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Abstract
Geographic range size is the most commonly implemented criterion of species’ extinction 
risk used in IUCN Red List assessments, especially for poorly-recorded species. IUCN 
applies two contrasting range size measures to capture different facets of a species’ distri-
bution: Extent of Occurrence (EOO; Criterion B1) is the area bounding all known occur-
rences and is a proxy for the spatial autocorrelation of risk, while the Area of Occupancy 
(AOO; Criterion B2) is the area occupied within this boundary and is related to popula-
tion size at finer grains. Various methods have been proposed to measure both EOO and 
AOO. We evaluate the impact of applying four methods for each of Criterion B1 and of B2, 
as well as key parameter choices, on the Red List status of 227 poorly-recorded neotropi-
cal pteridophyte species. Between 2 and 100% of species would be considered threatened 
depending on methodology. The minimum convex polygon method of estimating EOO was 
relatively robust to sampling effort for all but the least-recorded species. The IUCN-rec-
ommended method for estimating AOO of summing occupied 2 × 2 km grid cells was very 
strongly correlated with the total number of records. It is likely that only a small fraction of 
species can be adequately assessed using this method, and we recommend caution applying 
the method to poorly-recorded species in particular, where models predicting occupancy 
in unsampled areas (e.g. species distribution models) may provide more accurate assess-
ments. It is vital that methodological information is retained with assessments, and com-
parisons should only be made between assessments utilising equivalent methods.
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Introduction

The IUCN Red List of Threatened Species (hereafter Red List) is the most widely applied 
index of conservation status, and a key tool for guiding conservation priorities and policy. 
It utilises a common currency, extinction risk, approximated by five complementary cri-
teria that describe different aspects of a species’ population and distribution (Mace et al. 
2008).

The most commonly applied risk criterion, under Criterion B, is geographic range size, 
on the assumption that range size and extinction risk are correlated (Gaston and Fuller 
2009) and is applied in conjunction with subcriteria of other high-risk factors such as pop-
ulation fragmentation. Two aspects of the range can be summarized (Gaston 1991, 1994), 
the Extent of Occurrence (EOO), which is the geographical spread of the distribution of 
the species, and the Area of Occupancy (AOO), which is the amount of that range that is 
occupied. The two measures are useful as they reflect processes occurring at different spa-
tial scales. EOO reflects limits of broad physiological tolerances, and for the context of Red 
List assessments is a measure of the spatial autocorrelation of risk (rather than geographic 
range per se; IUCN 2019). AOO, however, is more closely correlated with habitat avail-
ability and population size (Hartley and Kunin 2003).

To estimate either range size measure requires only readily available occurrence data, 
and as a consequence geographic range size is the most widely used measure of extinction 
risk. For example, some 57% of species overall (Keith et al. 2018) and 59% of plant species 
assessed for the IUCN Sampled Red List Index (SRLI) for Plants (Brummitt et al. 2015a) 
use range size to assign their Red List status. This is particularly true for poorly-recorded 
species, i.e. those with few occurrence records and/or low spatial coverage of those records 
across their distribution. Such species comprise the majority of species on earth, especially 
in tropical regions (e.g. Brummitt et al. 2015a) for which data is generally insufficient for 
their assessment using other criteria (Bland et al. 2017).

In common with all Red List criteria, a set of thresholds are in place to translate EOO 
and AOO estimates to a predicted extinction risk, represented by the Red List threat cat-
egories. Range size thresholds were determined through a combination of trial-and-error 
and empirical testing (Mace et  al. 2008) in order to produce a probability of extinction 
comparable with that of other criteria. The thresholds of EOO and AOO for risk classifi-
cation are coupled by a ratio shared across all threat categories, set at 10:1; i.e., a species 
with an EOO of 100  km2 is broadly deemed to have the same risk of extinction as one with 
an AOO of 10  km2. The thresholds are fixed regardless of taxon and methods used, which 
is important as nearly all methods for measuring range size are dependent upon the scale 
of parameters selected. Although parameter choice can have very large effects of range size 
estimates (Figs. S3, S4, S5), there are no clear processes for defining their values in the 
majority of cases. There has been further criticism of the thresholds as they were defined 
largely considering large vertebrates, and may be inappropriate for other taxa with very dif-
ferent home range sizes, population densities and dispersal abilities (Cardoso et al. 2011). 
Range shape is also not considered but may affect extinction risk as certain spatial configu-
rations are more robust to edge effects and other threatening processes (Lucas et al. 2019).

Furthermore, exactly how best to measure these two aspects of range sizes has also 
proven problematic. This has led to multiple methods being proposed, followed by multiple 
publications clarifying misconceptions and stressing the discrepancy between practice and 
IUCN guidelines (e.g. Collen et al. 2016). Here, we explore a range of methods proposed 
for assessing species under Criterion B, summarised below, and how they differ in how 



1107Biodiversity and Conservation (2023) 32:1105–1123 

1 3

they delimit the geographic ranges of species. In particular, we focus on their sensitivity to 
the spatial coverage of sampling effort, which could lead to incorrect estimates of extinc-
tion risk, particularly for poorly-recorded species.

Extent of occurrence (EOO; criterion B1)

EOO is applied to “measure the degree to which risks from threatening factors are spread 
spatially across the taxon’s geographical distribution” (IUCN 2019, pp. 48–49). The 
smaller the EOO, the more likely that all populations will undergo simultaneous extinc-
tions (Collen et al. 2016). IUCN guidelines and Joppa et al. (2016) explicitly recommend 
that EOO should be measured using the minimum convex polygon (MCP), the smallest 
polygon that incorporates all known occurrences, regardless of whether populations are 
considered to be discontinuous. Accurately estimating the MCP therefore requires records 
that accurately define the extremities of the species’ range. Where data coverage is too poor 
to guarantee this, then species distribution models (SDMs) or similar have been suggested 
to predict the distribution edges (de Castro Pena et  al. 2014; Syfert et  al. 2014; Breiner 
et al. 2017).

Although “strongly discouraged” in the IUCN guidelines (IUCN 2019), multiple alter-
native methods have been developed that differ regarding how discontinuous populations 
are defined (Gaston and Fuller 2009; Joppa et al. 2016), such as alpha-hulls (α-hull; Burg-
man and Fox 2003) and the local nearest neighbour convex hull (LoCoH; Getz et al. 2007). 
When the range is split into more separate populations then EOO estimates becomes 
smaller (Fig. S3a), but a greater sampling effort is required to provide an accurate assess-
ment (Fig. 1) and therefore the greater the likelihood of underestimating EOO for poorly-
recorded species. As the distinctions become very fine then it may result in the measure 

Fig. 1  Estimates of EOO (top row) and AOO (bottom row) differ depending on the method of measure-
ment. Methods to the right produce larger range size estimates, whereas those to the left produce higher 
resolution estimates, but require greater sampling effort for an accurate assessment
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more closely matching the definition of AOO rather than the original purpose of EOO, 
blurring the distinction between the two measures.

Area of occupancy (AOO; criterion B2)

As AOO is closely related to population size when measured at sufficiently fine resolution 
(Gaston 2003), it is considered a general measure of robustness to threatening processes 
(Gaston and Fuller 2009), as well as an indicator of habitat specialisation, since species 
specialised for restricted habitats have a higher risk of extinction (IUCN 2019). Critically, 
AOO scales with the grain size with which it is measured (Kunin 1998), the occupancy-
area relationship (OAR, Figs. S3, S4). The smaller the grain size, the smaller the AOO esti-
mate, and the greater the sampling effort required to accurately estimate its value (Fig. 1), 
but the more closely this will equate to true population size (Hartley and Kunin 2003).

Due to this scale dependency of AOO, to allow for comparability between assessments, 
IUCN chose to standardise AOO measurements by requiring a grain size of 2 × 2  km 
(IUCN 2019). This grain size was chosen not because it is a scale that best reflects extinc-
tion risks and threatening processes, but because it would be impossible to classify species 
as Critically Endangered if cells are larger than 10  km2—a single occupied grid cell with 
cell width > 3.16 km would exceed the 10  km2 threshold for AOO between the Critically 
Endangered and Endangered categories under criterion B2. In fact, the grain size at which 
AOO most closely correlates with true extinction risk depends primarily on the magnitude 
and frequency of the threat, with a grain size of around 1/10th the area affected by threat 
processes optimal in simulations (Keith et al. 2018). As different threats have different spa-
tial patterns, Murray et al. (2017) argue that AOO should be measured at different grain 
sizes to reflect this.

IUCN recommends estimating AOO as the summed area of occupied grid cells over-
laying known occurrences (hereafter ‘grid overlay’). Accurately measuring AOO therefore 
requires the species to be mapped across its entire range at the grain size selected—if there 
are sampling gaps where the species is present but not recorded then AOO will be underes-
timated. Therefore, AOO is likely to be particularly sensitive to incomplete data, especially 
at finer grains (Marsh et  al. 2019). A minimum of 500 spatially independent records at 
2 × 2  km grain size would be required to exceed the threshold for the category Vulner-
able (Rivers et al. 2011), and so poorly-recorded species will automatically appear to be 
threatened using this grain size if conditions for subcriteria are also met. Where a species is 
believed to be poorly-recorded, rather than genuinely range-restricted, a range of estimates 
are recommended, including the grid intersections with all suitable habitat, provided it is 
well-known, which largely equates to EOO (IUCN 2019).

Increasing the grain size at which AOO is measured may help alleviate issues with 
incomplete sampling (Marsh et  al. 2019) but would then exceed the required grain size 
and so any estimate would need to be rescaled to 2 × 2  km. The IUCN guidelines sug-
gest a power law method for downscaling coarse-grain AOO estimates to finer grains 
(IUCN 2019), although more sophisticated methods are now available (Groom et al. 2018). 
Alternatively, multiple variations on utilising SDMs have been proposed to predict which 
unsampled cells are likely to be occupied (Harris and Pimm 2008; Jetz et al. 2008; Boitani 
et al. 2008; Marcer et al. 2013; Ocampo-Peñuela et al. 2016; Breiner et al. 2017).

Modifications of the grid overlay method include utilising circular buffers (Breiner 
and Bergamini 2018) and hexagons (Keith et  al. 2018; Moat et  al. 2018), and optimis-
ing the grid origin and orientation (Moat et al. 2018). Other alternative methods, such as 
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the variable grain method (Willis et al. 2003) and the cartographic method by conglomer-
ates (CMC; Hernández and Navarro 2007), allow grain sizes to exceed the IUCN threshold 
(Fig. 1), applying a species-specific grain size related to the species’ distribution charac-
teristics. The impacts on Red List assignments of varying the grain size have been investi-
gated (Hernández and Navarro 2007; Gaston and Fuller 2009; Roberts et al. 2016 and see 
Figs. S3, S4 in the Supplementary Material), but under current guidelines (IUCN 2019) 
any such method should subsequently rescale their estimates back to a 2 × 2 km grain size.

Study aim

Clearly there can be large discrepancies in estimates for both EOO and AOO between 
methods, or when multiple parameter values are applied for the same method. Inevitably 
there will be consequent problems comparing estimates of threat between species or across 
time (Collen et al. 2016). Furthermore, some methods will be more susceptible than oth-
ers to incomplete data. In this study we compare estimates of EOO and AOO between 
methods, and for different parameter values within methods, and their consequence for Red 
List category assignments of a typical poorly-recorded taxon. We particularly focus on how 
data availability and incomplete sampling may influence the predictions of threatened sta-
tus. Whereas most previous studies have focussed exclusively on either EOO or AOO (e.g. 
Joppa et al. 2016), here we compare both together, as would typically occur during the Red 
List assessment process.

Methods

We investigated the application of IUCN Criterion B to 227 species of neotropical-
endemic pteridophyte species with a minimum of three records, a subset of the species 
selected randomly as part of the Sampled Red List Index (SRLI) for Plants (Brummitt et al. 
2015a). 15,177 records were harvested from museum data and online databases, reviewed 
and edited to ensure geo-referencing accuracy using range and bearing calculators, Google 
Earth and standard online gazetteers (see details within Brummitt et al. 2016), and re-pro-
jected onto a cylindrical equal-area projection. It is expected that, as most pteridophyte 
species are poorly known and sparsely recorded, for the majority there will be considerable 
sampling gaps in the data. As many also disperse widely we might expect large but sparse 
distributions. We generated EOO or AOO estimates for a range of methods for all 227 
species using R 3.4.3 (R Core Team 2018). If a species could not be assessed by a given 
method due to computational limitations or insufficient data it was classified as Data Defi-
cient (DD).

Calculating EOO

We explored four methods of estimating EOO: (1) the MCP (IUCN 2019); (2) the MCP 
generated from the predicted presences of a species distribution model (SDM-MCP; Syfert 
et al. 2014); (3) the alpha-hull (α-hull; Burgman and Fox 2003); and (4) the adaptive local 
nearest neighbour convex-hull (a-LoCoH; Getz and Wilmers 2004; Getz et al. 2007).

The MCP, the smallest convex polygon that encompasses all occurrences, is recom-
mended by IUCN as the best method of evaluating the spread of risk (IUCN 2019). As 
outlying occurrences may have a disproportionate effect on the extent of the MCP we also 
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explored the effect of sequentially removing these points in the supplementary material 
(Fig. S1). For the SDM-MCP, we also generated the MCP from the predicted presences 
of a species distribution model (Syfert et al. 2014) using MaxEnt (Version 3.3.3; Phillips 
et al. 2006). We controlled for geographical sampling bias using all geo-referenced plant 
occurrences available on GBIF. Ecological variables were selected based on a combina-
tion of correlation, principal components and cluster analyses to reduce multi-collinearity 
(see Syfert et al. 2014; Brummitt et al. 2016 for full details). Spatial extent was fixed as the 
rectangle encompassing all occurrences plus a 200 km buffer following VanDerWal et al. 
(2009). We applied a presence–absence threshold that maximised the sum of sensitivity 
and specificity, and then an MCP was drawn around the centres of cells with predicted 
presences. In this study we have retained all species’ models for comparability, but in a real 
evaluation process it would be important to evaluate model performance, statistically and/
or through expert assessments, and retain only models deemed sufficiently accurate.

For the α-hull method, we created an alpha-hull by calculating the mean side length of 
a Delaunay triangulation. Connections of distance greater than the mean multiplied by the 
alpha value are then removed and the area of the subsequent polygons summed. We used 
the IUCN-recommended alpha value of 2 (IUCN 2019), but the effect of varying alpha is 
also explored in Fig. S3.

Finally, the a-LoCoH method is one of the three methods of constructing the LoCoH 
(Getz et al. 2007). Each local convex hull around a root point is constructed so that the sum 
of point to root point distances is less than or equal to a. Therefore convex hulls are smaller 
where there is a higher density of points and larger in areas with few records. We used the 
maximum inter-point distance for a as recommended by Getz et al. (2007). Two alternative 
methods of generating the LoCoH, k-LoCoH and r-LoCoH, are explored in the supplemen-
tary material (Fig. S1) along with the scaling of their respective parameters (Figs. S1, S3).

Calculating AOO

We explored four methods of estimating AOO: (1) summing the area of occupied cells of 
a grid with a fixed grain size overlaying all occurrence records (grid overlay; IUCN 2019); 
(2) a grid overlay method that uses a grain size related to the species’ distribution charac-
teristics inferred from the occurrence data (variable grain; Willis et al. 2003); (3) the area 
of predicted occupancies using ecologically suitable habitat models (ESH; Boitani et  al. 
2008); and (4) the area predicted using occupancy downscaling of the occupancy-area rela-
tionship (OAR; Kunin 1998).

The grid overlay method of summing the area of occupied cells of a grid overlaying the 
occurrence points is the IUCN-recommended method of calculating AOO, which mandates 
a fixed grain size of 2 × 2 km (IUCN 2019). By contrast, the variable grain method uses a 
species-specific grain size, set as 1/10th of the largest pairwise inter-point distance (vari-
able grain; Willis et  al. 2003). Although cells can therefore exceed the IUCN-mandated 
size, we explored this method as it has been applied frequently during past assessments, 
and therefore we want to know if any comparisons between assessments using different 
grain sizes are valid.

Both these methods require species to be sampled across their entire distributions. How-
ever, we expect the majority of species not to have been mapped across their ranges at 
fine grains which may lead to underestimating AOO. Two further methods attempt to fill 
these sampling gaps. First, we predict occupancy in unsampled areas using ecologically 
suitable habitat models (ESH; Boitani et al. 2008; compare also with the Area of Habitat 
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(AOH) measure in Brooks et al. 2019). The potential range of the species was first defined 
by the MCP, and 2 × 2 km cells within the MCP removed if they fell outside of the range 
of values for altitude, land cover (natural or anthropogenic) and available moisture (water 
deficit) outlined by the spatial locations of the species’ records. The AOO estimate was the 
summed area of remaining cells (see Brummitt et al. 2016 for full details).

Finally, for the occupancy downscaling method, the first step is to create atlas data of 
the species distribution at a coarse scale that is large enough to reduce, or preferably elimi-
nate, any sampling gaps, and calculate the proportion of cells occupied. The atlas data are 
aggregated further in order to create three or more estimates of occupancy (‘upgraining’; 
Marsh et al. 2018). Models are then fitted to the OAR generated, and the fitted functions 
extrapolated down to fine grains. We created atlases by drawing a rectangle that incorpo-
rated all records of the species, using the recommendation by Marsh et al. (2019) to use 
the largest atlas scale that provides three grain sizes for modelling without exceeding the 
scale of saturation (the grain size at which all cells are occupied) or endemism (the grain 
size at which only a single cell is occupied). During upgraining, extents were standardised 
to that of the largest grain size using the method recommended by Groom et al. (2018), 
which retains all sampled cells from the original atlas (“All sampled” threshold). Various 
downscaling models are available (Azaele et al. 2012; Barwell et al. 2014); we used the 
‘simple ensemble’ method that averages across the five simplest models that are the least 
computationally intensive but also most robust (Groom et al. 2018), as implemented in the 
‘downscale’ R package (Marsh et al. 2018).

We also present results for the circular buffer (Breiner and Bergamini 2018) and the car-
tographic method by conglomerates (Hernández and Navarro 2007) in the supplementary 
material (Table S1, Fig. S2), as well as the effect of grain size on the grid overlay and vari-
able grain method (Fig. S4).

Analyses

We examined three aspects of the EOO and AOO estimates. First we looked for poten-
tial correlations between EOO and AOO estimates and the number of occurrence records, 
defined as the number of unique spatial records, excluding multiple individuals from the 
same location or repeat samples over time. A high correlation indicates that a measure is 
likely to be susceptible to under-sampling and the result generated will simply be an esti-
mate of sampling effort. The danger is therefore in estimating a species as having a small 
range when in fact it is simply rarely recorded, whereas a lack of correlation could be con-
sidered as one estimate of robustness of the method.

To assess whether any correlation was really an occupancy effect, we repeated each 
method after subsampling records of the six species with > 250 records. Subsamples were 
selected randomly using 5–95% of records in ten increments in log-space. We did not 
repeat this analysis for the SDM-MCP and ESH due to computational limitations, but the 
impacts of sample size on building niche models are well explored (e.g., van Proosdij et al. 
2016).

Second, we examined differences between EOO estimates, and likewise between AOO 
estimates. Different methods may be employed during the evaluation of Criterion B1 or 
B2, even within taxa at different time periods, so we wish to examine how comparable the 
estimates from each method are given equivalent data. For each pairwise comparison we 
estimated the proportion of species that would be assigned to each Red List status if both 
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methods were used. Using the precautionary principle we kept the more conservative esti-
mate, as recommended by IUCN (2019).

Finally, we compared all pairwise combinations of EOO and AOO measures. As the 
ratio between EOO and AOO is set at 10:1, successful combinations of measures should 
allow either EOO or AOO to produce the most threatened status where applicable. For 
example, a species distributed across an archipelago should be more threatened for AOO 
than EOO, whereas a narrow-ranging generalist should be classified as more threatened 
under EOO. Similarly, specific threats may be more apparent in one measure compared to 
the other. For example, climate change may result in reductions to EOO as range edges are 
altered, whereas certain patterns of habitat destruction would result in reductions in AOO 
with little to no change to EOO. We again evaluated the impact on the proportions of Red 
List status assignments for each comparison.

Assigning a Red List category in this way is only for illustrative purposes to evalu-
ate respective methods. A full assessment would also consider other criteria under which 
species may be assessed, as well as the requirement that at least two of the three Crite-
rion B subcriteria are fulfilled. Furthermore, although automated procedures can generate 
range estimates, in reality such outputs are reviewed by experts before assigning Red List 
categories.

Results

Records were concentrated in a few well-recorded regions such as Costa Rica (Fig. 2a), 
whereas most of the region had no records even where pteridophytes are expected to 
be abundant, such as much of the Amazon basin. The majority of species were rarely 
recorded (Fig. 2b). 53 species out of the 227 had ten records or fewer, and 50% of spe-
cies had fewer than 30 records. Of the better-recorded species, 45 had > 100 records 
and only 4 species had > 500 records. Moreover, 26.5% of the total records were 

Fig. 2  a Map of the 15,177 records of 227 pteridophyte species used in the study. Records were aggregated 
at a 50 × 50 km cell size using an equal area cylindrical projection. Histograms of b number of records and 
c number of spatially unique records per species
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spatial replicates which provide no additional information for calculating EOO or AOO 
(Fig. 2c). We were unable to assess 7 (3.08%), 2 (0.88%) and 60 (26.43%) species for 
the a-LoCoH, downscaling and ESH methods respectively, due to computational and 
data limitations (Table 1). These species were assigned as Data-Deficient (DD).

There were large discrepancies in EOO and AOO estimates between methods 
(Table  1) and within-method if different parameter values were applied (Fig. S3). 
EOO measures produced less conservative (i.e. less threatened) estimates than AOO, 
and all four EOO measures estimated most species to have non-threatened ratings. 
The a-LoCoH and α-hull methods estimated the highest proportion of threatened spe-
cies (24.67% and 27.75% respectively), followed by MCP (13.66%) and finally SDM-
MCP (2.20%). Of the AOO measures, the IUCN-recommended grid overlay method and 
downscaling assigned almost all species as threatened (100% and 98.24% respectively), 
while the variable grain (4.41%) and ESH (7.05%) methods produced similar results to 
the EOO methods. For the variable grain method, nearly all species used grain sizes far 
larger than 2 × 2 km (min. cell width = 0.4 km, max. = 784.7 km, mean = 279.7 km, Fig. 
S6).

Relationships between the number of records and EOO measures varied mainly in 
their ability to estimate EOO for species with the fewest records (Fig.  3). The α-hull 
method was most robust when randomly removing records within species (Fig. 4). More 
seriously, the grid overlay method for estimating AOO was particularly linearly cor-
related with the number of records (Pearson’s r = 0.98). This persisted even when sub-
sampling the most well-recorded species (Fig. 4), where correlations were even higher 
(Pearson’s r = 0.99876–0.99998), suggesting that the AOO estimates were essentially a 
measure of sample size rather than true AOO for these species. Removing records had 
little effect on the occupancy downscaling estimates unless sample sizes were low, but 
with much higher variability.

There were broad agreements in EOO estimates and the assignment of Red List cat-
egories between EOO methods except for the species with smaller ranges (Fig. 5). Esti-
mates using the MCP approach were always equivalent to or larger than those using the 
a-LoCoH or α-hull methods.

There were much larger differences in AOO estimates between methods (Fig. 6). The 
grid overlay and occupancy downscaling estimates were similar. If any of these methods 
were employed 83.7–90.7% of species would be considered Endangered. By contrast, 
the majority of species would be considered non-threatened using only the ESH method.

Table 1  The number of species assigned to IUCN Red List status categories under four measures of AOO 
and EOO

DD Data Deficient, CR Critically Endangered, EN Endangered, VU Vulnerable, Non non-threatened

EOO AOO

a-LoCoH α-hull MCP SDM-MCP Grid overlay Variable grain Downscaling ESH

DD 7 0 0 0 0 0 2 60
CR 9 4 2 0 2 2 24 1
EN 25 32 13 2 207 3 171 10
VU 22 27 16 3 18 5 28 5
Non 164 164 196 222 0 217 2 151
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There were certain EOO-AOO combinations where a single method always estimated a 
more threatened category than the other. For example, for the recommended methods of a 
grid overlay and MCP, nearly every single species would be classified as threatened under 
AOO only (Figs. 7, S7). This results in large differences in the proportion of threatened 
species that would be assigned. Broadly, when AOO was measured using the grid over-
lay or downscaling methods, nearly all species would be considered threatened and EOO 
would rarely be utilised except for assigning species as Critically Endangered. If AOO was 

Fig. 3  Correlations of the number of unique spatial records against estimates of EOO (top row) and AOO 
(bottom row) evaluated through differing methods described in the top corner. Red lines are loess smooth-
ers. Shaded bands define the thresholds for a species to be assigned a Red List status of Critically Endan-
gered (red), Endangered (orange), and Vulnerable (yellow) and non-threatened (non; white)

Fig. 4  Correlations of the proportion of randomly retained records against estimates of EOO (top row) and 
AOO (bottom row) for six well recorded pteridophyte species. Coloured lines are loess smoothers. Shaded 
bands define the thresholds for a species to be assigned a Red List status of Critically Endangered (CR; 
red), Endangered (EN; orange), Vulnerable (VU; yellow) and non-threatened (non; white)
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measured using the variable grain or ESH methods then the majority of species would be 
considered non-threatened, and in these cases species considered under a threatened cat-
egory were generally assigned on the basis of EOO.

Discussion

The two measures of range size for assessing extinction risk, Extent of Occurrence (EOO) 
and Area of Occupancy (AOO), require only spatial records. As a consequence, the 
majority of species are assigned a Red List status using one or both of these range meas-
ures (Gaston and Fuller 2009; Brummitt et al. 2015a; Keith et al. 2018). IUCN strongly 

Fig. 5  Estimates of EOO from pairwise combinations of four possible methods. The lower triangle plots are 
one method assessed against the other; red lines are loess smoothers and the dashed line is the 1:1 relation-
ship. Histograms for each method are presented far left. Shaded bands define the thresholds for a species 
to be assigned a Red List status of Critically Endangered (CR; red), Endangered (EN; orange), Vulnerable 
(VU; yellow) and non-threatened (Non; white). Upper triangles are the number of species assigned to Red 
List categories if both EOO methods were used, where the most threatened (most conservative) estimate 
is retained (blue = assigned using the x-axis method only, green = assigned using the y-axis method only, 
orange = both methods assigned the same status)
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recommends using the MCP for EOO and mandates a grid of 2 × 2 km for measuring AOO 
(IUCN 2019). Despite IUCN recommendations, drawbacks with each metric have led to 
the proposal and implementation of many alternative methods of measurement. The major-
ity of these alternative methods can be attributed to two intentions: accounting for discon-
tinuities between populations, particularly with regards to EOO, and accounting for incom-
plete sampling, where AOO is most affected.

The treatment of discontinuities when measuring EOO relates to what constitutes the 
‘range’ of a species (a-LoCoH and α-hull in this study). However, it should be remembered 
that for Red List assessments, EOO is not a measure of range size per se, but a measure of 
the spread of potential threats (Mace et al. 2008; Collen et al. 2016; IUCN 2019). Confu-
sion over this intention has led to proposed measures for EOO that can be more accurately 
described as AOO measurements (e.g. Harris and Pimm 2008; Ocampo-Peñuela et  al. 

Fig. 6  Estimates of AOO from pairwise combinations of four possible methods. The lower triangle plots 
are one method assessed against the other; red lines are loess smoothers and the dashed line is the 1:1 
relationship. Histograms for each method are presented far left. Shaded bands define the thresholds for a 
species to be assigned a Red List status of Critically Endangered (CR; red), Endangered (EN; orange), Vul-
nerable (VU; yellow) and non-threatened (Non; white). The upper triangle of plots show the number of 
species assigned to Red List categories if both AOO methods were used, where the most threatened (most 
conservative) estimate is retained (blue = assigned using the x-axis method only, green = assigned using the 
y-axis method only, orange = both methods assigned the same status)
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2016). Similarly, the separation of populations is carried out by selecting scaling param-
eters (Fig. S3) that discriminate finer and finer divisions, and therefore move the measure-
ment away from the original purpose of EOO and instead approach the definition of AOO.

EOO was relatively robust to data quantity, but AOO was particularly sensitive to 
incomplete sampling coverage (Figs. 3, 4). If using the recommended grid overlay method, 
very few species will be mapped accurately across their entire range at a 2 × 2 km grain 
size, even for the best-known taxa. Furthermore, a minimum of 500 spatially-unique 
records are required to assign a non-threatened status. For poorly-recorded taxa such as 
neotropical pteridophytes, representative of the limited amount of information known for 
the majority of species, estimates of AOO generated from the grid overlay (and circular 
buffer methods) simply reflect the number of records (Figs.  3, 4, S2) with an extremely 
high correlation (0.99893–0.99998). This resulted in every species investigated being con-
sidered as threatened using the IUCN-recommended grid overlay method.

Many proposed methodologies are attempts to overcome these sampling gaps. For 
example, we can delimit areas falling within niche tolerances of a species (ESH in this 
study), although Brooks et  al. (2019) have emphasised that such techniques generate a 
measure of the extent of habitat (EOH), and therefore are not estimates of either AOO or 
EOO, but instead lie somewhere in-between. Occupancy downscaling attempts to eliminate 
sampling gaps by aggregating records at coarser scales, especially if certain properties of 
sampling bias and species’ distribution characteristics can be incorporated (Marsh et  al. 
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2019), although sampling gaps appeared too severe to be overcome in the species exam-
ined here.

Alternatively, methods that predict occupancy in unsampled areas, such as SDMs, are 
perhaps better able to overcome sampling gaps successfully whilst maintaining the grain 
sizes required by IUCN. However, generating accurate SDMs is complicated by methodo-
logical issues of their own (Araújo and Guisan 2006). Some authors also stress that AOO 
cannot be inferred from presence-background models of the type most frequently applied, 
as without absence data the models will not produce true probabilities of occupancy (Guil-
lera-Arroita et  al. 2015). Furthermore, SDMs are prone to over-predicting occupancy as 
they fail to include biological interactions, historical factors and other spatial processes 
such as dispersal limitation that can prevent species occupancy despite favourable environ-
mental conditions (Araújo and Guisan 2006).

It should also be noted that for real assessments it is likely that much larger quanti-
ties of data than were available here would be required to build accurate models (Valavi 
et  al. 2022). Recent methodological advancements make modelling poorly-recorded spe-
cies more achievable (Jeliazkov et  al. 2022), but it is unclear what consequences they 
have for Red List assessments. Generating models for measuring EOO is likely to be rela-
tively robust to data availability, and Syfert et al. (2014) found that around 20 points were 
required to generate an EOO estimate similar to when much larger quantities of data were 
available. Building models for estimating AOO, however, are likely to require greater quan-
tities of presence–absence data, as well as requiring minimising or controlling for spatial 
and environmental biases in the samples.

Furthermore, the data requirements for generating accurate estimates of model perfor-
mance are probably even greater than for model building. This may especially be the case if 
testing data is environmentally or geographically biased, in which case expert assessments 
may be the only feasible approach to evaluate SDM predictions. Regardless of method, it is 
important that any range size estimate using SDM predictions should always assess model 
performance, and where sufficiently reliable models can not be generated then the species 
should be classed as Data Deficient for the criterion.

It is also likely that data limitations for calculating EOO and AOO are equally or more 
limiting for the Criterion B subcriteria, for which a species must fulfil at least two to be 
assigned a threatened status. In the vast majority of cases, we generally won’t have a time-
series of occurrences for poorly-recorded species. Consequently we will be unable to meas-
ure fluctuations (subcriterion c) or observe or project continuing declines in EOO (sub-
criterion b(i)), AOO (b(ii)), or the number of subpopulation locations (b(iv)) or mature 
individuals (b(v)). Instead most assessments will most likely rely on estimates or inferred 
declines in the area, extent or quality of habitat (b(iii)). Similarly, it may be difficult to 
ascertain if the species has a severely fragmented or a limited number of locations (sub-
criterion a) from a handful of occurrence points and no data on dispersal ability or metap-
opulation dynamics, and so likewise any assessment of subcriterion a will be estimated or 
inferred.

Ensuring comparability between range estimates

An important function of Red Listing is comparing estimates among species and taxa, 
assessing changes in status over time, and evaluating whether conservation measures are 
succeeding (IUCN’s Green List of species). However, we have shown that simply apply-
ing different methodologies or parameters may result in drastic changes in perceived status 
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without any true differences in range size or input data. To identify genuine changes it is 
therefore vital not only to compare separate assessments of the same species under the 
same criteria (Brummitt et al. 2015b), but furthermore only to compare estimates of range 
size utilising the same method of measurement (Collen et al. 2016). As long as consistent 
methodology and parameterisation is maintained, this would also assist the assessment of 
subcriterion b as there will be an observed time-series of estimates of EOO (for subcrite-
rion b(i)) or AOO (b(ii)). This requires detailed information on the methods and parame-
ters applied to be recorded during any assessment, which must remain associated with that 
assessment when it is retrieved.

A further problem is that as records accumulate over time so range size can only remain 
the same or increase. To identify decreases in range size, existing records have to be 
removed, for example from sites deemed no longer occupied through re-surveying, infer-
ence from remote sensing data, or by excluding records that exceed an (undefined) age 
threshold. Methods that use data at larger scales, such as downscaling, should be applied 
with caution as occupancy changes will be manifested over longer time periods within large 
cells, because extinctions at coarse scales will occur more slowly than localised extinctions 
at finer grains (Hartley and Kunin 2003), although there is evidence that declining spe-
cies can show characteristically steep occupancy-area relationships (Wilson et  al. 2004). 
Although, SDM-based methods tend to over-predict prevalence, and thus shift IUCN clas-
sification towards less threatened categories (Table 1), considerable potential lies in more 
realistic presence–absence SDMs that account for additional processes, such as biotic inter-
actions (Gavish et al. 2017) and dispersal limitation, and thus better map the realized distri-
bution rather than the potential one.

Measuring range size for Red List assessments

The IUCN Red List is the most widely used index of conservation status, with tremendous 
influence on funding, policy and the international conservation agenda. Criterion B (Geo-
graphic Range) is the most widely applied criterion, largely because it is easy to generate 
an estimate, only requiring easily-harvestable occurrence data. However, we stress that it 
requires a particularly large quantity of data to generate an accurate measurement.

We show that for 227 neotropical pteridophyte species, poorly-recorded taxa with 
incomplete sampling across their distributions but typical of the majority of world’s biodi-
versity, the estimate of EOO and AOO is so strongly affected by method of measurement 
that it can obscure actual differences in extinction risk. In particular, whereas the meas-
urement of EOO was relatively robust to sampling effort, AOO was especially sensitive 
to incomplete sampling coverage. In our case, the IUCN-required method of a 2 × 2 km 
grid overlay primarily reflected only a measure of the number of records (Figs. 3, 4). We 
argue that for the vast majority of species, which have only a small quantity of records 
which exhibit some degree of spatial bias, AOO should not be measured by the IUCN grid 
overlay method without attempting to correct for incomplete sampling, unless additional 
detailed ecological information confirms that this species has a naturally restricted range. If 
sampling gaps cannot be adequately corrected then no AOO estimate should be generated.

Furthermore, empirical or theoretical studies linking measures of EOO or AOO with 
true probability of extinction are still lacking, and the derivation of thresholds used to 
assign threatened categories needs greater grounding in theory and observation. Further 
studies explicitly aiming to link such methods with true probability of extinction must also 
set thresholds appropriate to that method. The great challenge is to maintain assessments 
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that are comparable across time whilst also staying up-to-date in an ever-advancing scien-
tific world. Methodological decisions set early on may not reflect best-practice guidelines 
identified when new scientific methods emerge. The incremental refinement of recom-
mended guidelines plays a crucial role in this context. However, if evidence of fundamental 
limitations of thresholds or methods mount, while great care should be taken, we should 
not avoid more extensive amendments for the sake of historical consistency.

Supporting Information

Additional results figures and analyses are available in the supplementary material, includ-
ing additional EOO (k-LoCoH, r-LoCoH) and AOO (circular buffer and CMC) meth-
ods and explorations of scale-dependencies for the MCP, ɑ-hull, k-LoCoH, r-LoCoH, 
a-LoCoH, grid overlay, variable grain and CMC methods.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10531- 023- 02543-9.
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