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Abstract
Nature conservation policy is mainly concerned with aboveground terrestrial species and 
soil biodiversity has been largely ignored, resulting in a lack of information about the con-
servation status of most soil organisms and about the effects that nature conservation poli-
cies have on soil systems. Forests in Northern Portugal are characterized by a remarkable 
diversity of ecosystems and provide habitat for an enormous diversity of living organisms. 
This study aims to investigate whether and to what extent protected areas and forest typol-
ogy (native vs. exotic) affect soil nematode biodiversity and functions in forest ecosystems. 
We studied soil nematode communities, which have been widely used for their bioindicator 
value, to: (i) assess differences in soil biodiversity and functions between protected and 
non-protected areas, and between native and exotic forest types; and (ii) infer how pro-
tected areas deal with pressures and drivers of soil biodiversity and functions. We showed 
that current work done by nature conservation in Northern Portugal is producing some 
significant effects on the soil system, showing a larger Structure and Omnivore footprints 
and greater abundance of fungivorous and omnivorous nematodes in protected areas. Fur-
thermore, native forest areas are better suited to ensure soil biodiversity and ecological 
functioning and should have a greater importance in nature conservation measures. Soil 
organic carbon, apparent density, soil moisture, and deciduous forest cover mainly influ-
enced soil functional biodiversity with higher nematode trophic groups being positively 
associated with soil organic carbon and moisture and negatively associated with apparent 
density. Finally, conservation efforts targeted at the protection of native forests need to bet-
ter consider effects on soil biodiversity and function, to provide an integrated protection of 
both aboveground and belowground components.
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Introduction

Protected areas such as national parks, nature reserves, and other wilderness areas play an 
important role in conserving species that are unlikely to survive in intensively managed 
areas and ecosystems (Branquart et al. 2008). In current times, protected areas also play 
a significant role in the mitigation and adaptation of biological entities to climate change 
and in providing several ecosystem services. Well-managed protected areas reduce rates 
of habitat loss, can provide carbon sequestration, and reduce deforestation. There is also 
strong evidence that protected areas maintain species population levels, including threat-
ened species, better than other management approaches (Lubchenco et al. 2003; Postel and 
Thompson 2005; Scharlemann et al. 2010; Soares-Filho et al. 2010; Watson et al. 2014). 
Unfortunately, so far, this evidence does not extend to soils and soil communities, justify-
ing the need for more targeted approaches (Zeiss et al. 2022).

Despite the importance of soil biodiversity for ecosystem functions, defined as physico-
chemical and biological processes that take place in a given ecosystem, and that maintain 
terrestrial life, and services, that are ecosystem functions that directly benefit human life 
(Kremen 2005), nature conservation policies are still mainly concerned with aboveground 
species (Guerra et  al. 2021a, b). Soil biodiversity has been largely ignored, resulting in 
a lack of information about the conservation status of most soil organisms and about the 
effects that nature conservation policies have on soil systems (Ciobanu et al. 2019; Guerra 
et al. 2022; Zeiss et al. 2022). Currently, one of the main strategies for nature conserva-
tion is the establishment and maintenance of protected areas; and a significant amount of 
time, effort, and resources have been invested in their prioritization and management in 
the last decades (Elbakidze et al. 2013; Gaston et al. 2008). In Portugal, the Institute for 
Nature Conservation and Forests (ICNF) is the mandated Portuguese governmental body 
for nature and forest policies, including the management of Protected Areas and State-
managed national, municipal, and communal forests of mainland Portugal (ICNF 2017). 
Forest areas are particularly important for conservation because of their use as a refuge 
and habitat for biodiversity and as ecosystem service suppliers (Cavard et al. 2011; Demis-
sie et al. 2019; Leberger et al. 2020; Raina et al. 2011). They play an important part in the 
mitigation and adaptation to climate change as trees have important roles in carbon seques-
tration and storage (Elbakidze et al. 2013). Also, interactions between plants and the biotic 
and abiotic properties of soils play an important role in structuring terrestrial communities 
(Van der Putten et al. 2013, 2016). For instance, gum trees (Eucalyptus globulus) are exotic 
species in Portugal and, because their litter is more complex, persistent and releases toxic 
compounds that inhibit decomposition (Zhao et al. 2021a, b), forest dominated by this spe-
cies will have low support for soil biodiversity. In contrast, deciduous tree species, such as 
oak trees (Quercus spp.) that are native to Portugal, are likely to better support soil com-
munities, as their litter is easier to decompose and a source of nutrients to the food web 
(Keith et al. 2009). Due to this strong above-belowground interconnection of communities, 
soil biodiversity and the services it provides are an essential component of forest ecosystem 
health (Parker 2010). Thus, knowledge about how far we can impact soils without losing 
their functions and services is crucial. Habitat destruction, intensified and altered land-use, 
fragmentation, and increasing population density seem to be key driving forces for eco-
system change and should be minimised to increase forest ecosystem resilience (Leberger 
et al. 2020; Milad et al. 2011).

Soils regulate the diversity and functioning of aboveground systems, and are particu-
larly important for the decomposition of organic matter and carbon sequestration in forest 
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areas, as well as their benefits to human well-being (Bardgett and van der Putten 2014; 
Gessner et al. 2010; Guerra et al. 2021a, b; Ruan et al. 2005). It is not possible to guaran-
tee future aboveground biodiversity and food supply if we do not safeguard soils and their 
biodiversity for future generations (Guerra et al. 2021a, b). Since soil biota are sensitive to 
changes in their environment, they are often used for early diagnosis of multiple ecosystem 
function variations (Havlicek 2012). Among them, soil nematodes are widely-used indica-
tors of soil disturbance, quality and functioning because they are ubiquitous and abundant, 
and have a short response time relative to environmental impacts (Bongers and Bongers 
1998; van den Hoogen et al. 2019).

Nematodes are found wherever decomposition occurs and have key roles in regulating 
carbon fate and controlling soil microbial populations (Bongers and Bongers 1998). Their 
community composition reflects soil texture, climate, biogeography, organic inputs, and 
natural and anthropogenic disturbances (Bongers and Bongers 1998; Brussaard 1997; van 
den Hoogen et al. 2019; Yeates 2003). Nematodes can be classified in functional groups 
based on their morphology and feeding habits, with soils including complete trophic food 
webs composed by bacterivores, fungivores, herbivores, omnivores and predators (Yeates 
et al. 1993). The application of nematode indices that integrate information on the assem-
blage of nematode functional groups is a useful tool in soil studies. However, a more recent 
expansion on the indices is the calculation of metabolic footprints that directly indicate the 
status of soil functions and, indirectly, the provision of ecosystem services (Du Preez et al. 
2022; Ferris 2010; Sanchez-Moreno and Ferris 2018). The integrated analysis of nematode 
communities is a useful tool that can be applied in comparative studies to infer on below-
ground biodiversity and function in all ecosystems. The conservation status of most soil 
organisms is seldom addressed, and only recently have the state of soil biodiversity been 
assessed in response to conservation strategies (Ciobanu et al. 2019; Guerra et al. 2022; 
Zeiss et al. 2022). Nematode metabolic footprint analysis has been employed to assess the 
biodiversity and functions of forest soils (Silva et al. 2021; Zhang et al. 2015). To the best 
of our knowledge, studies that compare soil nematode communities areas according to for-
est protection status are unavailable.

This study aims to investigate whether and to what extent protected areas and forest 
typology (dominance of exotic or native trees) affect soil nematode biodiversity and func-
tions, such as decomposition/mineralization of nutrients and pest and disease regulation 
(Ferris 2010; Sanchez-Moreno and Ferris 2018), in forest ecosystems. We studied soil 
nematode communities to: (i) assess differences in their biodiversity and functions between 
protected and non-protected areas between native and exotic forest types; and (ii) infer how 
protected areas deal with pressures and drivers to soil biodiversity and functions (such as 
pH, soil moisture and apparent density).

Material and methods

Study area

The North of Portugal is characterised by a remarkable diversity of forest ecosystems, both 
natural (mainly dominated by oak species) and anthropogenic (planted forests for silvicul-
ture). Our study was located in an area of approximately 21,515 km2, with 15.5% occu-
pied by forests that include some of the rarest and most valuable elements of regional and 
national biological diversity (Tereso et al. 2011). Native forests are represented by common 
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oak (Quercus robur) and Pyrenean oak (Quercus pyrenaica), accompanied by cork oak 
(Quercus suber), and also pine trees (maritime pine Pinus pinaster and Scots pine Pinus 
sylvestris). Exotic forests are represented by gum tree plantations (Eucalyptus globulus), 
and invasive species of the genus Acacia, namely the silver wattle (Acacia dealbata), 
blackwood (Acacia melanoxylon) and golden wattle (Acacia longifolia) (Carmo et al. 2011; 
Tereso et al. 2011).

This region is subject to a wide variety of pressures, such as invasive species, land-use 
change (Carmo et al. 2011; De la Fuente and Beck 2018; Vicente et al. 2013), and forest 
fires (Alcasena et al. 2021; Carmo et al. 2011; Marcos et al. 2019). Moreover, about 25% of 
this territory is classified as areas of conservation value, including several areas integrated 
in the Natura 2000 network, such as Montesinho Natural Park, Douro International Natural 
Park, Litoral Norte Natural Park, Alvão Natural Park, Tua Valley, Douro Estuary, Serras 
do Porto Park, and Corno do Bico, and the only National Park in Portugal, Peneda-Gerês 
National Park (ICNF 2017; Vicente et al. 2013).

Sampling and data collection

In order to have an adequate representation of the local environmental and social-economic 
conditions in the North of Portugal, we implemented a stratified random sampling scheme 
considering a 20 × 20 km grid across the entire region. For each grid cell, two sampling 
sites were randomly selected, one of each forest type [n = 127 samples; subdivided into 
those dominated by native (n = 70 samples) or exotic (n = 57 samples) trees], the same 
sites were also classified as inside or outside protected areas (protected = 38 samples, non-
protected = 89 samples) (Fig. 1). The samples were taken in the Autumn, from October to 
December 2021.

At each site, a homogeneous soil sample composed of nine soil cores distributed in a 
15  m grid pattern was collected from a 30 × 30  m square. Soils were collected down to 
10 cm depth using a hori-hori knife after removing superficial plant litter. The soil cores 
were combined and mixed carefully in a plastic bag, further removing large stones and 

Fig. 1   Effects of protected areas on soil functional biodiversity in the North of Portugal. a Distribution of 
the sampling sites (n = 127) within protected areas (n = 38) and environmentally similar non-protected areas 
(n = 89); b Box plot representing the standardized edaphoclimatic variables used for comparison between 
sampling sites. *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001
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plant material. A 120 ml plastic container was filled with the sampled soil, transported in a 
refrigerated box to the laboratory, and kept at 5  ºC for nematode extraction. The remaining 
disturbed dry soil sample, weighing about 1 kg, was stored at room temperature, approxi-
mately 23  °C, for physical and chemical analysis. An additional undisturbed soil cylinder 
was collected at the centre of the square to assess apparent density. Environmental and 
edaphoclimatic variables include, land-use classification, mean annual temperature and 
precipitation seasonality (Karger et al. 2017), distance to urbanisation and distance to riv-
ers [Copernicus Land Monitoring Service 2018, European Environment Agency (EEA)], 
and soil organic carbon (FAO 2022) (a full list of variables is given in Supplementary 
material Table SI).

Quantification of the physico‑chemical parameters

For each sampling point, a set of physico-chemical parameters, namely apparent density, 
electric conductivity, magnesium, phosphorus, potassium, soil organic carbon, moisture 
and pH, was collected. The procedures for collecting undisturbed samples for the determi-
nation of apparent density and porosity followed ISO 11272 and 11274 standards. Organic 
matter/organic carbon was determined by digestion with sodium dichromate and ultra-
violet/visible molecular absorption spectrophotometry (Nelson and Sommers 1996; FAO 
2020). The pH was determined potentiometrically in a soil:water suspension in the ratio 
1:2.5 (m/V). After manually shaking a 1:5 deionised aqueous solution for two hours and 
then filtering, the electric conductivity value of fresh samples was quantified using an elec-
trical conductivity meter. Phosphorus (P2O5) and Potassium (K2O) contents were deter-
mined using the modified Egner−Riehm method (Egner and Riehm 1960). Phosphorus and 
potassium were extracted from a solution of ammonium lactate and acetic acid measured 
using colorimetry and flame photometry, respectively. Extractable calcium and magnesium 
were quantified by atomic absorption spectrophotometry in ammonium acetate (Póvoas 
and Barral 1992).

Nematode extraction and identification

Nematodes were extracted for 72  h from 100  ml of soil from each sample using the 
tray method, an adaptation of the Baermann Funnel (Whitehead and Hemming 1965). 
The obtained ca. 300  ml nematode suspension was concentrated by sieving through 
a 20  µm-pore sieve. All nematodes were counted in a nematode counting dish, and the 
first observed 100 identified. When nematode densities exceeded 500 in a given sample, 
up to 200 were identified. Nematodes were observed using an inverted microscope (Leica 
DMi1), from 50× to 200×, classified in trophic groups through their mouth and upper 
digestive tract anatomy (Yeates et al 1993), and to family or up to genus level using simpli-
fied keys (Ferris 2011; Goodey 1963; Mai and Mullin 1996; Tarjan et al. 1977). Finally, 
nematodes were classified in functional groups (Bongers 1990; Yeates et al. 1993).

Statistical analysis

Nematode taxa abundance was pre-analysed using the NINJA (Nematode Indicator Joint 
Analysis) software (Sieriebriennikov et  al. 2014) to calculate the Enrichment Index 
and the Structure Index (Ferris et al. 2001), and nematode metabolic footprints (Ferris 
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2010). The latter included the Enrichment and Structure footprints, and that of each 
trophic group (i.e., bacterivores, fungivores, herbivores, omnivores, and predators), 
which were plotted on radar charts (Sanchez-Moreno and Ferris 2018). The Enrichment 
Index reflects the occurrence of opportunistic nematodes (bacterivorous and fungivo-
rous), indicative of food resource enrichment (fungivorous for more recalcitrant sources 
and bacterivorous for more nutrient-rich sources). The Structure Index is based on the 
relative abundance of nematodes in higher trophic groups and colonizer-persister lev-
els (Bongers and Bongers 1998), being indicative of soil food web structure and con-
nectance (Ferris et  al. 2001). In turn, the metabolic footprints measure the magnitude 
of ecosystem functions performed by each nematode functional group, with the Enrich-
ment, Bacterivore and Fungivore footprints assessing the decomposition service, the 
Structure, Omnivore and Predator footprints indicating the natural regulation service 
and finally, the Herbivore footprint assessing the herbivory disservice (Ferris 2010). 
The nematode trophic groups abundance and nematode alpha diversity (richness) was 
calculated based on the number of nematodes per 100 g of soil and the number of nema-
tode families or genera per sampled site, respectively. Variables were transformed using 
logarithm to normalize the data.

The analyses on the effects of land use and protection on soil nematode abundance, 
diversity and footprints were performed in R version 4.0.3 (R Core Team 2020). Due to 
the mismatch on the coupling of samples by grid, differing number of samples for each 
forest and protection status and heterogeneity of the area, pairs of sites including native 
and exotic or protected and non-protected forest areas were randomly selected, assigning 
each native site to an environmentally similar exotic site or, in the case of protection status, 
each protected site to an environmentally similar non-protected site in 1000 independent 
runs (total sites n = 127, exotic = 57, native = 70, protected = 38, non-protected = 89). The 
environmental similarity was quantified as the lowest Mahalanobis distance using the set 
of variables: soil organic carbon, precipitation seasonality, electric conductivity, soil mois-
ture, magnesium, phosphorous, distance to urbanisation, apparent density, distance to riv-
ers and mean annual temperature (Smith et al. 2021; Zeiss et al. 2022). To exclude highly 
correlated environmental variables, the Variance Inflation Factor (VIF) was used (Fox and 
Weisberg 2019). Variables were considered highly correlated if the VIF value was above 
5 and eliminated one by one, thus obtaining a shortlist of 24 variables. This was further 
shortlisted through the analysis of Spearman correlations between variable pairs. The ones 
that were significantly correlated (p < 0.05) and with a correlation coefficient larger than 
0.5 or smaller than − 0.5, were omitted, thus obtaining a final shortlist of 13 environmental 
and edaphoclimatic variables. Soil nematode biodiversity and functions of all pairs were 
considered to significantly differ if the mean of p-values of all 1000 runs from the Welch 
Two Sample t-test was lower than 0.05 (Zeiss et al. 2022).

Similarity in nematode communities between land use types and protection status was 
assessed by means of Bray–Curtis indexes. We performed a Principal Coordinate Analy-
sis (PCoA) based on the Bray–Curtis dissimilarity index, to check for possible differences 
in nematode community composition between exotic and native forests, inside or outside 
protected areas. Furthermore, a permutational multivariate analysis of variance (PER-
MANOVA) was carried out to see if nematode community composition differed among 
the study sites; 9999 permutations were carried out using the adonis function in vegan 
(Oksanen et  al. 2011). Normalized Mantel tests, based on 9999 permutations, were per-
formed to test the correlation between Bray–Curtis distances and geographic distance, 
using the statistical package vegan (Oksanen et al. 2011). Partial Mantel tests (Legendre 
and Legendre 1998) were used to estimate the correlation between nematode community 
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similarity and geographic distance while controlling for the effect of soil physical chemis-
try and environmental conditions.

The influence of the environmental and edaphoclimatic variables, selected with the pre-
vious criteria, on soil nematode trophic groups abundance, was determined by Canonical 
Correspondence Analysis (CCA) using the PAST software (Hammer et al. 2001). Signifi-
cance of the CCA axes was assessed through permutation analysis and the contribution to 
the ordination of values related to the abundance of nematode trophic groups was assessed 
by the obtained correlation values.

Results

Effect of protected areas and forest type on nematode trophic abundance 
and diversity

Soils in protected areas had a greater abundance of fungivorous and omnivorous nematodes 
than soils in the non-protected areas (Fungivores: Mean protected = 1723.38; Mean unpro-
tected = 1261.25; p = 0.04, 95% CI [0.06; 0.01]; Omnivores: Mean protected = 136.99; 
Mean unprotected = 70.64; p = 0.03, 95% CI [0.03; 0.01]) (Fig. 2a). This was not observed 
for the abundance of other nematode trophic groups or nematode alpha diversity (rich-
ness), whose values did not differ statistically between the two types of protection sta-
tus, nor according to forest type. However, fungivorous and omnivorous nematodes were 
also significantly more abundant in native forest than in exotic forests (Fungivores: Mean 

Fig. 2   Box plot representing the abundances of the nematode trophic groups and alpha diversity in a forest 
areas inside or outside protected areas, and b forest areas containing native or exotic tree species. *Signifi-
cant difference (p < 0.05). Standardized values: Variables values transformed with logarithm for a normal 
distribution
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native = 1746.66; Mean exotic = 973.22; p = 0.001, 95% CI [0.001; 0.0006]; Omnivores: 
Mean native = 112.93; Mean exotic = 62.93; p = 0.01, 95% CI [0.02; 0.009]) (Fig.  2b). 
Nematode community data is presented in supplementary material Table SII , and nema-
tode parameters data, such as trophic groups abundance, nematode diversity and nematode 
footprints are shown in supplementary material Table SIII.

The PCoA plot showed that nematode communities were significantly clustered among 
exotic and native forests (R2 = 0.075, PERMANOVA permutation 9999 times, P < 0.001) 
and among protected and non-protected forest areas (R2 = 0.022, PERMANOVA per-
mutation 9999 times, P < 0.05) (Fig. 3). Dissimilarity of the nematode communities was 
positively correlated with geographic distance (r = 0.07, p < 0.05). Similarity decays with 
geographic distance, however, despite its significance; this correlation is very small, as 
indicated by the Mantel test. To determine whether this pattern of increasing dissimilar-
ity with distance was caused by changing soil properties we used partial Mantel Test, that 
showed no significant relationship between nematode community composition and soil 
properties (r = − 0.02, p = 0.67).

Effect of protected areas and forest type on nematode footprints

Protected soils had a significantly larger Structure Footprint than non-protected areas 
[Structure Footprint: Transformed mean protected = 2.31; Transformed mean unpro-
tected = 2.11; p = 0.04, 95% CI (0.05; 0.01)] (Fig. 4a). The same was observed for native 
forests that also had a greater Structure Footprint than exotic forests (Structure Footprint: 
Transformed mean native = 2.34; Transformed mean exotic = 1.96; p = 0.002, 95% CI 
[0.003; 0.001]) (Fig.  4b). Irrespective of protection status, forests seemed to have larger 

Fig. 3   Principal Coordinate Analysis based on Bray–Curtis dissimilarity of soil nematode community 
structures in a non-protected and b protected forest areas sites, both separately for exotic and native forests
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Fungivore and Omnivore footprints than Herbivory footprint. The Omnivore footprint 
showed a significant difference between the two types of protection (Omnivore Footprint: 
Transformed mean protected = 2.09; Transformed mean unprotected = 1.91; p = 0.04, 95% 
CI [0.04; 0.007]), with forest soil in protected areas having a larger Omnivore Footprint 
(Fig.  4a). Nutrient allocation in soil food webs both in native and in exotic forests was 
larger in the decomposer food web (i.e., larger metabolic footprints of fungivores and 
omnivores) than in the primary production channel (smaller Herbivory Footprint). In addi-
tion, native forests had overall greater nematode metabolic footprints than exotic forests, 
except for the Bacterivore, Predator and Herbivore footprints, for which significant differ-
ences were not detected. The metabolic footprint of fungivores was significantly greater in 
forest areas dominated by native tree species than in those dominated by exotic tree species 
(Fungivore Footprint: Transformed mean native = 2.12; Transformed mean exotic = 1.81; 
p = 0.0009, 95% CI [0.001; 0.0005]) (Fig. 4b). The Omnivore Footprint was significantly 
greater in native forest areas than in exotic forest areas (Omnivore Footprint: Transformed 
mean native = 2.10; Transformed mean exotic = 1.80; p = 0.01, 95% CI [0.01; 0.007]) 
(Fig. 4b).

Influence of the environmental and edaphoclimatic variables

Canonical Correspondence Analysis (CCA) showed no relationship between environmen-
tal and edaphoclimatic variables with nematode metabolic footprints nor with nematode 
taxonomic diversity. However, the environmental variables explained 17% of the variance 
in nematode trophic diversity with 12% and 3% explained on axis 1 and axis 2, respec-
tively (Fig.  5 CCA). Considering the significant axis 1 (p = 0.02) predatory nematodes 
were clearly separated from the other trophic groups. Both predators and omnivores, that 
are nematodes closely linked to complex and long food chains, were on the positive side of 
the axis, thereby positively associated with soil organic carbon and moisture and negatively 
associated with apparent density. The bacterivores, fungivores and herbivores were on the 
negative side of the axis, being negatively correlated with soil organic carbon and moisture 
and positively associated with apparent density. Furthermore, bacterivores were closer to 
the origin of the coordinate system, being thereby less correlated to the environmental vari-
ables. Values of the environmental variables and physico-chemical parameters used in the 
CCA are shown in supplementary material Table SIV .

Fig. 4   Nematode metabolic footprints as indicators of the magnitude of the ecosystem functions performed 
by each nematode functional group for a forest areas inside or outside protected areas, and b forest areas 
with native or exotic tree species. *Significant difference (p < 0.05) from the Welch Two Sample t-test. Val-
ues were transformed using logarithm for a normal distribution
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Discussion

When addressing the effect of nature protection in soil nematode biodiversity and func-
tions, the Structure and Omnivore footprints were found to be significantly different. How-
ever, we found no evidence for differences between the other nematode metabolic foot-
prints in protected compared to non-protected forest areas in the North of Portugal. The 
greater Structure and Omnivore footprints in protected areas suggests that these areas 
maintain a more stable and complex community structure, with a larger investment in natu-
ral regulation (Ferris et al. 2001; Gao et al. 2020; Tomar and Ahmad 2009). The nematode 
alpha diversity did not significantly differ between the protection status, however, since 
the Structure and Omnivore footprints were significantly greater in protected areas, a ten-
dency towards positive effects of protected areas in the soil system was apparent. Studies 
of the soil biodiversity and function in protected forest areas are scarce and show limited 
to no effects of nature conservation on soil biodiversity (Ciobanu et al. 2019; Zeiss et al. 
2022). Nematode analyses of Romanian grasslands assigned to Natura 2000, for example, 
showed no evidence of significant positive effects of protected areas on soil biodiversity 
and functions (Ciobanu et al. 2019); contrary to what we found here, where protected for-
ests showed some significantly positive effects.

Soil nematode functions were affected by forest type. The Fungivore, Omnivore and 
Structure footprints were significantly higher in native than in exotic forest areas in the 
North of Portugal. Native forests, unlike exotic forests, were shown to have a more com-
plex community structure with more linkages in the food web (Ferris et al. 2001; Gao et al. 
2020; Tomar and Ahmad 2009). Low abundances of free-living nematodes may indicate 
lower organic matter decomposition and nutrient turnover rates in gum tree plantations in 
comparison to natural forests. Exotic forest areas have also been found to have lower nema-
tode abundances in contrast to native forest areas that have higher abundances (Gao et al. 

Fig. 5   Canonical correspondence analysis bi-plot of the influence of the environmental and edaphoclimatic 
variables on nematode trophic groups. Environmental variables are marked by arrows. Eigenvalues were 
0.008704 and 0.002156 for the first and the second axis, respectively (Triplot amplitude: ×3). Forest_Dec 
deciduous forest cover; SOC soil organic carbon; Forest_Con coniferous forest cover; MAP_Seas mean 
annual seasonal precipitation; CE electric conductivity; Moist_vol soil moisture; Mg magnesium; P phos-
phorous; Dist_Urban distance to urbanization; App_Dens apparent density; Dist_River distance to rivers; 
MAT mean annual temperature



83Biodiversity and Conservation (2024) 33:73–89	

1 3

2020). The lower nematode abundances in exotic tree species may be because gum tree lit-
ter is more persistent and complex to decompose, and releases toxic compounds that inhibit 
decomposition, and reduces nutrient availability, supporting fewer nematodes (Zhao et al. 
2021a, b).

Studies regarding nematode community dissimilarity have already been carried out for 
regional scales and in forest ecosystems, where differences were found between forest types 
(Kitagami et al. 2022), and nematode community similarity decayed significantly with geo-
graphic distance (Monroy et al. 2012). Taking into account the PCoA plot, this supports 
our results where nematode communities were significantly clustered among exotic and 
native forests and among protected and non-protected forest areas, meaning that nematode 
communities differed between the two types of forests and protection status. Our results 
showed that, nematode communities dissimilarity was positively correlated with geo-
graphic distance, and that the similarity decays with geographic distance, however, despite 
its significance; this correlation was very small. This goes in accordance with previous 
studies where the same was stated (Monroy et al. 2012). According to our partial mantel 
Test, this correlation is highly dependent on soil properties, as when these variables are 
taken into account, correlation between community and geographic distance is no longer 
significant.

Regarding the environmental factors that may influence nematode community structure, 
vegetation and litter inputs appear to be the most influential factors. Aboveground veg-
etation can affect the soil nematode community structure, and therefore the diversity and 
composition of plant species can be an important factor in determining the structure of 
nematode communities (Kitagami et al. 2017). The quality of litter inputs is a strong deter-
minant of soil community structure. The diversity and composition of the aboveground 
plant species were not determined in this study, but our results suggest the percentage of 
deciduous forest cover may have influenced nematode community structure and functions.

The variables that mostly influenced or overall affected the soil functional biodiver-
sity were soil organic carbon, apparent density, soil moisture, and deciduous forest cover. 
However, they together had a low percentage of variance explained. The influence of these 
variables was already documented in various studies considering forest areas (Karuri 2021; 
Keith et al. 2009; Zhang et al. 2012), and these low percentages of variance explanation 
were also documented by Archidona-Yuste et  al. (2020). However, forest areas studies 
show higher explanation percentages, approximately 35% (Salamon and Wolters 2009; 
Zhang et al. 2012), but still variables explain only in part the nematode community struc-
ture (Salamon and Wolters 2009). An explanation for the lower percentages of variance 
explanations of environmental variables analysed may be that a large proportion of the 
unexplained variation is driven by features and mechanisms that were not considered, for 
example species interactions (Archidona-Yuste et  al. 2020), microsite characteristics and 
land use management (for instance exotic forests tend to be planted, which involves plough-
ing and terracing soil more frequently than native forest). Thus, effects on microhabitat 
structure (Bhusal et al. 2014), temperature, soil structure (Salamon and Wolters 2009), ele-
vation (Kergunteuil et al. 2016) or microbial biomass were previously found to be among 
the main factors determining nematode genera distribution (Zhang et  al. 2012). We did 
not have access to these variables for this analysis, but we expect that they would help 
to understand the observed patterns in nematode communities. Further studies addressing 
floristic diversity and elevation, for example, are also needed to complement datasets and 
possibly increase the proportion of explained variance in this study. This study attempts 
to interpret macro-ecological patterns at the regional level, and some factors such as plant 
community structure and land-use intensity can affect nematode community structures on a 
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regional scale (Liu et al. 2019). Other influences such as habitat destruction, fragmentation, 
and increasing population density may also be key driving forces for ecosystem change and 
should be minimized to increase forest ecosystem resilience (Leberger et al. 2020; Milad 
et al. 2011). Promoting connectivity of forest landscapes and habitat heterogeneity is likely 
to promote species survival, as well as changes in their composition and hence forest man-
agement (Milad et al. 2011).

In regard to our first hypothesis, we infer that current conservation measures are hav-
ing few significant effects on these communities. Furthermore, native forests appear to be 
more important as a conservation target than exotic ones. Concerning the second objective 
of this work, we conclude that current conservation measures still need to be improved to 
assure and increase soil biodiversity and function. It is worth mentioning that protected 
areas in Portugal include human settlements living as socio-ecological systems, and only 
very small areas have restricted activities to forest exploitation, therefore a small influence 
of protected areas on nematode abundance and metabolic footprint was expected. Future 
research still needs to address species interactions, and to estimate effects at a local scale, 
e.g., at a case-by-case analysis.

Planting deciduous native trees as mixed forest species has been reported to improve 
adaptation to site conditions and conservation issues (Felton et  al. 2016, 2010; Salamon 
and Wolters 2009). However, the extent to which ecological, economic, and societal ben-
efits may rise from the conversion of monocultures to mixed forests depends on the tree 
species being implemented and the bio-geographical region (Felton et al. 2010). It is not 
clear whether turning the gum tree and wattle monocultures into mixed forests using pine 
trees would be efficient to improve their environments, as they produce highly recalcitrant 
leaf litter (Kondratow et al. 2019). However, given our results, we argue that interplanting 
oak trees in exotic and pine tree dominated forests, at a density and distribution to be deter-
mined may possibly increase the ecological and conservation value of these forests. After 
the tragic forest wildfires in 2017, some efforts are being done to create incentives for a 
native and more resilient forest cover in Portugal (Santos et al. 2019).

Conclusion

Current work done by nature conservation in the North of Portugal is producing significant 
effects on the soil system. This highlights the importance of advising nature conservation 
policies on the potential positive effects on soil biodiversity and functions. Furthermore, 
native forest areas are better suited to ensure soil biodiversity and functions and should 
have a greater importance in nature conservation measures. Our study also showed that soil 
organic carbon, soil apparent density, soil moisture, and deciduous forest cover were the 
variables that mainly influenced or affected the soil functional biodiversity of nematodes. 
However, further research is needed to complement, corroborate, or even contradict some 
conjectures presented in this study, such as the potential effects of species interactions, 
floristic diversity, and local, microsite-level, and heterogeneity. Here, we concluded that 
when establishing conservation areas, local soil biodiversity and soil monitoring should be 
considered. We present evidence for a better belowground forest conservation suggesting 
that turning current monocultures of exotic species and pine trees into mixed forests may 
possibly imply significant positive changes to the preservation of soil communities. While 
such practices have already been successfully implemented in other regions, for the first 
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time, we show their potential consequences for the conservation of soil biodiversity and 
function.
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