms/Bitou estuaries
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Fig. 6  Species abundance distri-
butions (abundance assessed as 
INI values) for the macrobenthic 
assemblages of the various habi-
tat types and estuarine localities. 
Species are listed in rank order 
from highest to lowest values 
of INI
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on the basis of comparable work at Knysna (Barnes 2021). It is evident, for example, that 
the animals mentioned by Day (1981b) and Duvenage and Morant (1984) are all relatively 
large (Nassarius, Upogebia, Hymenosoma, Arenicola, etc.) and, historically, taxa of small 
body size have been greatly underestimated in South Africa (Griffiths et al. 2010). In terms 
of abundance, the seagrass and associated bare sediment at Knysna (Barnes et al. 2023), 
and at Keurbooms/Bitou too (this study), are dominated by tiny gastropods and poly-
chaetes; species with a modal size within the range of 2–10 mm [Alaba < 10 mm; ‘Hydro-
bia’ < 4 mm; ‘Assiminea’ < 2.5 mm; Paradoneis < 10 mm]. Failure adequately to include 
these in analyses would certainly grossly underestimate abundance and biodiversity, and 
lead to a very false impression of local ecology and biodiversity.

An apparently distinctive ecological feature of the marine-influenced zone at Knysna 
is that areas of bare sandflat there may often support as much biodiversity as the adja-
cent seagrass beds: nearly as many species and equal or even greater macrofaunal abun-
dance (Barnes and Barnes 2014; Barnes 2022). Although greater abundance than in the 
local dwarf eelgrass beds (there of Z. noltei) also typifies bare sediments in the Mediter-
ranean Mistral Lagoon (Magni and Gravina 2023), this state contrasts with the situation 
in other regions of South Africa (Siebert and Branch 2006; Pillay et al. 2007; Pillay and 
Branch 2011) and indeed at many sites elsewhere in the world (Hemminga and Duarte 
2000) where sandflats support much less abundance and far fewer species than seagrass 
beds, including those of other Zostera species [e.g. Z. muelleri in Queensland (Barnes and 
Barnes 2012)]. It has been suggested that this contrast results from differential levels of 
bioturbation of the sediment by callianassids at (the more marine) affected sites versus rel-
atively benign upogebiids at (the more estuarine) non-affected ones (Barnes and Barnes 
2014). The Keurbooms/Bitou sands were clearly structured by Upogebia but in contrast to 
Knysna faunal abundance in the bare sand was only some 60% of the values in the adjacent 
seagrass beds, whereas it was 94–103% of that at Brenton and Steenbok (Barnes 2022). 
The difference in species densities in sand and seagrass was similar in the two localities, 
however: 60% of the seagrass values in the Keurbooms/Bitou sands and 60–70% in Knysna 
(Barnes 2022). It was noticeable that the adjacent areas of sand at Knysna were extensive 
flats with shallow slopes, whereas those sampled in Keurbooms/Bitou were narrower and 
more steeply sloping fringes; whether this is significant is as yet unknown but such flats vs 
slopes dichotomy is known to affect nektonic ecology (Gross et al. 2019).

Distributions of the ‘Knysna specialities’

It was not apparent from earlier work that Knysna’s unusual suite of dominant species 
occurred more widely as abundant faunal elements, although their real distributions remain 
far from clear. In respect of the dominant microgastropods, the situation in other South 
African estuaries is unfortunately confused and confusing (Barnes 2018), not least because 
although whether those inhabiting seagrass and surrounding sediment are Assiminea, 
‘Assiminea’ or ‘Hydrobia’ is obvious when they are alive, in common with some other 
very small gastropods (Kensley 1973) it is far from easy accurately to distinguish them if 
samples have been preserved because they cannot reliably be separated on shell character-
istics. In most cases, published data from other localities were indeed based on preserved 
samples, and hence their generic (let alone specific) nature is uncertain. Species of true 
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Assiminea1—A. globulus and A. ovata in the nomenclature accepted by WoRMS—have 
long been known to be important elements in Cape estuaries (Day 1981a; Teske and Wool-
dridge 2001), although they characterise high shore levels and are very rarely encountered 
in or at the level of seagrass. Otherwise, all these estuarine microgastropods seem to be 
ecologically-similar browsers of microphytobenthic biofilms that cannot be differentiated 
in terms of preferred habitat or horizon in the inter- or subtidal zone either.

Neither Duvenage and Morant (1984) or Adams et al. (2015) recorded any of the domi-
nant Knysna microgastropods from the Keurbooms/Bitou. Nor did Davies (1982) do so 
from Swartvlei, whilst Whitfield (1989) lumped all non-Alaba microgastropods together 
there but in any event found very few of them in total (≤ 1% of total biomass). De Vil-
liers et  al. (2021: Appendix A. Supplementary data) did record—and only recorded—
‘Hydrobia’ knysnaensis from the Keurbooms arm of the joint Keurbooms/Bitou system. 
Nevertheless, the present data do show a common and consistent pattern of dominant 
microgastropod identity, abundance and distribution across the three estuaries. Alaba, 
‘Assiminea’, ‘Hydrobia’ (and Assiminea) do clearly occur in all three, in some areas abun-
dantly so: ‘Hydrobia’ is most in evidence upstream in Keurbooms (de Villiers et al. 2021) 
and Knysna (Barnes 2021), and downstream at Swartvlei when the mouth is closed and 
salinities there fall to some half that of sea water. Conversely, Alaba occurs downstream in 
all three, less so during mouth closure at Swarvlei, but abundantly in Knysna and (although 
previously unrecorded) in Keurbooms. ‘A.’ capensis, although also previously unrecorded, 
occurs in some numbers downstream in Swartvlei (up to 25,000   m−2) and Keurbooms 
(> 10,000   m−2), as well as in Knysna (Barnes 2021) (in densities of up to 32,000   m−2), 
and probably is present in upstream regions of the three estuaries as well [it certainly is in 
Knysna and was between the middle and upper reaches of Swartvlei in March 2005 (RSKB 
unpublished)]. In Keurbooms/Bitou it also proved the most numerous faunal component of 
the associated LWS intertidal sands [in the backwater channels at Knysna, it is also more 
numerous in bare sand than in adjacent seagrass (1.6–2.0×), whereas ‘Hydrobia’ is equally 
abundant in the two compartments (data of Barnes and Barnes 2014)]. Distributions of 
dominant species within Swartvlei are, of course, likely to change with state of the mouth, 
prolonged periods of closure resulting in lowered salinity and the consequent species turn-
over frequently seen elsewhere (Menegotto et al. 2019).

Two other dominant soft-sediment species have also been considered Knysna speci-
alities. The small polychaete Paradoneis lyra capensis, previously regarded a Knysna 
endemic, was also present in both the inter- and subtidal samples at Keurbooms/Bitou, 
although never abundantly, but appears to occur nowhere else. The present surveys did not 
record the other, the small seagrass-associated form of the dwarf cushion-star Parvulastra 
exigua (20 mm) from either Swartvlei or Keurbooms/Bitou, although (for comparability 
with Knysna) sampling was restricted to regions near the mouth and P. exigua is not wide-
spread or abundant in the comparable region at Knysna either. However, it is known to be 
an important member of both the Keurbooms/Bitou and Knysna fauna further upstream 
(Barnes 2021; de Villiers et al. 2021). The small polychaete Schistomeringos sp. (< 10 mm) 
which was a important element of the Knysna and Keurbooms/Bitou intertidal sands may 
also belong to this characteristic group of species in that it appears not previously to have 
been recorded in any other South African estuary (Global Biodiversity Information Facility 
and Ocean Biodiversity Information System, accessed March 2023). A number of species 

1 Insofar as any South African species are true Assiminea (see Miranda et al. 2014).
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in other habitat types have also been considered to be ‘Knysna specialities’, including the 
seagrass-leaf-associated sedentary false-limpet Siphonaria compressa (the present survey 
did not include species firmly attached to the seagrass leaves). A 2008 search failed to find 
any living S. compressa in Keurbooms/Bitou (de Coito et al. 2023), but it may have been 
present there in the recent past (Herbert 1999).

Although it is the case that there are individual records of all these various species, 
except P. lyra capensis, from elsewhere along the southern coast of South Africa, they 
currently amount to only one or a few sites per species and never in large numbers. Not-
withstanding their occasional presence elsewhere (and taking their apparent absences at 
face value), however, the observation that these unusual species are all present together in 
systems of such contrasting size, form and hydrographical features as Swartvlei, Knysna 
and Keurbooms/Bitou suggests the likelihood of historical biogeographic explanations of 
community composition rather than ecological ones such as particular association with 
estuarine-bay-like habitats (see Day 1967). Nevertheless, geophysical/geological evidence 
suggests that although a number of Western Cape estuaries were united before discharge 
to the sea at various points in the late Pleistocene, when the present coastline would have 
been some 80 km seawards of its present position (Spratt & Lisiecki 2016; Cooper et al. 
2018), those of Swartvlei, Knysna and Keurbooms/Bitou are likely to have remained sepa-
rate during most glacial phases, although maybe discharging into a single bay (Cawthra 
et al. 2020).

Conservation implications

Extending from the high-water neap-tide mark throughout the inter- and subtidal zone of 
the estuarine bay except near its mouth, the seagrass system at Knysna is not its only com-
ponent habitat although it is the most extensive, productive, and economically valuable one. 
Further, granted the world-wide vulnerable status of Zostera capensis, it is also the habitat 
in particular need of conservation (Skowno et al. 2019). There is no reason, however, to 
consider the seagrass habitat there as a special case (except possibly the subtidal portions 
although data here are very scarce), and so the comparison undertaken here therefore indi-
cates that Knysna’s individual habitat types are not necessarily richer than those elsewhere 
when compared on an equal-area basis. Nevertheless, Knysna is a relatively large body of 
water and its seagrass beds all interconnect effectively to form one single meadow. Local 
population losses in any specific area could therefore relatively easily be counterbalanced 
by immigration from outside that region. To that extent, it would be predicted to be less 
fragile than smaller estuaries such as Keurbooms/Bitou, although Keurbooms/Bitou has 
clearly managed to retain its singular biodiversity through time notwithstanding major epi-
sodes of freshwater flooding and other periods of environmental adversity (Western Cape 
Government 2018; Schumann 2021).

The present results from Keurbooms/Bitou are from but a single component region near 
the mouth, but again there is no reason to consider that the areas investigated there are in 
any way unrepresentative. In total over the last 15 years, > 200 macrobenthic invertebrate 
species have been recorded in the Knysna seagrass, although this is from > 2,500 core sam-
ples distributed over 25 times as many sites across the whole of that large estuarine bay 
(RSKB unpublished). A quarter of these species are very rare, i.e. are represented only 
by singletons or doubtletons in the 76,400 animals total, and the upper species quartile 
comprises 96.5% of faunal individuals. No corresponding data are available from Keur-
booms/Bitou (the present samples being equivalent to only ≤ 3.0% of those from Knysna 
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both in terms of core and of individual numbers), but its smaller size may result in a lesser 
total fauna because of area effects (Turpie et al. 2004; Loke et al. 2019). Some evidence, 
however, suggests that this will not necessarily be the case: regional differentiation of its 
seagrass fauna is evident from the contrasting upstream sites studied by de Villiers et al. 
(2021); similarities in their species abundance distributions suggest the same assemblage 
structure in the two systems with equally important proportions of rarities; and the near-
mouth areas at Knysna are known to support > 90% of its overall macrobenthic seagrass 
species (Barnes 2013) and if the same applies to Keurbooms/Bitou too, the similar shared 
numbers of species per unit area near their mouths will equate to similar sized total species 
richness. Regardless of such considerations, conservation status of South African estuaries 
is based on a whole basket of factors, of which their supported invertebrate biodiversity is 
responsible only for < 7% of the overall score (Turpie et al. 2002; Turpie 2004) irrespec-
tive of the occurrence of species of considerable conservational interest or concern. Nev-
ertheless, it is clear that any previously perceived relative poverty of the Keurbooms/Bitou 
benthic macrofauna (Turpie et  al. 2004; Adams et  al. 2015) was a false impression, and 
this emphasises the need for considerable caution when considering emergent inferences 
on relative biodiversity derived from sampling a number of systems to differing degrees in 
what van Niekerk et al. (2022) have termed a data-limited environment.

Seagrass meadows provide multiple important ecosystem services (Lima et al. 2023) yet 
unfortunately appear to have a “charisma gap” (Dennison 2009: p. 102) and do not attract 
the same attention as more high profile or ‘glamorous’ species or habitats. They continue 
to be allowed to decline, and even within conservation areas are often marginalised in man-
agement agendas (Cullen-Unsworth and Unsworth 2016; Unsworth et al. 2022). It has ear-
lier been remarked (Barnes and Claassens 2020) that in Knysna greater conservation atten-
tion appears to be devoted to the widespread and abundant bait organism Upogebia than 
to the rare and threatened Zostera capensis amongst which it lives. Equivalently to that 
of the invertebrates, biodiversity of the aquatic and semi-aquatic vegetation only accounts 
for < 7% of Knysna’s conservation-importance score (Turpie et al. 2002; Turpie 2004), not-
withstanding that the site supports the largest single stand remaining of the endangered Z. 
capensis. Elsewhere and for other species, such a situation has provided 100% of the justi-
fication for intensive protective measures (Watson et al. 2014), and improved protection at 
Knysna is certainly needed (Adams and van der Colff 2018).

Further, the Wilderness and Knysna sections of the Garden Route National Park are far 
from being wilderness, and, unlike other South African National Parks, that of the open-
access, common-pool-resource Garden Route has a large human population, of which 
some 76,000 live on the shores of the Knysna estuarine bay (Western Cape Government 
2021). The whole coastal area from Wilderness to Keurbooms contains four out of the five 
temperate South African estuaries with the highest tourism value (Turpie and Clark 2007), 
and Knysna in particular supports a flourishing recreational industry (Turpie and de Wet 
2009) and subsistence fishery (Napier et al. 2009), both of which use the Z. capensis beds, 
legally and/or illegally, as a source of bait (Hodgson et al. 2000; Simon et al. 2019). The 
location of these beds therefore means that in practice conservation management is a com-
plex compromise between the socio-economic requirements of the local and tourist human 
population and the desirability of protecting the resource, environment and any rare and/or 
endangered species (Roux et al. 2023). There is no doubt, however, that human exploitation 
for bait causes serious local damage to the threatened Z. capensis population (Barnes and 
Claassens 2020; Wasserman et al. 2023), as does human-induced nutrient enhancement of 
the water body, directly or via inflowing streams, and the resultant blooms of smothering 
green algae (Human et al. 2016; Claassens et al. 2020).
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In comparison to other seagrasses, estuarine species like Z. capensis are at particularly 
high risk, since their habitat is the most threatened of all ecosystems in South Africa, again 
notwithstanding the great socio-economic benefit of estuarine ecosystem services to the 
country (van Niekerk et al. 2020b; Taljaard et al. 2023). Three-quarters of South Africa’s 
estuarine area is either critically endangered or endangered (Skowno et  al. 2019). Like 
other wetlands, they are often viewed as wasteland that is best ‘reclaimed’ for human use 
(Wetlands International 2023). Extensive areas of Knysna estuarine bay have indeed been 
substantially modified by development (Russell et al. 2010: p. 16), including marina con-
struction, major road and bridge/causeway building, hotel complexes, infilling, and induced 
siltation including from the building of structures such as golf courses on the surrounding 
hillsides. Almost 21 km of its shoreline is now artificial and 107 ha of natural habitat has 
been lost (Raw et al. 2020). However, many small to medium sized estuaries are still rela-
tively healthy—Keurbooms/Bitou is in a higher Current Health Category (see Turpie et al. 
2012a) than either Knysna or Swartvlei (Turpie et al. 2012b)—and these may prove vital 
in the conservation of estuarine faunal and floral biodiversity. They may not be perceived 
as meriting the same conservation attention as large flagship sites, but can shelter unantici-
pated and, at the moment at least, relatively unthreatened biodiversity.
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