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  Abstract
The changes of agriculture led to deep transformations of arable plant diversity. The fea-
tures of arable plant communities are determined by many anthropic, environmental, and 
geographic drivers. Understanding the relative importance of such drivers is essential for 
conservation and restoration purposes. In this work, we assessed the effects of agronomic, 
climatic, geographic, and landscape features on α-diversity, β-diversity, and composition 
of winter arable plant communities across continental Italy, a European hotspot of ar-
able plant diversity. Using redundancy analysis and variation partitioning, we observe 
that the selected groups of variables explained a restrained to moderate proportion of the 
variation in diversity and composition, depending on the response (5.5–23.5%). We con-
firm previous evidence that climate and geographic location stand out in determining the 
features of arable plant communities in the country, followed by the type of rural area. 
The surrounding landscape has a subordinate influence but affects both α and β-diversity. 
The α-diversity is higher in traditional agricultural areas and in landscapes rich in woody 
vegetation, while it is lower in warmer areas. Species composition is determined by cli-
mate, latitude, and the type of rural area, but not by landscape. Total β-diversity is mainly 
explained by climate and latitude, and subordinately by the agricultural context and land-
scape. Its components are explained by latitude and climate (replacement) and agricultural 
context and climate (richness difference). The local contribution to β-diversity of single 
sites suggested a good conservation status of the studied communities. We discuss the 
implications of our findings in the light of conservation and restoration of vanishing ar-
able plant communities.

Keywords  α-diversity · Arable weed · β-diversity · Biodiversity pattern · Landscape 
ecology · Variation partitioning
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Introduction

Stopping biodiversity loss is one of the main challenges of modern times (Díaz et al. 2019). 
Agriculture is a major threat to nature conservation, but ancient low-input agricultural sys-
tems are also important for biodiversity (Wright et al. 2012). In agricultural landscapes, 
arable plants are essential for biodiversity conservation and they provide environmental and 
agronomic services (Marshall et al. 2003; Adeux et al. 2019). Such species are adapted to 
recurrent tillage, since developing among arable crops (Holzner 1978). Due to the intensi-
fication of agriculture, they are declining in many areas, especially in Europe (Storkey et 
al. 2012; Meyer et al. 2013; Richner et al. 2015; Fanfarillo et al. 2019a). Thus, their pres-
ervation is relevant for biodiversity conservation, particularly in the Old World, where they 
originated or anciently established (Türe and Böcük 2008; Nowak et al. 2014; Albrecht et al. 
2016; Janssen et al. 2016; Chytrý et al. 2020). At middle-high latitudes, two broad ecologi-
cal groups of arable plants are detectable: those having a winter-spring life cycle/phenol-
ogy and those having a summer-autumn life cycle/phenology, respectively developing in 
winter and summer crops (Holzner 1978). Many winter arable plants are of conservation 
concern in Europe, due to their specialization and vulnerability to agricultural intensifica-
tion (Storkey et al. 2012; Richner et al. 2015). Often, their conservation is totally dependent 
on the maintenance of low-input cereal cultivation, contrarily to most summer arable plants 
that colonize many disturbed habitats (Fanfarillo et al. 2020a, 2022). European traditional 
agricultural areas are hotspots of arable plant diversity, with Italy hosting the best-preserved 
arable habitats, especially in hills and mountains of the peninsula (Janssen et al. 2016; Fan-
farillo et al. 2019b, 2020a, b; Hurford et al. 2020). However, despite several highly special-
ist arable plants are in the Red List of the Italian flora, arable plant diversity was neglected 
in the definition of Italian important plant areas (Blasi et al. 2011; Orsenigo et al. 2021).

The determinants of the features of arable plant communities include agronomic, cli-
matic, edaphic, and landscape factors. Among management factors, the current and preced-
ing crop type significantly affect species composition. Climate and geographic location are 
drivers of major species turnovers as well, especially at broad scales (Fried et al. 2008; 
Lososová et al. 2004; Šilc et al. 2009; Nowak et al. 2015; Fanfarillo et al. 2020b). Land-
scape-scale processes affect arable plant communities at the local scale, in the order of 
hundreds of meters from arable fields (Petit et al. 2011). However, landscape has different 
and contrasting effects depending on which predictive and response variables are assessed 
(Gaba et al. 2010; Lüscher et al. 2014; Petit et al. 2016; Metcalfe et al. 2019). Due to the 
number of different drivers involved, the need to rely on a multifactor approach to explain 
the variation of arable plant diversity is evident.

Measuring biodiversity is one of the main issues of community ecology. Besides species 
richness at a given site (α-diversity) and the total species richness of an area (γ-diversity), 
studying the organization and variation of communities across space and time (β-diversity) 
is important to understand the processes that generate and maintain biodiversity in eco-
systems, with relevant implications for biodiversity conservation (Legendre and De Cáce-
res 2013; Ruhí et al. 2017). β-diversity is usually measured through dissimilarity indices, 
thus ranging between 0 and 1. It can be decomposed into replacement (species turnover) 
and richness difference (species gain and loss). Measuring and interpreting these two com-
ponents allows understanding the drivers of differentiation between communities across 
a study area since they can be analyzed using explanatory variables (Legendre 2014). As 
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regards arable plant communities, patterns of β-diversity vary considerably across years, 
seasons, regions, landscapes, crops, and types of agricultural management (Lososová et 
al. 2004; de la Fuente et al. 2006; Armengot et al. 2012; Alignier and Baudry 2016). While 
several works investigated the patterns of total β-diversity in arable plant communities, its 
replacement and richness difference components are scarcely studied. Alignier and Baudry 
(2016) assessed them in field margins at a local scale in France, along a temporal gradient, 
and showed that changes in β-diversity were dominated by replacement.

Due to its considerable decline, several conservation strategies for arable plant diversity 
were proposed in Europe. These include “land sharing” options, in which conservation is 
carried out into the same fields dedicated to crop production, and “land sparing” options, 
with the creation of fields dedicated to conservation. These conservation measures might 
both be successful (Haggar et al. 2021). Low-intensity management is effective in sus-
taining arable plant diversity, as well as land sparing options like conservation headlands, 
uncropped margins, wildflower strips, and arable reserves (Albrecht et al. 2016; Wietzke et 
al. 2020). Evidence suggests that arable plant diversity should be preserved at the field scale 
(Gonthier et al. 2014). Field edges seem to be a good refuge for arable plants, so that the 
maintenance of favorable conditions on field margins can be a good option for their con-
servation (Fried et al. 2009). However, typical arable plants can be outcompeted by species 
from surrounding habitats on field margins (Metcalfe et al. 2019). In spite of the concerns 
by scientists about preserving arable plant diversity, there is still a big regulatory gap for 
its conservation in EU policies. In the Annex I of the Habitats Directive, no anthropogenic 
habitat is present, inconsistently with the fact that extensively managed arable land (EUNIS 
habitat I1.3) is a habitat Red-listed as “Endangered” (Janssen et al. 2016).

Despite not all the arable plants need conservation, preserving rare arable plants alone 
might not be effective. For instance, there is evidence that some rare arable species share 
a lot of pollinators with more common species, the latter being the primary target of such 
pollinators (Gibson et al. 2006). Moreover, rare and threatened arable plants are known to 
co-occur under favorable conditions (Fanfarillo et al. 2020c). This implies that conservation 
measures should target whole communities, rather than single species.

Investigating the influence of different sets of variables on biotic communities is cru-
cial to understand community variation across time and space, and to define conservation 
strategies (Maccherini et al. 2011; Barbato et al. 2019; Giallonardo et al. 2019; Hu et al. 
2022). Environmental and geographic features are pivotal for the survival of arable plant 
species (Walker et al. 2007; Fanfarillo et al. 2020b). Furthermore, species reintroduction 
might be necessary to restore typical arable plant communities in areas with impoverished 
seed banks, where they may not spontaneously recover once they have disappeared, even 
if favorable conditions are established (Hyvönen 2007; Wietzke et al. 2020). Thus, under-
standing the importance of different factors in determining community features is essential 
for a correct, site-specific definition of both conservation and restoration strategies.

So far, no study investigated the joint effects of different anthropic and natural groups of 
factors on arable plant communities in a conservation hotspot. To provide a first, thorough 
understanding of the patterns of such biodiversity and of their drivers at such scale, in this 
work we selected four sets of agronomic, climatic, geographic, and landscape variables and 
investigated their effects on 105 recently surveyed arable plant communities of Italy. We 
assessed the effects of these sets of variables on α-diversity (species richness), β-diversity 
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and its components (replacement and richness difference), and species composition, using 
redundancy analysis and variation partitioning approaches.

Materials and methods

Study area and data collection

The study area stretches for about 1,000 km across mainland Italy (Fig. 1). Bioclimate is 
either Mediterranean or Temperate. The Mediterranean bioclimate is distinguished by sum-
mer drought and it is present along coasts and at lower elevations and latitudes. The Temper-
ate bioclimate is characterized by absent or reduced summer drought, and it is present in the 
north and in inland and upland areas. Mean annual temperatures range between 10 and 19°C 
and mean annual precipitations vary between 500 and 2000 mm (Pesaresi et al. 2017). Geo-
logical substrates are mainly sedimentary (limestone, flysch, dolomite), with some volcanic 
and metamorphic areas along the western Peninsula and recent alluvial deposits in lowlands 
(Bosellini et al. 2017). The most frequent soil types are Cambisols, Luvisols, Regosols, and 
Phaeozems (Costantini et al. 2013).

Ahead of sampling, we searched for a gradient across Italy representing as much as pos-
sible the relevant geographic, environmental, and agricultural diversity of the country. We 
could detect a proper gradient going from the western part of the Po Plain south-eastwards 
all along the Italian Peninsula. Our research targeted the arable plant communities of winter-
annual crops. Given the impossibility to check a priori for the presence of the target crops 
and for the accessibility of sites, we haphazardly selected the fields right during the surveys.

In the springs of 2018 and 2019, we carried out a plot-based survey on arable plant 
communities of winter cereals (Avena sativa, Hordeum vulgare, Lolium multiflorum, Triti-
cum aestivum, T. turgidum subsp. durum), winter or spring legumes (Cicer arietinum, 
Lathyrus oleraceus, Medicago sativa, Trifolium alexandrinum, T. squarrosum, Trigonella 
foenum-graecum, Vicia faba, V. sativa) and winter fodder mixes (cereals, legumes, and 
cereal-legume mixtures) across mainland Italy. In the study area, such crop types are allied 
regarding their arable flora, since having all a winter-spring seasonality (Fanfarillo et al. 
2020a). We surveyed 149 winter arable fields, regularly distributed across the study area 
and broadly covering the diversity of agricultural managements and environmental condi-
tions of mainland Italy. We excluded the Alps, where the target crops have minor importance 
compared to the rest of the country. The surveyed fields are located between 45.0–39.0°N 
and 7.5–17.0°E, at elevations between 2 and 1,100 m a.s.l. (Fig. 1). In each field, we placed 
a plot of 1 × 16 m (149 total plots). Each plot was oriented along seed-drill lines and located 
in the inner part (5–10 m from the edge, depending on field size) to avoid edge effects. 
The plot size was selected according to Chytrý and Otýpková (2003). The plot shape was 
selected to maximize the number of recorded species and increase the ease of movement in 
the field (Güler et al. 2016; Fanfarillo et al. 2020b). In each plot, we recorded all the occur-
ring vascular plant taxa (including crop species) and attributed Braun-Blanquet cover values 
(Braun-Blanquet 1964). Species were identified according to Pignatti et al. (2017–2019). 
Taxonomic nomenclature follows Bartolucci et al. (2018) for native species, Galasso et al. 
(2018) for non-native species, and following updates (Portal to the flora of Italy 2022; avail-
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able at http://dryades.units.it/floritaly/index.php). European rare/threatened arable plant 
species are classified according to Storkey et al. (2012).

Since the surrounding landscape influences arable plant communities at the scale of 
hundreds of meters (Gaba et al. 2010; Petit et al. 2011), we assessed landscape features 
within a 400 m radius circle around each sampling plot. In case of overlapping between 

Fig. 1  Distribution of the surveyed fields in Italy (red dots); the black lines are the boundaries of Italian 
administrative regions
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the buffers, only the first plot in order of sampling was selected. Thus, we selected 105 
plots out of 149 (88 winter cereals, 10 forage mixes, 7 legumes). Land use types were 
identified through photointerpretation from Landsat/Copernicus satellite and Street View 
(https://www.google.it/maps), using the most detailed scale available (1:500), a minimum 
mapping unit of 10 m2, and the most recent images for each site. The landscape components 
were classified into seven land use categories: (1) water bodies; (2) woods, shrublands, 
other woody or functionally allied vegetation types (including garrigues and reed beds), and 
isolated trees and shrubs (hereafter “woody vegetation”); (3) open fields (including arable 
land, pastures, and meadows); (4) permanent crops (olive groves, fruit orchards, poplar 
plantations, vineyards, etc.); (5) artificial surfaces; (6) artificial vegetation (gardens, parks); 
(7) bare rock and natural erosion surfaces (Badlands, gravels, and rocky outcrops) (Fig. 2). 
After converting the vectorial file in a raster format, the abundance of each land use type 
(m2) and the Shannon index were calculated as measures of landscape heterogeneity for 
each buffer, using the QGIS plugin LecoS version 3.0.0  (Jung 2016). All the landscape 
analyses were carried out in QGIS v. 3.20 (QGIS Development Team 2021; available at 
https://www.qgis.org/en/site/).

Retrievement of explanatory variables

We compiled a dataset including agronomic (amount of fertilizers per province; amount of 
herbicides per province; type of rural area) (ISTAT 2019; available at http://dati.istat.it/; Ital-
ian Ministry of Agriculture, Food and Forestry 2010; available at https://www.reterurale.it/
downloads/cd/PSN/Psn_21_06_2010.pdf), geographic (latitude; longitude; elevation), cli-
matic (yearly positive temperature, measured in accumulated degree days above 0 °C dur-
ing the year as a proxy of the growth season; year total precipitation; continentality index 
- Pesaresi et al. 2017), and landscape factors (abundance of each land use type; field size; 
landscape Shannon diversity) for each plot. We defined the types of rural areas according 

Fig. 2  Example of photointerpretation from satellite images in a 400 m radius buffer around a sampling 
plot (red dot): (a) vectorial format; (b) raster format
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to the National Rural Network classification. These were ordered according to a gradient of 
increasing agricultural intensification/land use intensity: (1) Rural areas with development 
problems; (2) Intermediate rural areas; (3) Rural areas with intensive and specialized agri-
culture; (4) Urban and peri-urban areas.

Selection of explanatory variables

For all the analyses, crop species were removed and species covers were converted into 
the corresponding percentage values in Turboveg (Hennekens and Schaminée 2001). All 
the analyses were carried out in R (R Core Team 2021). We selected explanatory variables 
through a two-step process. After implementing a database with all the potentially useful 
variables, we checked correlations between them. When two variables were highly corre-
lated (r ≥ -0.7 and r ≥ 0.7, Spearman test), we randomly removed one of them. The remain-
ing variables were grouped into agronomic, geographic, climatic, and landscape factors.

Within each of such groups, we further carried out a forward selection procedure of 
explanatory variables (function “forward.sel” in the package adespatial) (Dray et al. 2019). 
The “forward.sel” function performs a forward selection of predictors by permutation of 
residuals under a reduced model, for both univariate and multivariate response data. The 
procedure stops when at least one between the following parameters reaches the established 
value: (1) maximum variables to be selected (default threshold: number of plots − 1); (2) 
R2 of the model (default threshold: 0.99); (3) adjusted R2 of the model (default thresh-
old: 0.99); (4) p-value of a variable (default threshold: p = 0.05); (5) difference in the R2 
of the model with the previous step (default threshold: 0.001) (Dray et al. 2019). The vari-
ables were tested against species richness, species composition (species by site matrix with 
Hellinger transformation of percentage cover values), total β-diversity, and replacement and 
richness difference components of β-diversity. β-diversity and its components were calcu-
lated through the function “beta.div.comp” in adespatial, building three distance matrices 
(dissimilarity measure: Ruzicka index). The variables selected for at least one analysis are 
reported in Table 1.

Response variables

To assess the relative contribution of the four groups of variables in explaining the total 
variation in α-diversity, total β-diversity and its components, and species composition, we 
used a variance partitioning technique (function “varpart” in the package vegan - Oksanen 
et al. 2021). This method partitions the variation of each response variable (community data 
as a species by site matrix, or community dissimilarities expressed by total β-diversity and 
its partition in richness difference and replacement), with respect to two to four explana-
tory groups. If the response is a single vector (e.g., α-diversity), partitioning is made by 
partial regression. We tested the significance of the whole models and of the pure effects 
of the groups of variables through anova tests. The pure effects of the groups of variables 
were calculated by conditioning the effects of the other groups of variables in partial RDA 
(pRDA). To visualize the gradients of species composition in relation to the explanatory 
variables, we used Redundancy Analysis (“rda” function in vegan), assessing the signifi-
cance of the first two axes through permutation tests (function “anova.cca” in the package 
vegan, n perm = 999), and those of single variables through anova tests.
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To assess the local contribution to β-diversity of single plots and single species, we calcu-
lated the LCBD (Local Contribution to Beta Diversity – comparative indicators of the eco-
logical uniqueness of the sites) and SCBD (Species Contribution to Beta Diversity – degree 
of variation of individual species across the study area) values, respectively (Legendre and 
De Cáceres 2013). We tested the significance of LCBD values by random, independent 
permutations through the function “beta.div” in adespatial.

Results

Patterns of plant diversity

The α-diversity (range 5–35 species) was higher in the hilly and mountainous areas of the 
peninsula, with several hotspots especially in the south. The same patterns emerged based 
on rare/threatened species, meaning that species-richer communities were also richer in spe-
cies of conservation concern (Fig. 3).

The total β-diversity among plant communities was 0.45. The replacement component 
was the most important (0.39, 85.7%), while the richness difference had a subordinate role 
(0.06, 14.3%). The γ-diversity (total number of species) was of 314 taxa, the most frequent 
being Papaver rhoeas (77 plots, 73.3%), Convolvulus arvensis (57 plots, 54.3%), Lysi-
machia arvensis (54 plots, 51.4%), Lolium multiflorum (50 plots, 47.6%), and Polygonum 
aviculare agg. (50 plots, 47.6%). We detected 22 rare/threatened species (0–7 per plot), the 
most frequent of which were Legousia speculum-veneris (38 plots, 36.2%), Galium tricor-
nutum (35 plots, 33.3%), Scandix pecten-veneris (29 plots, 27.6%), Ranunculus arvensis 
(26 plots, 24.8%), and Adonis annua (25 plots, 23.8%). Among the ones ranked as the most 
threatened in Europe, there were Agrostemma githago (5th), Adonis flammea (6th), Adonis 
aestivalis (8th), Scandix pecten-veneris (9th), and Lolium temulentum (10th).

Table 1  Descriptive statistics of the variables used in at least one of the analyses (grouped into agronomic, 
geographic, climatic, and landscape factors) after the forward selection procedures on α-diversity, species 
composition, total β-diversity, replacement, and richness difference. SD = Standard deviation; CV = Coeffi-
cient of variation
Group of variables Variable Mean (min-max) SD CV
Agronomic Rural area type (land use 

intensity)
1.885 (1–4) 1.01 53.69

Geographic Latitude (m N, WGS84) 4,671,315 
(4,338,068–5,005,098)

187,604 4.02

Climatic Yearly Positive Temperature 
(Degree Days)

1,672 (1,182–2,419) 173 10.37

Year precipitation (mm) 823 (571–1507) 201 24.43
Landscape Abundance of woody vegeta-

tion (m2)
88,840 (50-323,956) 75,930 85.47

Abundance of artificial surfaces 
(m2)

47,337 (1,060-218,412) 45,093 95.26

Abundance of water surfaces 
(m2)

2,186 (0-50,550) 6,323 2.89

Field size (ha) 3.04 (0.12–24.52) 4.19 1.38
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Drivers of α-diversity, species composition, and β-diversity

Variation partitioning on α-diversity revealed that the selected variables accounted for by 
23.5% of the variability in species richness (p = 0.001). Agronomic factors (rural area type) 
accounted for by 10.7%, climatic factors (temperature) 5.1%, and landscape factors (abun-
dance of woody vegetation) 4.1% (Fig. 4a). α-diversity values decreased along the agricul-
tural intensification gradient based on the type of rural area (Fig. 5a) and with increasing 
temperature (Fig. 5b), while they increased with increasing abundance of woody vegetation 
in the landscape (Fig. 5c).

Variation partitioning on species composition revealed that the selected variables 
accounted for by 7.5% of the variation (p = 0.001). The analysis highlighted a significant 
effect of agronomic factors (rural area type), climate (temperature and precipitation), and 
latitude. On the contrary, landscape factors (abundance of artificial surfaces and abundance 
of woody vegetation) had no significant effects (Fig. 4b).

European rare and threatened species were negatively related to the abundance of arti-
ficial surfaces and positively related to the abundance of woody vegetation. Generalist 
taxa like Lysimachia arvensis and Polygonum aviculare agg. had an opposite trend. All 
the explanatory variables were statistically significant, except for the abundance of woody 
vegetation (Fig. 6).

The selected variables accounted for by 7.4% of the total β-diversity (p = 0.001), 5.5% 
of replacement (p = 0.001), and 11.6% of richness difference (p = 0.001). The 1.4% of total 
β-diversity was explained by latitude, 1.3% by climate (temperature and precipitation), 0.8% 
by landscape (field size, abundance of artificial surfaces, and abundance of water surfaces), 
and 0.5% by agronomic factors (rural area type) (Fig. 7a). The 1.8% of the replacement 
component was explained by latitude and 1% by climate (temperature and precipitation) 
(Fig. 7b). The 11.4% of the richness difference component was explained by agronomic 
factors (rural area type) and 4.1% by climate (temperature) (Fig. 7c).

Fig. 3  Total (a) and rare/threatened (b) species richness (α-diversity) across the study area

 

1 3

2063



Biodiversity and Conservation (2023) 32:2055–2075

The highest contribution to β-diversity across the study area was given by the plots with 
lower α-diversity (LCBD vs. species richness: Pearson’s cor = -0.28, p < 0.01), which were 
also poorer in rare/threatened species (LCBD vs. rare/threatened species richness: Pearson’s 
cor = -0.27, p < 0.01). Occasionally, high LCBD values resulted in plots located in ecologi-
cally peculiar areas like the Badlands of south-eastern Italy, wetlands, or high elevations 
(Fig. 8a, b).

The highest contribution to β-diversity was mostly given by the species with high fre-
quencies (SCBD vs. species % frequency: Pearson’s cor = 0.79, p < 0.001) (Table 2). These 
included both common and generalist taxa (Lolium multiflorum, Papaver rhoeas, Polygo-
num aviculare agg.) and species of conservation interest (Galium tricornutum, Ranunculus 
arvensis, Scandix pecten-veneris).

Discussion

Our study highlighted novel patterns adding key knowledge on the determinants of arable 
plant communities. All the tested groups of variables were significant in explaining differ-
ent aspects of biodiversity, especially latitude, climate, and agronomic factors. This con-
firms the successfulness of multifactor approaches to understand the organization of life. 
We observed how different components of diversity are explained to different extents by 
different sets of variables. The analysis of β-diversity and its components allowed a better 
comprehension of biodiversity patterns at the community level, improving the baselines 
for conservation and management planning (Carlos-Júnior et al. 2019). LCBD values were 
particularly effective in detecting sites with high and low conservation value, synthesizing 

Fig. 5  Patterns of α-diversity (species richness) in the surveyed communities in relation to (a) rural area 
type (ordered according to increasing agricultural intensity), (b) temperature (Degree Days), and (c) abun-
dance of woody vegetation in the landscape (m2). Smooth lines are fitted to the data to show the relation-
ships between variables.
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the spatial patterns of diversity into one metric that expresses the uniqueness in species com-
position of single communities (Legendre 2014). Thus, we confirm the usefulness of LCBD 
values for conservation purposes, as previously highlighted (Hill et al. 2021).

Consistently with previous evidence, the proportion of explained variation on the 
response variables was relatively restrained. In fact, arable plant communities are among 
the most human-influenced, and all the attempts to explain their variability resulted in lim-
ited success (Lososová et al. 2004; Šilc et al. 2009). The importance of agronomic factors 
in affecting arable plant diversity was recurrently evidenced in our results, especially as 
regards the levels of α-diversity and the richness difference component of β-diversity. This 

Fig. 4  Venn diagrams showing the relative contributions of the selected groups of variables to the total 
variation in α-diversity (a) and species composition (b) among plots. AGR = agronomic factors; CLI = cli-
matic factors; LAT = latitude; LAND = landscape factors
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confirms the relevance of local filtering in affecting the studied communities and suggests 
that local management is a key factor for their conservation (Bourgeois et al. 2020).

Drivers of α-diversity, species composition, and β-diversity

Consistently with our results, a review of several studies showed that α-diversity of ara-
ble plant communities is impacted by local management, but not by landscape complexity 
(Gonthier et al. 2014). In France, the increasing proportion of organic fields in the surround-

Fig. 6  RDA plot on species composition. Explained variance: RDA1 = 5.2% (p = 0.001); RDA2 = 1.6% 
(p = 0.001). Circles represent plots, colored according to the latitudinal gradient (red = south, blue = north). 
Plotted species have a goodness of fit in the analysis higher than 0.1. Species of European conserva-
tion interest according to Storkey et al. (2012) are marked with an asterisk. Ape_spi = Apera spica-venti; 
Bel_rom = Bellevalia romana; Bif_rad = Bifora radians; Bif_tes = Bifora testiculata; Car_pyc = Carduus 
pycnocephalus; Che_alb = Chenopodium album; Cor_sco = Coronilla scorpioides; Epi_tet = Epilobium 
tetragonum; Ery_cam = Eryngium campestre; Fal_con = Fallopia convolvulus; Gal_tri = Galium tricornu-
tum; Gla_ita = Gladiolus italicus; Hel_ech = Helminthotheca echioides; Lat_cic = Lathyrus cicera; Lys_
arv = Lysimachia arvensis; Pha_par = Phalaris paradoxa; Poa_ann = Poa annua; Poa_syl = Poa sylvicola; 
Pol_avi = Polygonum aviculare agg.; Ran_arv = Ranunculus arvensis; Sca_pec = Scandix pecten-veneris; 
She_arv = Sherardia arvensis; Sin_alb = Sinapis alba; Sin_arv = Sinapis arvensis; Son_asp = Sonchus 
asper; Sor_hal = Sorghum halepense; Tor_nod = Torilis nodosa; Tri_sul = Trigonella sulcata; Ver_per = Ve-
ronica persica
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ings increased α-diversity in winter wheat, whereas the proportion of forested areas had 
no influence (Petit et al. 2016). Conversely, the abundance of woody vegetation positively 
affected α-diversity in our communities. However, this is probably due to extensive agricul-
tural areas hosting more patches of natural vegetation, and not because woody vegetation 
is a source of species in fields. Our dataset is negligible in the presence of trees, shrubs, 
and species from woody habitats. Other studies mainly indicate a prevailing effect of local 

Fig. 8  (a) Local Contribution to Beta Diversity (LCBD) values (min = 0.0065, max = 0.0133, SD = 0.0012) 
for the plots in the study area; (b) Distribution of the plots with a statistically significant contribution to 
β-diversity (LCBD values: min = 0.0100, max = 0.0111, SD = 0.0003)

 

Fig. 7  Venn diagrams showing the pure and shared contributions of the selected groups of variables to the 
variation in the total β-diversity (a), replacement (b), and richness difference (c) among plots. AGR = ag-
ronomic factors; CLI = climatic factors; LAT = latitude; LAND = landscape factors
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management and limited effects of the surrounding landscape on α-diversity (Ekroos et 
al. 2010; Bohan and Haughton 2012; Lüscher et al. 2014). Landscape variables affecting 
arable plants are known to act at a local scale, where finer grain landscapes can increase 
α-diversity thanks to the abundance of edges and different habitats (Marshall 2009; Gaba 
et al. 2010). Especially seed rain from other disturbed habitats colonized by annual plants 
seems to increase the number of species (Gabriel et al. 2005). However, landscape effects 
were mainly observed in field margins, while the role of management prevails in field cores 
(Kovács-Hostyánszki et al. 2011). In fact, landscape can be a source of species in field 
edges, but the features of plant communities in field cores are mainly determined by crop 
competition and management (Gonthier et al. 2014; Berquer et al. 2021).

The type of rural area had a relevant effect on α-diversity, with more intensive agricultural 
areas hosting species-poorer plots. This means that traditional, underdeveloped agricultural 
areas harbor species-richer communities thanks to the survival of traditional, low-input agri-
culture. In Italy, such traditional agricultural areas host species-rich agroecosystems and are 
mainly present in hills and mountains (Fanfarillo et al. 2019b). Thus, the negative effect of 
yearly positive temperatures on α-diversity is likely due to lowlands hosting a more inten-
sive agriculture, rather than to a direct relationship between species richness and warmer 
climates. Previous evidence highlighted that α-diversity in the study area increases with 
elevation, the latter being negatively correlated with yearly positive temperature (Fanfarillo 
et al. 2020b). Similar results emerged from other European Countries (Lososová et al. 2004; 
Fried et al. 2008; Pál et al. 2013). However, we removed elevation from explanatory vari-
ables since it highly correlated with latitude and longitude.

Table 2  Species Contribution to Beta Diversity (SCBD) values and species frequencies in the dataset for 
the 40 taxa contributing the most to the β-diversity in our dataset. Taxa are ordered according to decreasing 
SCBD values. Species of conservation interest in Europe are highlighted in regular bold
Species SCBD % 

Frequency
Species SCBD % Fre-

quency
Lolium multiflorum 0.043414 47.6 Anthemis arvensis 0.011875 8.6
Polygonum aviculare agg. 0.036301 47.6 Fallopia convolvulus 0.011725 30.5
Papaver rhoeas 0.031582 73.3 Vicia sativa agg. 0.011394 34.3
Convolvulus arvensis 0.031384 54.2 Sonchus asper 0.011006 25.7
Lysimachia arvensis 0.02872 51.4 Centaurea cyanus 0.010818 5.7
Scandix pecten-veneris 0.02589 27.6 Cirsium arvense 0.010695 21.9
Helminthotheca echioides 0.024161 39.0 Phalaris paradoxa 0.010121 16.2
Galium tricornutum 0.023874 33.3 Coronilla scorpioides 0.009715 18.1
Ranunculus arvensis 0.020315 24.7 Agrostemma githago 0.009441 6.7
Matricaria chamomilla 0.015858 15.2 Bupleurum subovatum 0.008633 12.4
Medicago arabica 0.015609 19 Phalaris brachystachys 0.00857 11.4
Alopecurus myosuroides 0.015138 16.2 Apera spica-venti 0.008458 6.7
Bifora testiculata 0.014542 20 Avena sterilis 0.008181 14.3
Veronica persica 0.01359 32.4 Dasypyrum villosum 0.007766 9.5
Veronica hederifolia 0.013576 6.67 Poa annua 0.007682 12.4
Adonis annua 0.013504 23.81 Viola arvensis 0.007612 19
Legousia speculum-veneris 0.013468 36.19 Ranunculus sardous 0.007396 5.7
Veronica arvensis 0.013351 20 Lolium rigidum 0.007292 6.7
Sinapis arvensis 0.012724 32.38 Gladiolus italicus 0.007231 18.1
Fumaria officinalis 0.012346 26.7 Cota altissima 0.007062 20
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Climate and latitude were the main drivers of species composition, consistently with 
previous evidence from the study area (Fanfarillo et al. 2020b). Agronomic factors (type 
of rural area) significantly affected species composition, though explaining a reduced por-
tion of the variance (0.4%), while landscape had no significant effects. Consistently with 
our findings, geographic location and agricultural management, but not landscape features, 
explained differences in plant species composition in arable fields of western-central Europe 
(Lüscher et al. 2014). Likewise, other authors highlighted the importance of biogeographi-
cal and environmental factors on the species composition of Eurasian arable plant commu-
nities (Lososová et al. 2004; Šilc et al. 2009; Nowak et al. 2015). However, there is evidence 
that such factors, though important, are subordinate to agricultural practices, highlighting 
once again the importance of management (Fried et al. 2008; Pál et al. 2013).

The total β-diversity of our communities was significantly explained by all of the four 
sets of variables. However, agronomic factors and landscape had a minor effect, compared 
to latitude and climate. This effect of the geographic location and climate, as drivers of envi-
ronmental heterogeneity, on β-diversity was previously observed in an analysis of arable 
plant communities in two environmentally very different study areas in Europe (Armengot 
et al. 2012). In the same study, the diversification of management practices was an impor-
tant driver of floristic and ecological differentiation among communities. This is consistent 
with our results, underlying the importance of a multifactor approach in the investigation of 
arable plant diversity.

Replacement was affected as well by latitude and climate, and it was the component con-
tributing the most to the total β-diversity. This is partially consistent with previous studies 
in field margins, which showed how temporal changes in β-diversity are related to manage-
ment and dominated by replacement (Alignier and Baudry 2016). The type of agricultural 
area had a considerable effect on richness difference. This confirms the importance of the 
agricultural context in determining the species richness of arable plant communities, though 
in an indirect way. In fact, fields located in traditional agricultural areas are more likely to 
be under low-input management than fields located in intensive agricultural areas. Similarly, 
organic fields are more likely to occur in complex landscapes (Norton et al. 2009).

In our work, high LCBD values effectively detected the arable plant communities being 
in a bad conservation status, either due to intensive management or to ongoing land aban-
donment. The former were those containing fewer total and rare/threatened species and 
being located in intensively managed landscapes, where only generalist and highly competi-
tive species survive (Fried et al. 2010). The latter, though containing many threatened arable 
plants, were located in abandoned landscapes where arable farming is vanishing and species 
from natural habitats are recolonizing fields at the expense of arable plant communities 
(Fanfarillo and Kasperski 2021). As an exception, some plots had high LCBD values due to 
their location in particular ecological contexts, like wetlands or badlands, without linkages 
to their conservation status. Overall, the very low number of plots with significantly high 
LCBD values suggests that most of the arable plant communities of the study area are in a 
favorable conservation status.

The highest contribution to β-diversity was given by the most frequent species. This 
could be expected since such species are the ones varying the most in occurrence and 
abundance. A positive relationship between species frequency and SCBD values was also 
detected in other studies (Heino and Grönroos 2017).
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Implications for arable plant diversity conservation and restoration

Our study revealed a complex situation in which different groups of determinants have 
varying and synergistic effects on different features of the studied communities. This high-
lights that, to be successful, conservation measures of arable plant diversity should rely on 
multifactor approaches, as already supported by more local studies (Seifert et al. 2015). The 
analysis and partition of β-diversity showed to be a promising tool for the identification of 
conservation priority sites, which, in this case, are mainly highlighted by the plots having 
the lowest LCBD values. This evidence can be interpreted as an indicator of the good con-
servation status of the majority of the surveyed plant communities, consistently with previ-
ous expert-based assessments of the status of arable habitats in Italy (Janssen et al. 2016).

Local management seems to play a major role in the conservation of arable plant com-
munities in the study area. Consistently, previous evidence showed that management fac-
tors like crop height, tillage depth, preceding crop, or the overall intensity of management 
are of primary importance in determining species richness, composition, or both (Fried et 
al. 2008; Pál et al. 2013; Berquer et al. 2021). The restrained effects of landscape features 
allow us to confirm that agricultural practices, rather than the surrounding landscape, should 
be the focus for the conservation of arable plant diversity, as previously highlighted on a 
local scale (Armengot et al. 2011). Even the conservation of refugia on field edges might 
be ineffective, if whole fields are not appropriately managed. In fact, typical arable weeds 
are more present in field cores, while they can be outcompeted by species from the immedi-
ate landscape on margins (Metcalfe et al. 2019). Thus, we suggest that the maintenance of 
favorably managed arable habitats is crucial for preventing this kind of biodiversity from 
disappearance.

In our research, traditional, economically underdeveloped agricultural areas harbored a 
considerably higher α-diversity in winter arable fields, and also appeared to be the refuge 
for arable species of conservation interest. This evidence previously emerged from studies 
on smaller areas (Fanfarillo et al. 2019b; Georgiadis et al. 2022), and we can speculate that 
it is related to the low intensity of arable farming in such vanishing agricultural contexts. 
We had signals that some conservation hotspots in central Apennines are disappearing due 
to land abandonment, as highlighted by the co-occurrence of threatened arable plants like 
Adonis flammea, Agrostemma githago, and Asperula arvensis and species from semi-natural 
habitats like Alyssum alyssoides, Cerastium tomentosum, and Ranunculus monspeliacus. 
Conservation measures should be applied as soon as possible to prevent the alteration and 
disappearance of such ancient plant communities.

We showed that our study area is a reservoir of arable plant diversity. This is important 
in the light of the restoration of arable plant communities in areas where they are severely 
degraded, and where species reintroduction from other areas is necessary to restore original 
seed banks (Wietzke et al. 2020). In fact, when fields are abandoned or converted to inten-
sive agriculture, seed banks quickly change their composition and the sole re-establishment 
of favorable management conditions can be ineffective for restoration, especially regarding 
the recovery of threatened arable plants (Hyvönen 2007; Richner et al. 2018). In this con-
text, our results show that biogeographical features and climatic conditions should not be 
neglected for planning threatened arable plant species reintroductions, whose success can 
be highly site-specific (Lang et al. 2021).
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