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Abstract
Climate and land-cover changes are among major threats to biodiversity. However, the 
interactive effects of the two threats are often overlooked in conservation planning. Using 
81 bat species occurring in Vietnam as a case, we investigated the individual and interac-
tive effects of climate and land-cover changes, highlighting the importance of this infor-
mation for conservation efforts. By using species distribution models, we predicted the 
potential changes in range size among species and in species richness across Vietnam 
by the 2050s, considering projected climate and land-cover changes under two emission 
scenarios. Our results revealed that both threats individually would have predominantly 
negative effects on bats in Vietnam. Moreover, when these threats occur simultaneously, 
their interactions would generally intensify the impacts by mitigating individual positive 
effects and/or enhancing negative effects. However, we also found large interspecific and 
geographic variations in the direction and magnitude of these effects. Forest specialists, 
insectivores and cave-roosting species were predicted to be particularly vulnerable to the 
negative effects, with northern and southern Vietnam being more affected. These results 
underscore the urgent need to incorporate both climate and land-cover changes, as well as 
their interactions, into conservation planning for bats in Vietnam and biodiversity in gen-
eral. The species-specific and spatially-explicit information regarding the impacts of the 
two threats can guide conservation actions, allowing us to target more manageable and less 
uncertain threats, as well as prioritize the protection of more vulnerable species.
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Introduction

Human-induced climate change and land-cover modification have long been recognized as 
the major threats to biodiversity (Newbold et al. 2015; Parmesan 2006). They are causing 
profound negative effects across biological levels (Kannan and James 2009; Krauss et al. 
2010; Pardini and Nichols 2017), and thus leading to massive loss of biodiversity and deg-
radation of associated ecosystem services (Gaston et al. 2003; Newbold et al. 2015; Par-
mesan 2006). In particular, changes in species distributions and diversity driven by the two 
environmental changes not only damage ecosystem integrity (Buisson et al. 2013; Zolkos 
et al. 2015), but also threaten human wellbeing (Newbold 2018; Pecl et al. 2017). As the 
two environmental changes are expected to continue or become even greater in the future 
(IPCC 2021; Reid et  al. 2005), understanding and predicting the impacts are critical for 
conserving biodiversity under the rapidly changing environment.

Climate and land-cover changes can have non-additive effects on biodiversity, exhibit-
ing synergistic or antagonistic interactions (Mantyka-Pringle et al. 2012; Oliver and More-
croft 2014). Synergistic interactions occur when one change enhances the impact of the 
other, while antagonistic interactions arise when one change mitigates the effects of the 
other. A synergistic effect can be observed if one change increases a species’ vulnerability 
to, or reduces its adaptive ability toward, the other change. For instance, habitat loss can 
hinder the range expansion of several butterfly species in response to warming climates 
(Hill et al. 2001). Additionally, increased climate variability resulting from climate change 
can potentially amplify inter-annual fluctuations in species population size. Consequently, 
this increased variability may necessitate a larger amount of habitat to sustain the popu-
lation, thereby rendering the population more vulnerable to habitat loss or fragmentation 
(Verboom et al. 2010). In contrast, if one environmental change enhances species’ adapt-
ability to the other, an antagonistic effect may occur. For instance, rising temperatures can 
mitigate the adverse effect of habitat fragmentation on butterfly populations by enhancing 
their dispersal ability and colonization frequencies (Cormont et al. 2011).

Due to the diverse types of interactive effects driven by various mechanisms, under-
standing how climate and land-cover changes may interactively influence biodiversity is 
critical for accurately assessing and predicting their impacts and for making effective con-
servation strategies (Brook et al. 2008; Mantyka-pringle et al. 2015; Opdam and Wascher 
2004). However, investigating their interactive effects is difficult. The diverse mechanisms 
and scales at which the two environmental changes operate pose challenges for mechanis-
tic or statistical integration of their effects and interactions into impact assessments (New-
bold et  al. 2020; Opdam and Wascher 2004; Tobias et  al. 2021). Variations in biodiver-
sity responses across taxa and geographic areas further impede the generalization of case 
studies and development of conservation strategies (Mantyka-pringle et al. 2012; Newbold 
et al. 2020; Segan et al. 2016). Therefore, most previous impact assessments investigate the 
two changes in isolation or examine their combined effects without explicitly considering 
their interactive effects, leaving large knowledge and conservation gaps (Mantyka-Pringle 
et al. 2015; Oliver and Morecroft 2014).

Bats (Order Chiroptera) play important roles in various ecosystems and provide key ser-
vices to humans, including pest suppression, seed dispersal and pollination (Ghanem and 
Voigt 2012). However, bats are particularly sensitive to climate and land-cover changes 
(Jones and Rebelo 2013). Changing temperatures may alter the timing and duration of bats’ 
hibernation or torpor and thus cause their phenological mismatch with food resources or 
increase their sensitivity to diseases (Jones and Rebelo 2013). The distribution of many bat 
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species is also highly dependent on the land cover in their foraging and roosting habitats 
(Hayes et  al. 2007). Previous studies already show that climate and land-cover changes 
have caused (García-Morales et  al. 2016; Sachanowicz et  al. 2006) and will continue to 
cause significant impacts on the distributions of individual bat species and diversity pat-
terns (Costa et al. 2018; Hughes et al. 2012), posing a major threat to bat species and their 
conservation (Frick et al. 2019; Mickleburgh et al. 2002). However, no study, to date, has 
explicitly evaluated the interactive effects of these changes on bats or investigated the vari-
ations in these effects across species and geographic areas.

To fill this gap, the goal of this study was to evaluate the potential effects of climate 
and land-cover changes on bats by explicitly considering the interactions between these 
changes. Using the bats in Vietnam as a case, we (1) evaluated the individual and inter-
active effects of future climate and land-cover changes on the potential range size across 
species and species richness across the country, and (2) investigated the variations in these 
effects across species, functional guilds and geographic areas. The species included in the 
analysis represent the bat fauna of the Indochinese biodiversity hotspot (Kruskop 2013), 
which is one of the most important regions in terms of species diversity and endemism 
(Tordoff et al. 2011). They constitute approximately 9% of the bats in the world and 30% 
in Southeast Asia, including three Endangered and five Vulnerable species according to 
the Red List of Endangered Species (IUCN 2023). Both the climates and land cover in 
Vietnam are predicted to change rapidly in the next few decades (Kovyazin et  al. 2020; 
MoNRE 2016), posing pressing threats to these bats. Therefore, the present study provides 
an ideal case to showcase the essential information on the interactive effects of climate and 
land-cover changes for biodiversity conservation.

Materials and methods

Study area

Vietnam, situated in Southeast Asia, covers a considerable latitudinal range. The country 
exhibits a significant temperature gradient, with the annual mean temperature rising from 
19 °C in the northern regions to 27 °C in the southern regions. Annual precipitation var-
ies widely, ranging from under 800  mm in the coastal southeast to nearly 5000  mm in 
the mountainous northeast, characterized by distinct wet and dry seasons. Generally, the 
degree of seasonality in both temperature and precipitation diminishes from north to south 
(Nguyen et al. 2000). Over the last 50 years, there has been an increase of 0.6 °C in the 
annual mean temperature. Projections suggest that this trend will continue, with a predicted 
temperature increase of 1.7–2.4 °C by the end of the current century (MoNRE 2016). Fur-
thermore, During the same 50-year period, there has been a decrease in annual precipita-
tion of 5.8–12.5% in the northern regions and an increase of 6.9–19.8% in the southern 
regions. It is estimated that both regions will experience an increase in precipitation of at 
least 5–15% during this century (MoNRE 2016). Approximately two-thirds of Vietnam’s 
area is comprised of forests and grasslands, predominantly found in the northern, western 
and southern central regions. The remaining land is occupied by farmland and built-up 
areas, primarily concentrated in the two delta regions (Fig.  1a). Over the past 30 years, 
there has been a 10% decline in forest cover, while farmland and built-up areas have wit-
nessed an increase of 20–30% (Poortinga et al. 2019). These trends are expected to persist 
if significant alterations in land-use policies do not occur (Rutten et al. 2014).



4484 Biodiversity and Conservation (2023) 32:4481–4508

1 3

Occurrence data

We obtained the checklist of bats in Vietnam from the International Union for Conserva-
tion of Nature (IUCN 2023) and then compiled the occurrence records of the species from 
various sources (Table S1). First, we retrieved occurrence records of the species from the 
Global Biodiversity Information Facility using the rgbif package in R, using the accepted 
names of the species as searching terms (downloaded on June 3rd, 2023, DOI: https:// 
doi. org/ 10. 15468/ dl. 28jn5y). Only records with valid geographic coordinates and without 
any geographic issues were downloaded. Additionally, records associated with fossils or 
unknown evidence were also excluded. Second, we obtained occurrence records from 82 
publications (see a list of the references in Supplementary Materials). To acquire these 
records, we searched for scientific names of bats, including both accepted names and 
synonyms, in various databases, including Web of Science, Google Scholar, and several 
Vietnamese journals, namely the Academia Journal of Biology (http:// vjs. ac. vn) and the 
Proceedings of National Conferences on Ecology and Biological Resources (http:// iebr. ac. 
vn; searched on June, 2023). Finally, we obtained additional occurrence records from the 
Institute of Ecology and Biological Resources in Vietnam, the Hungarian Natural History 
Museum, and unpublished datasets provided by the authors of this paper.

We included the occurrence records both inside and outside Vietnam to cover the full 
range of environmental conditions suitable for the species. To address potential tempo-
ral mismatches between occurrence data and environmental variables (climate data for 
the period between 1979 and 2013 and the land-cover data for 2010; see details below), 
we only used the occurrence records collected after 1990 in this study. We note that the 
data restriction may not completely resolve the mismatch issue, and the performance of 
our models could be affected by false species-environment associations and/or niche 

Fig. 1  Current land cover and predicted current and future species richness across Vietnam. The boundaries 
and the names of eight regions in Vietnam are shown in (a). The current bat species richness was derived 
from the predictions of the species distribution models for 81 species in Vietnam. The locations of current 
protected areas shown in (b) are from the World Database on Protected Areas (categories I to VI; UNEP-
WCMC and IUCN 2023). The predicted species richness in the 2050s under the moderate emission sce-
nario shown in (c) was the median of the predictions under 10 GCMs’ projections

https://doi.org/10.15468/dl.28jn5y
https://doi.org/10.15468/dl.28jn5y
http://vjs.ac.vn
http://iebr.ac.vn
http://iebr.ac.vn
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truncations resulting from the mismatch (Pang et al. 2022). However, there is a potential 
trade-off between reducing the negative effects of the mismatch and enhancing the posi-
tive effects of incorporating additional occurrence data on model performance (Bracken 
et al. 2022). Given the limited availability of occurrence records for many bat species in 
Vietnam (Table S2), we imposed this temporal restriction on our occurrence data. In total, 
8473 unique occurrence records pertaining to 116 bat species, with 81 of them having a 
minimum of 20 records available, were used for model building (Table S2 and Fig. S1).

We followed GBIF’s taxonomy backbone as it constituted the primary source of occur-
rence records. However, we acknowledge that the taxonomy may not fully align with recent 
taxonomic revisions of Vietnamese bats (e.g. Görföl et al. 2020; Tu et al. 2018; Tu et al. 
2023). This mismatch between taxonomy and recent revisions could potentially impact our 
modeling results for certain species. For example, if one species has been divided into mul-
tiple species, our model might capture the combined niche of these current species, leading 
to incorrect predictions of their responses to environmental changes if they respond dif-
ferently. Resolving this taxonomic issue is challenging as taxonomy is an evolving field, 
and retrospectively allocated past occurrence records to currently accepted species is often 
infeasible. However, we believe that this issue should not undermine our overall conclu-
sions. The taxonomic revisions affected only around 10% of the modeled species, and some 
species that have recently been separated from a previously recognized species still exhibit 
overlapping distributions (e.g. Tu et al. 2017; Tu et al. 2018), suggesting similar niches.

Environmental factors

Climate data

We obtained gridded current and future bioclimatic variables from CHELSA (Version 1.2, 
Karger et al. 2017). The variables for “current” climates are derived from mean monthly 
maximum and minimum temperatures and mean monthly precipitations spanning the 
period from 1979 to 2013 (Karger et al. 2017). To address the issue of multicollinearity, 
we conducted a correlation analysis on the 19 available bioclimatic variables. Among the 
variables that exhibited Spearman’s correlations of higher than 0.7 with others, we selected 
those that held biological or ecological relevance to bat distributions. The six selected 
variables included the mean temperatures in the warmest and coldest quarters of the year, 
mean diurnal temperature range, annual precipitation, and precipitations in the warmest 
and coldest quarters (Fig. S2). These climate factors have been linked to aspects of bats’ 
reproductive success, survival rates, and activity patterns (Burles et al. 2009; Furey et al. 
2011; Turbill 2008).

We also obtained the future projections of the six bioclimatic variables for the period 
from 2041 to 2060 (hereafter referred to as the 2050s). The projections are generated by 
interpolating the anomalies between CMIP5 General Circulation Models (GCMs) projec-
tions and the current climates (Karger et al. 2017). To account for the uncertainties of pro-
jected future climates, we used the projections derived from 10 GCMs under two Repre-
sentative Concentration Pathway (RCP) scenarios (i.e., RCP4.5 and RCP8.5). The RCP4.5 
represents a moderate scenario with the  CO2 emission peaking around 2040 and then 
declining, while RCP8.5 represents an extreme scenario with the  CO2 emission continuing 
to rise in this century (IPCC 2014). The 10 GCMs used (i.e., ACCESS1-0, BCC-CSM1.1, 
CanESM2, CMCC-CM, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GISS-E2-R, 
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IPSL-CM5A-LR, and MIROC-ESM) cover a large variation in model algorithms, initial 
conditions, and projected outputs (Knutti et al. 2013).

Land‑cover data

We obtained the current and future land-cover data from the Geographic Simulation and 
Optimization System (GeoSOS; http:// www. geosi mulat ion. cn/ Globa lLUCC Produ ct. html). 
The current land-cover data is originally derived from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Land Cover Type product (MCD12Q1) for the year of 
2010 at 1 km spatial resolution and contains six land-cover types (Fig. 1; Li et al. 2017). 
Projected land-cover for the year of 2050 under the Intergovernmental Panel on Climate 
Change (IPCC) Special Report Emission Scenarios (SRES) scenarios B1 and A2 are simu-
lated by using the IMAGE model with the current MODIS land cover as the initial state (Li 
et al. 2017). The SRES B1 and A2 scenarios used in the IPCC Fourth Assessment Report 
are comparable to the RCP4.5 and RCP8.5 scenarios used in the fifth report, respectively 
(Box 2.2 in IPCC 2014). Given that two land-cover types, namely water and barren, occu-
pied a small portion of the study area (Fig. 1a), we extracted presence/absence information 
for the remaining four types (i.e., forest, grassland, farmland and urban) from the categori-
cal land-cover data layers. This information was then used for building our species distri-
bution models (see below).

Karst data

As karst areas provide roosts for cave bat species and sustain high bat diversity in Vietnam 
(Furey et al. 2010), we also included the distribution of karst as a variable to predict bat 
species distributions. A global data layer with polygons delimiting the areas with carbonate 
rocks was obtained from the World Map of Carbonate Rock Outcrops V3.0 (https:// digit al. 
lib. usf. edu/ SFS00 55342/ 00001). Most carbonate rocks are susceptible to karstification and 
thus the areas with carbonate rocks could be considered to be karst (Williams Ford 2016). 
However, we note that some areas with carbonate rocks may not provide suitable caves for 
bats, introducing an uncertainty of this data layer. We converted the data into 1-by-1-km 
grids by rasterizing it with the World Cylindrical Equal Area projection. In the resulting 
grids, the cell values represented the presence or absence of karst. We assumed that the 
distribution of karst areas suitable for bats does not change significantly in the next few 
decades, and thus used the same data layer for predicting both current and future species 
distributions (see below).

Species distribution modeling

We built species distribution models to predict the current and future distributions of indi-
vidual bat species using Maxent (ver. 3.4.1; Phillips et al. 2006; Phillips et al. 2017) and 
the dismo package (version 1.1.4; Hijmans et al. 2017) in R (version 4.2.2). We used Max-
ent because it does not require absence data and has better and more consistent perfor-
mance than many other algorithms (Elith et al. 2011), especially with a small number of 
presence locations (Hernandez et al. 2006; Wisz et al. 2008). The model for a species was 
built with all presence locations of the species and the current climate, land-cover and karst 
data mentioned above. The climate and land-cover data layers were re-projected into the 
same projection and resolution with the karst data. If two or more presence locations were 

http://www.geosimulation.cn/GlobalLUCCProduct.html
https://digital.lib.usf.edu/SFS0055342/00001
https://digital.lib.usf.edu/SFS0055342/00001
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located within the same grid cell, we only kept one. We built our models at 1-km resolu-
tion, which is relevant to bats’ habitat selection because many bat species have a home 
range around 1  km2 (Davidson-Watts and Jones 2006; Monadjem et al. 2009). The same 
spatial resolution was also used in several other studies on bats (e.g., Gottwald et al. 2017; 
Hughes et al. 2012; Herkt et al. 2016).

We only built models for the 81 species that had at least 20 occurrence records, because 
this threshold limit is considered large enough for a variety of taxa in many geographic 
areas (Hernandez et al. 2006; van Proosdij et al. 2016; Wisz et al. 2008). Because the sam-
pling bias of the occurrence data can reduce model performance and make a model cap-
ture sampling effort rather than the true distributions of target species (Barber et al. 2022; 
VanDerWal et al. 2009), we used the target-group background to correct for the bias (Phil-
lips et  al. 2009). The approach has been shown to be the most effective bias-correction 
approach for Maxent models (Barber et  al. 2022). We used the presence locations of all 
116 species, including those having less than 20 occurrence records, as the background. 
Because bat surveys usually target all or most bat species at a location, our occurrence 
records can reasonably represent the sampling effort for the whole species group, satisfy-
ing the assumption of the approach. In addition, a Multivariate Environmental Similarity 
Surfaces (MESS) analysis (Elith et al. 2010) showed that the target-group background data 
can well capture the current environmental conditions (Fig. S3a), with no extrapolation 
needed across Vietnam. Extrapolation occurred only for some regions in southern Vietnam 
under the extreme emission scenario (Fig. S3c). Therefore, we believe that the target-group 
background approach is appropriate in our case.

To identify the optimal model settings, we evaluated the performance of the models by 
testing various combinations of feature types and regularization multiplier values. Given 
the importance of model transferability in our study, we exploited spatial block cross-val-
idation to evaluate model performance (Roberts et al. 2017). We divided the extent of all 
occurrence records into 1319 50-by-50-km blocks because it is commonly recognized that 
two occurrence records separated by a distance of 50 km can be considered spatially inde-
pendent for bats (Betts et  al. 2022; Delgado-Jaramillo et  al. 2020; Hopkins et  al. 2022). 
The blocks were then randomly allocated to 5 folds and the random allocation was repeated 
100 times for each species. The allocation that achieved the most balanced distribution of 
species’ presence and background points across the 5 folds was used for the cross-valida-
tion. We calculated the area under the receiver operating characteristic curve (AUC) as the 
measure of model performance. The model setting achieving the highest AUC value across 
the species, i.e., a regularization multiplier value of 1.5 and a combination of linear, quad-
ric and hinge feature types (Fig. S4), was used for building the final models. We imple-
mented the spatial block cross-validation using the blockCV package (Valavi et al. 2019) 
and tested different model settings using the ENMeval package (Muscarella 2014) in R.

Current and future predictions of species potential ranges and species richness

For each species, we used its model with current environmental data layers to predict the 
occurrence probability in each 1  km2 grid cell across mainland Vietnam. We considered 
a species present in a grid cell if the predicted probability was higher than a threshold 
value. We determined the threshold value for each species as the 10th percentile of train-
ing presences (Cao et al. 2013). We then defined the potential distribution range of a spe-
cies in Vietnam as all the predicted presence grid cells of that species. For each grid cell, 
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we counted the species which were predicted to be present as a measure of bat species 
richness.

For each species, we also used its distribution model to predict its potential distributions 
in the 2050s with the future climate and/or land-cover data layers. We then predicted the 
future potential range for each species and future species richness for each grid cell using 
the same approach mentioned above. To examine the individual and interactive effects of 
climate and land-cover changes (see below), we generated the future predictions of species 
potential ranges and species richness under three environmental change scenarios: climate 
change only, land-cover change only and both changes. For the predictions under climate 
change only (or land-cover change only), we used future climate (or land-cover) data lay-
ers and current land-cover (or climate) and karst layers in the models. For the predictions 
under both changes, we used future climate and land-cover data layers and the current karst 
layer. We generated the predictions using the future data layers under the two emission 
scenarios separately. For the predictions under climate change only and both changes, we 
also used the future climate layers derived from each of the 10 GCMs under each emis-
sion scenario separately. Therefore, for each species, we totally generated two predictions 
of future potential ranges (2 emission scenarios) by the 2050s under land-cover change 
only, 20 predictions (10 GCMs × 2 emission scenarios) under climate change only, and 20 
predictions under both changes. We also generated 2, 20 and 20 predictions of future spe-
cies richness for the 2050s for each grid cell across Vietnam under the three environmental 
change scenarios, respectively.

Individual, combined and interactive effects of climate and land‑cover changes

We quantified the effects of climate and land-cover changes by calculating the percent 
change in species range size between the current and future predictions for each species 
and calculating the percent change in species richness for each grid cell. For the individ-
ual effects of climate and land-cover changes, we compared the current state to the future 
predictions under climate change only and under land-cover change only, respectively. For 
the combined effects, we compared the current state to the future predictions under both 
changes. Under each emission scenario, we evaluated the climate change-only and com-
bined effects for different GCMs separately and calculated the medians among them.

We classified the interactive effects of climate and land-cover changes using a direc-
tional interaction classification system (Piggott et al. 2015), which is based on an additive 
effect model and allows the interaction types to be defined consistently no matter whether 
the two individual effects have the same or opposite directions. By comparing the pre-
dicted range size or species richness under both changes with the predicted values under 
no change (i.e., current prediction), climate change only and land-cover change only, as 
well as the expected value under both changes without interactions (i.e., prediction from an 
additive null model), we classified the interactive effects into five types (Fig. 2c, e). If the 
predicted value under both changes was equal to the expected value, there was no interac-
tion and we classified the effect as additive (AD). If the predicted value was higher than 
expected, there was an interaction causing a positive effect. If the predicted value under 
both changes was also larger than any of the other predictions, the interaction was classi-
fied as positive synergistic (+S), suggesting that the interaction caused the positive effect 
by enhancing positive individual effects. Otherwise, the interaction was classified as nega-
tive antagonistic (−A), suggesting that the interaction caused the positive effect by mitigat-
ing negative individual effects. In contrast, if the predicted value under both changes was 
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lower than expected, there was an interaction causing a negative effect. If the predicted 
value was also smaller than any of the other predictions, the interaction was classified as 
negative synergistic (−S), suggesting that the interaction caused the negative effect by 
enhancing negative individual effects. Otherwise, the interaction was classified as positive 
antagonistic (+A), suggesting that the interaction caused the negative effect by mitigating 
positive individual effects. The classification of interactions was done for each GCM and 
emission scenario separately.

To obtain the expected range size and species richness under an additive null model, we 
first calculated, for a species, the predicted cell-wise changes in the occurrence probability 
under climate change only and land-cover change only scenarios (Fig. 2a). A cell-wise sum 
of the probability changes (i.e., additive changes) was added to the current probability to 
obtain the expected value under both changes without interactions (i.e., under an additive 
null model). We then converted the expected value into presence or absence of the species 
for each cell using the species-specific threshold, and calculated the expected range size 
for the species by counting the presence cells across the study area (Fig. 2b). We note that 

Fig. 2  Diagram demonstrating the approaches used in the study for obtaining the expected range size and 
species richness under both climate and land-cover changes without interactions, and for classifying interac-
tion types. Using three hypothetical species (Species A–C) occurring in a study area containing nine grid 
cells, the diagram shows a how the expected occurrence probability is calculated for each grid cell from the 
model predictions under different combinations of environmental change effects; b how the predicted and 
expected range sizes are obtained from the occurrence probabilities under different combinations of envi-
ronmental change effects; c how the type of interactions between climate and land-cover changes affecting 
species’ range size is determined based on the predicted and expected range sizes; d how expected species 
richness is obtained for each grid cell based on the occurrence probabilities of the three species under dif-
ferent combinations of environmental change effects; and e how the type of interactions affecting species 
richness is determined for each grid cell based on the predicted and expected species richness under differ-
ent combinations of environmental change effects
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this approach may result in an expected probability larger than 1 or smaller than 0, which is 
unreasonable, but the conversion to presence/absence data solved this issue. Finally, based 
on the presence/absence data across all species, we calculated the expected species rich-
ness for each cell (Fig. 2d).

Variations among functional guilds

We compared the predicted effects of the two environmental changes and their interactions 
on the distributional range size of individual species and on the species richness across 
Vietnam between two habitat, two dietary and two roosting-site guilds. We obtained the 
information on the major habitat types for the species from the IUCN (2023). Based on the 
first level of IUCN’s habitat classification scheme, all of the 81 species studied use forests 
as their major habitat. Twenty-seven of them use only forests (or only forests and caves) 
and were classified as forest specialists. All the remaining 54 species also use artificial 
habitats, while some can use grasslands or shrublands as well. Therefore, we classified the 
54 species as habitat generalists. We classified the species into different roosting-site guilds 
also based on the habitat information from IUCN (2023). The species whose major habitat 
types include caves were classified as cave-roosting species, and the others as non-cave-
roosting species. For dietary guilds, we classified the species into insectivores and frugi-
vores based on their diets reported in the Handbook of the Mammals of the World (Wilson 
et al. 2019).

Results

Current potential range size and the spatial pattern of species richness

The mean AUC value of the distribution models was 0.77 ± 10.101 (mean ± SD), with 
a value greater than 0.7 for 62 (76%) of the 81 bat species modeled, indicating that most 
models performed well. Due to the similarity in general patterns observed between includ-
ing and excluding predictions from models with an AUC lower than 0.7, for both range size 
and species richness changes, we present the results below with all 81 species included. 
The results excluding the lower-AUC species are provided in the Supplementary Materi-
als (Figs. S5–S7). Although the contributions of predictor variables in the model varied 

Fig. 3  Individual and interactive effects of climate and land-cover changes on the range size of bat spe-
cies in Vietnam under the moderate emission scenario. The bars in a–c  show the predicted loss and gain 
of range size by the 2050s for the species under both changes (a), climate change only (b) and land-cover 
change only (c). The brown bars drawn from the current range size toward left indicate the predicted loss 
of range size, while the blue bars toward right indicate the predicted gain of range size. The species are 
ordered by their current range size within Vietnam. The species names are shown in different colors on the 
right to indicate different types of interactions between the two environmental changes affecting species’ 
range size. The majority type among the predictions under 10 GCMs’ projections is shown. The bar charts 
in d–f show the percentage of species in each of four levels of predicted changes in range size. The bars in 
d  and e  indicate medians of the predictions under 10 GCMs’ projections, and the error bars indicate the 
minimum and maximum values. The bar chart in g shows the percentage of species whose range size was 
affected by different types of interactions between climate and land-cover changes. The bars indicate medi-
ans of the predictions under 10 GCMs’ projections, and the error bars indicate the minimum and maximum 
values. The interaction types are negative synergistic (−S), positive antagonistic (+A), additive (AD), nega-
tive antagonistic (−A), and positive synergistic (+S)

▸
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among species, the mean temperature of the coldest quarter was generally the most impor-
tant determinant of bat species distributions, followed by the mean diurnal temperature 
range, the precipitation of the coldest quarter and the forest cover (Fig. S8). The current 
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distributional ranges of the 81 species were estimated to exhibit significant variation in 
size, ranging from 4 to 297,545  km2 within Vietnam (Fig. 3). We note that species with 
small distributional range size within Vietnam are not range-restricted species, but rather 
those with ranges primarily located outside Vietnam. The results also showed that bat rich-
ness was high in the forests and grasslands in northern Vietnam and the Central Highlands, 
while low in the farmlands and urban areas in the Red River and Mekong River deltas and 
along the eastern coast (Fig. 1a, b).

Individual and combined effects of climate and land cover changes

Our models revealed profound negative effects of future climate and land-cover changes 
on the potential range size of the bat species in Vietnam, with significant interspecific vari-
ation (Figs.  3 and S9). Around two-thirds of the bat species in Vietnam were predicted 
to lose parts or all of their potential range by the 2050s resulting from projected climate 
change alone under both moderate (Fig. 3b, e) and extreme emission scenarios (Fig. S9b, 
e). Land-cover change alone would also cause a range contraction in more than 80% of 
the species (i.e. 81% and 84% under the two scenarios, respectively; Figs. 3c, f, S9c, f). 
Although more species would suffer from land-cover change than from climate change, 
climate change would generally cause stronger negative effects. About 26% and 30% of 
the species were predicted to face a > 30% change in their range size due to climate change 
under the two scenarios, respectively (Figs.  3e and S9e), but only 1% and 10% of the 
species due to land-cover change (Figs.  3f and S9f). When both environmental changes 
occurred, our models showed even more negative effects. More than three-fourths (76%) 
of the species would have a range contraction in Vietnam by the 2050s, with 41% and 45% 
of the species losing > 30% of their potential range under the two scenarios, respectively 
(Figs. 3a, d, S9a, d).

The predicted changes in the species’ potential ranges could also lead to significant 
changes in the bat species richness pattern in Vietnam (Figs. 4 and S10). Under the two 
emission scenarios, climate change alone was predicted to cause richness loss in 65% and 
66% of the country and gain in 26% and 28%, respectively by the 2050s (Figs. 4f and S10f). 
In contrast, land-cover change would result predominantly in the loss of species richness, 
which occurred for 33% of land area. (Figs. 4 g and S10g). When both changes occurred 
simultaneously, our models predicted an even larger decrease in species richness. Around 
72% and 74% of the country would lose species richness by the 2050s under the two sce-
narios, respectively (Figs. 4e and S10e), and 25% and 33% of the land would experience 
a loss of more than 30%. Most areas in northern and southern Vietnam were predicted to 
have the highest percent loss in richness, while some areas in Central Highlands and along 
the eastern coast may gain richness (Figs. 4a and S10a).

Interactive effects of climate and land‑cover changes

Our results showed that the interactions between future climate and land-cover changes 
would exacerbate the impacts on both potential range size of individual bat species and the 
species richness pattern across Vietnam. Under both changes, the models predicted that 
the interactions would negatively affect the potential range size of about two-thirds of the 
bat species by either enhancing the negative effect (−S in Figs. 3g and S9g) or mitigating 
the positive effect (+A in Figs.  3g and S9g) of individual environmental changes. Only 
about one-third of the species would benefit from the interactions due to either mitigated 
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negative effects (−A) or enhanced positive effects (+S). The effects of the two environmen-
tal changes on species richness were predicted to exhibit synergistic, antagonistic, or addi-
tive interactions within areas of approximately equal size (Figs. 4h and S10h). However, 
the interactions would be more likely to cause species richness loss by enhancing negative 
effects (−S) or mitigating positive effects (+A) of individual environmental changes rather 
than to cause richness gain by enhancing positive (+S) or mitigating negative individual 
effects (−A in Figs. 4h and S10h). In particular, the negative effect of climate and land-
cover changes in many areas in northern and southern Vietnam would be enhanced and the 
positive effect of climate change in the Red River Delta would be mitigated (Figs. 4b–d and 
S10b–d). The predominant negative outcomes of the interactions on both potential range 
size and species richness pattern highlights the importance of considering the interactive 
effects of the two environmental changes to fully understand their impacts.

Fig. 4  Individual and interactive effects of climate and land-cover changes on species richness of bats in 
Vietnam under the moderate emission scenario. The maps in a–c show the predicted changes in species 
richness by the 2050s in five categories under both changes (a), climate change only (b) and land-cover 
change only (c). The change category for each 1  km2 grid cell was determined by the median of the predic-
tions under 10 GCMs’ projections. The bar charts in e–g show the percentage of land area in Vietnam in 
each of the change categories under different combinations of environmental changes. The bars in e and f 
indicate medians of the predictions under 10 GCMs’ projections, and the error bars indicate the minimum 
and maximum values. The map in d shows the majority type of interactions between climate and land-cover 
changes affecting species richness among the predictions under 10 GCMs’ projections. The bar chart in h 
shows the percentage of the land area with both climate and land-cover changes where the species rich-
ness was affected by different types of interactions. The bars indicate medians of the predictions under 10 
GCMs’ projections, and the error bars indicate the minimum and maximum values. See the legend of Fig. 3 
for the symbols of interaction types
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Variations among functional guilds of bats

The comparisons of the changes in potential range size and species richness among functional 
guilds of bats showed that future climate and land-cover changes and their interactions would 
have different effects among the guilds. Under both environmental changes, more than 88% 
and 92% of forest specialists and about 71% and 70% of habitat generalists would experience 
a range contraction under the two emission scenarios, respectively (Figs. 5a, e and S11a, e). 
The difference was due to stronger negative effects of both environmental changes on forest 
specialists, which would be further enhanced by the interactions (Figs.  5a–h and S11a–h). 
Larger areas in Vietnam would face richness loss in forest specialists than in habitat general-
ists (Figs. 6a, e, and S12a, e), mainly because of stronger negative effects of climate change on 
forest specialists (Figs. 6b, f and S12b, f).

Comparisons between the dietary guilds showed that climate change would cause stronger 
negative effects on the potential range size of insectivores than on that of frugivores (Figs. 5j, 
n and S11j, n). In addition, the negative effects on insectivores would be mainly enhanced by 
the interactions of the two environmental changes (more species in −S than in −A; Figs. 5l 
and S11l), while those on frugivores would be mostly mitigated (fewer species in −S than 
in −A; Figs. 5p and S11p). The two environmental changes would also cause substantially 
stronger negative effects on the richness of insectivores than on that of frugivores. Almost the 
entire Vietnam would face richness loss in insectivorous bats, while about 24% and 26% of the 
land area would have more frugivorous bats by the 2050s under the two emission scenarios, 
respectively (Figs. 6i, m, S12i, m). The difference resulted from more negative effects of the 
individual environmental changes, especially climate change, as well as more negative interac-
tions on insectivores (Figs. 6i–p and S12i–p).

The effect of the two environmental changes on the potential range size would be simi-
lar between cave-roosting and non-cave-roosting bats (Figs. 5q–u and S11q–u). However, the 
effect on species richness would be more negative for cave-roosting bats. More than 74% and 
75% of the land area would face richness loss in cave-roosting species, while only 54% and 
58% would have fewer non-cave-roosting species by the 2050s under the two emission scenar-
ios, respectively (Figs. 6q, u and S12q, u). The difference resulted from more negative effects 
of climate change and its more negative interactions with land-cover change on cave-roosting 
bats (Figs. 6q–x and S12q–x).

Fig. 5  Individual and interactive effects of climate and land-cover changes on the range size of bat species 
in different functional guilds under the moderate emission scenario. The bar charts in different rows are for 
different guilds, including forest specialists (a–d), habitat generalists (e–h), insectivorous bats (i–l), frugivo-
rous bats (m–p), cave-roosting bats (q–t), and non-cave-roosting bats (u–x). The bar charts in the first three 
columns show the percentage of the species in different levels of predicted changes in range size under 
both changes, climate change only and land-cover change only, respectively. For the predictions under both 
changes and climate change only, the bars indicate the medians of the predictions under 10 GCMs’ projec-
tions, and the error bars indicate the minimum and maximum values. The bar charts in the fourth column 
show the percentage of species whose range size was affected by different types of interactions. The bars 
indicate medians of the predictions under 10 GCMs’ projections, and the error bars indicate the minimum 
and maximum values. See the legend of Fig. 3 for the symbols of interaction types

▸
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Discussion

This study showed that projected future climate and land-cover changes would have pro-
found and negative impacts on the potential range size of individual bat species and species 
richness across Vietnam. Our model predictions indicated that both environmental changes 
would individually result in predominantly negative effects. When these changes occurred 
simultaneously, their interactions would exacerbate the impacts by primarily enhancing the 
negative effects or mitigating the positive effects of each change. Therefore, the combined 
effects of climate and land-cover changes were predicted to lead to range contractions in 
two-thirds of the species and a loss of species richness in almost three-fourths of the land 
area in Vietnam by the 2050s. These negative impacts would be particularly significant for 
forest specialists, insectivores and cave-roosting species, as well as in the forests and grass-
lands of northern and southern Vietnam. The considerable variations in bats’ responses, 
especially to climate change, among different species and functional guilds, as well as 
across geographic areas, pose a challenge for conservation efforts. It is clear that a “one-
size-fits-all” strategy is not applicable in this context. However, the species-specific and 
spatially-explicit impacts predicted by this study provide valuable insights that allow for 
targeting more vulnerable species and geographic areas, as well as developing strategies to 
address more manageable and less uncertain impacts. Therefore, incorporating not only the 
individual effects of climate and land-cover changes but also their interactive effects into 
impact assessment and conservation planning for bats is of utmost importance.

Differences in the individual effect of climate and land‑cover changes

Consistent with previous studies (Bailey et al. 2017; Hughes et al. 2012; Zamora-Gutierrez 
et al. 2018), our findings demonstrate generally negative impacts of climate and land-cover 
changes on bats. However, our model predictions revealed that the effects of the two envi-
ronmental changes differ in both direction and magnitude. While both changes were pre-
dicted to have an overall negative effect on bats, approximately one-third of the species 
would experience a potential range expansion, and one-fourth of the land area in Vietnam 
would gain species richness as a result of projected climate change (Figs. 3 and 4). In con-
trast, the effects of land-cover change would predominantly be negative.

Previous studies have also reported mixed impacts of climate change on bats 
(Diengdoh et  al. 2022; Thapa et  al. 2021) and other taxa (i.e. Currie 2001; Hamann 
and Wang 2006; Iverson and Prasad 2001), with some species experiencing nega-
tive effects while others showing positive responses. This variation is likely due to 

Fig. 6  Individual and interactive effects of climate and land-cover changes on the species richness in differ-
ent functional guilds under the moderate emission scenario. The bar charts in different rows are shown for 
different guilds, including forest specialists (a–d), habitat generalists (e–h), insectivorous bats (i–l), frugiv-
orous bats (m–p), cave-roosting bats (q–t), and non-cave-roosting bats (u–x). The bar charts in the first 
three columns show the percentage of the land area in Vietnam predicted to experience each of five levels 
of changes in species richness under both climate and land-cover changes, climate change only and land-
cover change only, respectively. For the predictions under both changes and climate change only, the bars 
indicate medians of the predictions under 10 GCMs’ projections, and the error bars indicate the minimum 
and maximum values. The bar charts in the fourth column show the percentage of the land area with both 
climate and land-cover changes where species richness was affected by different types of interactions. The 
bars indicate medians of the predictions under 10 GCMs’ projections, and the error bars indicate the mini-
mum and maximum values. See the legend of Fig. 3 for the symbols of interaction types

▸
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interspecific differences in climate preference or tolerance (Rebelo et al. 2010). In con-
trast, forests are critical habitat for bats, providing shelter, foraging opportunities, and 
reproductive spaces (Hayes et al. 2007). In this study, all 81 modeled species use forest 
as at least part of their primary habitat, and forest cover emerged as one of the most 
important factors influencing bat distributions across species (Fig. S8). Given that for-
est cover in Vietnam is projected to decrease from 39.1% to 2010 to 26% and 23.2% in 
2050 under moderate and extreme emission scenarios, respectively (Fig. S13), the pre-
dominantly negative effect of land-cover change is not surprising (Figs. 3 and 4). How-
ever, it is important to note that the difference in the direction of effects does not nec-
essarily imply that land-cover change would have a more negative impact on individual 
bat species compared to climate change. Consistent with other studies (Lemoine et al. 
2007; Newbold 2018), we found that for species negatively affected by climate change, 
the effect would be stronger than that resulting from land-cover change (Fig.  3b, c). 
Furthermore, while climate change is anticipated to impact nearly the entire country, 
land-cover change would only affect approximately one-third of the country. Therefore, 
climate change is expected to have broader impacts over a larger area compared to 
land-cover change.

Interactive effects of climate and land‑cover changes

Our study provides the first evidence that the interactions between climate and land-
cover changes would have significant impacts on bats’ distributions and richness pat-
terns, consistent with previous findings on other taxa (Mantyka-Pringle et  al. 2012; 
Santos et al. 2021). However, unlike previous studies that typically show a dominance 
of synergistic interactions between the two environmental changes (Cote et  al. 2016; 
Segan et al. 2016), we found that antagonistic interactions would also be common or 
even more prevalent than synergistic interactions in their effects on bats’ potential 
range size (Fig.  3g). The inconsistent findings may be due to variations in species’ 
responses among taxa (Mantyka-Pringle et al. 2012), geographic regions (Segan et al. 
2016), or a combination of both (Mantyka-Pringle et al. 2015). However, the main rea-
son could be the different approaches used to classify interaction types.

Many previous studies simply classified an interaction as synergistic if the com-
bined effect was more negative than the sum of (or even one of) the individual effects 
(e.g., Marshall et al. 2018; Piessens et al. 2009; Radinger et al. 2016), assuming that 
the individual effects were negative. If we had used that classification approach (i.e., 
classifying −S and +A as synergistic and +S and −A as antagonistic effects), we 
would have observed a dominance of synergistic effects (Fig. 3 g and 4 h). However, 
since the effects of the environmental changes, particularly climate change, on bio-
diversity are not always negative, as demonstrated by this and other studies (Currie 
2001; Hamann and Wang 2006; Thapa et  al. 2021), we believe that examining inter-
active effects with explicitly accounting for the direction of individual effects (Pig-
gott et al. 2015) is a more appropriate and more informative approach. One example is 
the predicted changes in species richness in northern Vietnam (Fig. 4), where the two 
environmental changes would synergistically enhance their negative individual effects 
while antagonistically mitigate positive effects, leading to an overall negative inter-
active effect. Without accounting for the effect direction, previous approaches would 
incorrectly classify the antagonistic interactions as synergistic ones.
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Different responses of functional guilds to the environmental changes

Our findings indicate that the impacts of climate and land-cover changes vary among 
functional guilds. Consistent with previous studies on bats (Gonçalves et al. 2021) and 
other taxa (Roberts et  al. 2011), we found that habitat specialists are more sensitive 
to environmental changes compared to generalists due to their narrower niche (New-
bold et al. 2018; Staude et al. 2020) and/or stronger association with specific habitat or 
resources (Novella et al. 2022). The higher vulnerability of forest specialists to climate 
and land-cover changes, as observed in this study, is likely attributable to their narrower 
climatic niche and their dependence on diminishing forests in Vietnam, respectively. 
The negative individual effects on forest specialists were predicted to be further ampli-
fied when the two changes occurred simultaneously. In contrast, the interactive effects 
would be less negative on habitat generalists. This is likely because the climate was pro-
jected to become less suitable for most bats in forests and grasslands, while becoming 
more suitable in farmlands and built-up areas in the future (Fig. 4b).

Similarly, we also found that insectivorous bats would be more vulnerable than frugi-
vores to the two environmental changes, especially to their interactive effects. The nega-
tive individual effects on insectivores would mostly be enhanced, while those on frugivores 
would be mitigated. Insectivorous bats, especially aerial hawking species, are recognized 
to be highly sensitive to climate change, because they are dependent on food resources 
that are spatially and temporally variable and are sensitive to temperature changes (Sher-
win et al. 2013). Furthermore, morphological differences between the two dietary guilds 
could be another reason for their different responses to environmental changes. Old-world 
insectivorous bats usually have a smaller body size and lower wing loading than old-world 
frugivorous bats (Norberg 1994; Wilson et  al. 2019). Although the body size and wing 
loading of a species are generally positively correlated with range size (Gaston and Black-
burn 1996; Jenkins 1981), our results did not show an association between the range size 
of the species and its predicted changes (Fig. 3). However, smaller species are less toler-
ant to starvation, making them more sensitive to changes in habitat or food availability 
(Blackburn and Hawkins 2004). Additionally, species with lower wing loading tend to have 
more limited dispersal ability, which could make them vulnerable to climate change due 
to reduced capacity to track suitable environments (Varzinczak 2020). Finally, it is also 
possible that the different responses are associated with niche breadth, as 11 out of the 12 
frugivores studied are habitat generalists (Table S2).

Our results suggested that the choice of roosting site can influence bats’ responses to 
the two environmental changes, specifically in terms of changes in species richness across 
space, but not in species range size (Figs.  5q–x and 6q–x). This implies that the differ-
ence observed could be related to range shifts. Under projected climate change, both cave-
roosting and non-cave-roosting species were predicted to increase in species richness in the 
farmlands along the coast from the Red River Delta to the North Central Coast. However, 
the increase was more pronounced for non-cave-roosting species (Fig. S14). Furthermore, 
while most areas in the Northeast and Northwest were predicted to experience a loss of 
cave-roosting species, some of these areas would see an increase in non-cave-roosting spe-
cies in the future (Fig. S14). This pattern may be attributed to the potential for non-cave-
roosting species to shift their ranges in response to suitable climates, whereas cave-roosting 
species are limited to the areas with suitable caves (Scheel et al. 1996). It is also possible 
that non-cave-roosting species are more sensitive to climate change as they are less insu-
lated from climatic fluctuations compared to cave-roosting bats (Turbill 2008).
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While further research is necessary to fully understand the mechanisms driving the dif-
ferential responses of functional guilds to the environmental changes, these differences can 
have significant implications for the ecological functions and ecosystem services provided 
by bats in Vietnam. For example, the high vulnerability of insectivorous bats may lead to a 
decline in the pest suppression services they provide in the future. Insectivorous bats have 
been recognized for their crucial role in suppressing pests in agricultural systems, making 
essential economic contributions both locally and globally (Boyles et al. 2013). Given that 
agriculture is a vital sector in Vietnam’s economy (Duong 2020), the predicted loss of spe-
cies richness among insectivorous bats in farmland areas, particularly in the Mekong River 
Delta (Fig. S14), could result in significant agricultural and economic losses for the coun-
try. This highlights the urgent need for conservation strategies to mitigate these potential 
impacts and preserve the valuable services provided by bats.

Conservation implications

Our results emphasize the urgent need to protect bats in Vietnam, as the majority of species 
are likely to experience negative impacts from climate and land-cover changes by the mid-
century. It is important to note that our predictions may underestimate the severity of the 
impacts, because our models did not consider other threats to bats, such as hunting or colli-
sions with wind turbines (Arnett et al. 2016; Son et al. 2009), and assumed that bats would 
fully occupy all suitable habitats in the future.

The complex and diverse interactions between climate and land-cover changes revealed 
in this study highlight the necessity of integrating both individual and interactive effects 
into bat conservation planning in Vietnam. Particularly, the substantial variations in the 
effects among species and across the country underscore the importance of species-specific 
and spatially explicit information to develop effective conservation strategies. For exam-
ple, conservation efforts may yield greater cost-effectiveness when focused on species or 
regions affected by synergistic interactions between the two environmental changes, rather 
than those influenced by antagonistic interactions (Cote et al. 2016). Synergistic interac-
tions allow conservation actions aimed at mitigating the negative effects (or enhancing the 
positive effects) of one change to also address the negative effects (or enhance the posi-
tive effects) of the interactions. Synergistic interactions also allow resources allocated to 
manage changes that are relatively manageable and predictable (i.e., with low uncertainty; 
Ghedini et al. 2013; Strain et al. 2015). In the context of bat conservation in Vietnam, halt-
ing land-cover change, particularly deforestation, is expected to be a more cost-effective 
strategy compared to mitigating the impacts of climate change. This is because land-cover 
change has more consistent effects across species and space, and affects smaller regions 
(around one-third of the country). Addressing land-cover change can also be facilitated 
through conventional and well-established approaches such as establishing protected areas 
and implementing payments for ecosystem services (Geldmann et al. 2013; Tuanmu et al. 
2016). Implementing this strategy would be particularly effective in northern Vietnam, 
where negative effects of land-cover change and negative synergistic interactions between 
the two environmental changes are expected to be more dominant (Fig. 4c and d). Impor-
tantly, only a small portion of this area is currently protected (Fig. 1b), underscoring the 
significance of managing land-cover changes outside protected areas for effective bat 
conservation.

For species primarily impacted by climate change or antagonistic interactions between 
climate and land-cover changes, addressing land-cover change alone may be insufficient 
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or not cost-effective to protect them. In such cases, an alternative strategy would be to 
enhance their adaptation to expected climate change. Although habitat connectivity was 
not explicitly included in our models, enhancing habitat connectivity has proven to be 
effective in assisting species in adapting to climate change by allowing them to track suit-
able climates or maintain metapopulation persistence (Heller and Zavaleta 2009). Consid-
ering the projected increase in climatic suitability for bat species along the eastern coast 
and in the Central Highlands (Fig. 4b), it becomes crucial to prioritize habitat connectivity 
improvement through habitat restoration and corridor establishment within and around this 
region. The Central Highlands, which is expected to sustain high bat diversity in the future 
(Fig. 1c), could potentially serve as a refuge for bats. Establishing corridors that connect 
the Central Highlands with habitats in other regions would be essential. This strategy holds 
particular significance for the conservation of forest specialist bats and insectivorous bats, 
as their richness patterns are anticipated to be significantly and adversely affected by cli-
mate change (Fig. S14). Regarding cave-roosting bats, whose distributions are limited to 
regions with suitable caves, the priority should be placed on protecting these caves from 
human disturbances and maintaining or enhancing habitat connectivity among them (Furey 
and Racey 2016).

It is important to note that before implementing specific conservation actions, further 
studies incorporating information on the population status, species composition of bats, 
habitat characteristics, and socioeconomic conditions of local communities in those areas 
are necessary. Additionally, considering the uncertainties associated with future predic-
tions and the assumptions underlying species distribution modeling (Beale and Lennon 
2012; Carvalho et  al. 2011), it is imperative to adopt adaptive conservation approaches, 
which involve continuously evaluating and adjusting current strategies based on new infor-
mation and knowledge (Lawler 2009).

Conclusions

Climate and land-cover changes are among the major threats for many taxa (Newbold et al. 
2015; Parmesan 2006;). However, the two changes are seldom examined simultaneously 
and information on their interactive effects is rarely included in conservation planning 
(Cote et al. 2016; Oliver and Morecroft 2014). We presented the first study on how pro-
jected climate and land-cover changes may interactively and profoundly reshape bat spe-
cies distributions and species richness patterns. We also highlighted the importance of the 
species-specific and spatial-explicit information on the individual and interactive effects of 
the two environmental changes in conservation planning and provided specific suggestions 
for bat conservation in Vietnam. Multiple environmental changes are affecting and will 
continue to affect many other taxa interactively (Mantyka et al. 2012; Radinger et al. 2016). 
Understanding the interactions and examining the interactive effects of multiple stresses 
would be a critical step in biodiversity conservation in the face of global changes. The 
findings of this study, along with the developed approaches, particularly the integration of 
species distribution modeling and the directional interaction classification system (Piggott 
et al. 2015), have broader applicability in the development of conservation strategies for 
other taxa and biodiversity as a whole.
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