Skip to main content

Advertisement

Log in

Odonates in warm regions of south america largely do not follow Rapoport’s rule

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

One of the major challenges of ecologists and biogeographers is to understand how species are globally distributed. Two of the most well-studied large-scale patterns in species distributions are the Rapoport’s rule and the Latitudinal Diversity Gradient (LDG). We aimed to address whether Neotropical odonates follow the Rapoport’s rule and if there is a latitudinal gradient in species diversity. A total of 1076 records for 190 species, covering a large area from southeastern to the northern regions of Brazil that extends from 23°S (Cerrado) to 3°N (Amazon Rainforest). Generalized Linear Models were used to address whether Neotropical odonates follow the Rapoport’s rule, and if there is a latitudinal gradient in species diversity, based on our predictions. We found a Rapoport effect in the Amazon biome and an inverse Rapoport effect in the Amazon-Cerrado Transition Forest and Cerrado biome. Regarding LDG, we found no significant effect of latitude on species richness patterns when we considered all the species, and a significant relationship between species richness and latitude for zygopterans. The spatial patterns of odonates geographic distribution may be an outcome of geographical barriers, for instance, the continental geometry of South America, which is broader in the north and limits geographical expansion towards the south. Furthermore, species ecophysiological mechanisms may also hamper their expansion and drive the pattern observed in our study, mainly because of evolutionary thermoregulatory adaptations that each taxon exhibits along its environmental gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ab’Saber AN (1982) The paleoclimate and paleoecology of Brazilian Amazon. In: Prance GT (ed) Biological diversification in the Tropics. Columbia University Press, New York (NY), pp 41–59

    Google Scholar 

  • Alves-Martins F, Brasil LS, Juen L, De Marco JP, Stropp J, Hortal J (2018) Metacommunity patterns of Amazonian Odonata: the role of environmental gradients and major rivers. PeerJ 7:6472. https://doi.org/10.7717/peerj.6472

    Article  Google Scholar 

  • Alves-Martins F, Calatayud J, Medina NG, De Marco P, Juen L, Hortal J (2019) Drivers of regional and local diversity of Amazon stream Odonata. Insect Conserv Divers 12(3):251–261. https://doi.org/10.1111/icad.12327

    Article  Google Scholar 

  • Anderson S, Marcus LF (1992) Aerography of Australian tetrapods. Aust J Zool 40(6):627–651

    Article  Google Scholar 

  • Angelibert S, Giani N (2003) Dispersal characteristics of three odonate species in a patchy habitat. Ecography 26(1):13–20

    Article  Google Scholar 

  • Arita H, Rodríguez P, Vásquez-Domínguez E (2005) Continental and regional ranges of North American mammals: Rapoport’s rule in real and null worlds. J Biogeogr 32:961–971. https://doi.org/10.1111/j.1365-2699.2005.01276.x

    Article  Google Scholar 

  • Arroyo MTK, Riveros M, Peñaloza A, Cavieres L, Faggi AM (1996) Phytogeographic relationships and regional richness patterns of the cool temperate rainforest flora of southern South America. High-latitude rainforests and associated ecosystems of the west coast of the Americas. Springer, New York, pp 134–172

    Chapter  Google Scholar 

  • Ben-Eliahu MN, Safriel UN (1982) A comparison between species diversities of polychaetes from tropical and temperate structurally similar rocky intertidal habitats. J Biogeogr 9:371–390

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (1996) Spatial patterns in the geographic range sizes of bird species in the New World. Philos T Roy Soc B 351:897–912

    Article  Google Scholar 

  • Böhm M, Kemp R, Williams R, Davidson AD, Garcia A, McMillan KM, Collen B (2017) Rapoport’s rule and determinants of species range size in snakes. Divers Distrib 23(12):1472–1481

    Article  Google Scholar 

  • Brasil LS, Silvério DV, Cabette HSR (2019) Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic Appl Ecol 35:45–53. https://doi.org/10.1016/j.baae.2019.01.001

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press

  • Brown JH (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Evol Syst 27:597–623

    Article  Google Scholar 

  • Brown JH (1999) Macroecology: progress and prospect. Oikos 87:3–14

    Article  Google Scholar 

  • Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41:8–22

    Article  PubMed  Google Scholar 

  • Brown JH, Gibson AC (1983) Biogeography. St. Louis, Missouri

  • Brown JH, Maurer BA (1989) Macroecology: the division of food and space among species on continents. Science 243(4895):1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Calvão LB, Vital MVC, Juen L (2013) Thermoregulation and microhabitat choice in Erythrodiplax latimaculata Ris males (Anisoptera: Libellulidae). Odonatologica 42:97–108

    Google Scholar 

  • Carvalho FG (2019) Métodos comparativos filogenéticos para avaliar a distribuição de Odonata (Insecta) na Amazônia brasileira. Doctoral Thesis, Instituto de Ciências Biológicas Universidade Federal do Pará e Embrapa Amazônia Oriental

  • Cerezer FO, de Azevedo RA, Nascimento MAS, Franklin E, de Morais JW, de Sales DC (2020) Latitudinal gradient of termite diversity indicates higher diversification and narrower thermal niches in the tropics. Glob Ecol Biogeogr 29(11):1967–1977

    Article  Google Scholar 

  • Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport effect. Am Nat 144:570–595

    Article  Google Scholar 

  • Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15(2):70–76

    Article  CAS  PubMed  Google Scholar 

  • Conrad KF, Fox R, Woiwod IP (2007) Monitoring biodiversity: measuring long-term changes in insect abundance. In: Stewart AJA, New TR, Lewis OT (eds). Insect conservation biology. The Royal Entomological Society, pp 203–225

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley books

  • Corbet PS, May ML (2008) Fliers and perchers among Odonata: dichotomy or multidimensional continuum? A provisional reappraisal. Int J Odonatol 11:155–171

    Article  Google Scholar 

  • Davidowitz G, Rosenzweig ML (1998) The latitudinal gradient of species among North American grasshoppers (Acrididae) within a single habitat: a test of the spatial heterogeneity hypothesis. J Biogeogr 25:553–560

    Article  Google Scholar 

  • De Marco PJR, Resende DC (2002) Activity patterns and thermoregulation in a tropical dragonfly assemblage. Odonatologica 31:129–138

    Google Scholar 

  • De Marco P, Vianna DM (2005) Distribuição do esforço de coleta de Odonata no Brasil—Subsídios para escolha de áreas prioritárias para levantamentos faunísticos. Lundiana 6:13–26

    Google Scholar 

  • De Marco P, Batista JD, Cabette HSR (2015) Community assembly of adult odonates in tropical streams: an ecophysiological hypothesis. PLoS ONE. https://doi.org/10.1371/journal.pone.0123023

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sant’Ana CER, Diniz-Filho JAF, Rangel TF (2002) Null models and Rapoport’s effect in neotropical falconiformes. Ornitología Neotropic 13:247–254

    Google Scholar 

  • Diniz-Filho JAF, Tôrres NM (2002) Rapoport effect in south american carnivora (Mammalia): null models under geometric and phylogenetic constraints. Braz J Biol 62(3):437–444

    Article  CAS  PubMed  Google Scholar 

  • Diniz-Filho JAF, De Sant’Ana CER, De Souza MC, Rangel TF (2002) Null models and spatial patterns of species richness in South American birds of prey. Ecol Lett 5(1):47–55

    Article  Google Scholar 

  • Ferro I, Morrone JJ (2014) Biogeographical transition zones: a search for conceptual synthesis. Biol J Linnean Soc 113(1):1–12

    Article  Google Scholar 

  • Fox J, Weisberg S (2019) An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/

  • France R (1992) The North American latitudinal gradient in species richness and geographical range of freshwater crayfish and amphipods. Am Nat 139:342–354

    Article  Google Scholar 

  • Garrison RW, Ellenrieder N, Louton JAL (2010) Damselfly genera of the new world: an illustrated and annotated key to the Zygoptera. University Press, Johns Hopkins

    Book  Google Scholar 

  • Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport effect: time for an epitaph? Trends Ecol Evol 13:70–74

    Article  CAS  PubMed  Google Scholar 

  • Guisande C, Lobo JM (2018) Discriminating well surveyed spatial units from exhaustive biodiversity databases. R package version. 1.3. http://cran.rproject.org/web/packages/KnowBR

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. The Am Nat 163(2):192–211

    Article  PubMed  Google Scholar 

  • IBGE (2003) Mapa de Vegetação do Brasil. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, Brasil

  • Jablonski D (1993) The tropics as a source of evolutionary novelty through geological time. Nature 364:142–144

    Article  Google Scholar 

  • Jara CGF, Rivera R, Franco C, Figueroa R, Faúndez V (2019) Patterns of richness of freshwater mollusks from Chile: predictions of its distribution based on null models. PeerJ 7:7097. https://doi.org/10.7717/peerj.7097

    Article  Google Scholar 

  • Jetz W, Rahbek C (2001) Geometric constraints explain much of the species richness pattern in African birds. Proc Natl Acad Sci 98(10):5661–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juen L, De Marco P (2012) Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers Conserv 21:3507–3521

    Article  Google Scholar 

  • Kalkman VJ, Clausnitzer V, Dijkstra KDB, Orr AG, Paulson DR, van Tol J (2007) Global diversity of dragonflies (Odonata) in freshwater. Freshwater animal diversity assessment. Springer, Dordrecht, pp 351–363

    Chapter  Google Scholar 

  • Kaufman DM, Willig MR (1998) Latitudinal patterns of mammalian species richness in the New World: the effects of sampling method and faunal group. J Biogeogr 25:795–805

    Article  Google Scholar 

  • Lees DC, Kremen C, Andriamampianina L (1999) A null model for species richness gradients: bounded range overlap of butterflies and other rainforest endemics in Madagascar. Biol J Linnean Soc 67(4):529–584

    Article  Google Scholar 

  • Letcher AJ, Harvey PH (1994) Variation in geographical range size among mammals of the Palearctic. The Am Nat 144(1):30–42

    Article  Google Scholar 

  • Lobo JM, Hortal J, Yela JL, Millán A, Sánchez-Fernández D, García-Roselló E, Guisande C (2018) KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol Indic 91:241–248

    Article  Google Scholar 

  • Lyons SK, Willig MR (1997) Latitudinal patterns of range size: methodological concerns and empirical evaluations for New World bats and marsupials. Oikos 79:568–580

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology. Princeton University Press

  • Marimon BS, Lima E de S, Duarte TG, Chieregatto LG, Ratter JA (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV.* ananalysis of the cerrado—Amazonn forest ecotone. Edinb J Bot 63(2e3):323–341

  • Maslin M, Malhi Y, Phillips OL, Cowling S (2005) New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest. Trans Inst Br Geogr 30:477–499

    Article  Google Scholar 

  • May ML (1976) Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol Monogr 46:1–32

    Article  Google Scholar 

  • May ML (1979) Energy metabolism of dragonflies (Odonata: Anisoptera) at rest and during endothermic warm-up. J Exp Biol 83(1):79–94

    Article  Google Scholar 

  • May ML (2013) A critical overview of progress in studies of migration of dragonflies (Odonata: Anisoptera), with emphasis on North America. J Insect Conserv 17(1):1–15

    Article  Google Scholar 

  • Mayle FE, Burbridge B, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonn rain forests. Science 290:2291–2294

    Article  CAS  PubMed  Google Scholar 

  • McCauley SJ (2006) The effects of dispersal and recruitment limitation on community structure of odonates in artificial ponds. Ecography 29(4):585–595

    Article  Google Scholar 

  • Miguel TB, Calvão LB, Vital MV, Juen L (2017) A scientometric study of the order Odonata with special attention to Brazil. Int J Odonatol 20:27–42

    Article  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Chichester (UK): John Wiley e Sons

  • Mourelle C, Ezcurra E (1997) Rapoport effect: a comparative analysis between south and north american columnar cacti. Am Nat 150:131–142

    Article  CAS  PubMed  Google Scholar 

  • Muzón J, Pessacq P, Lozano F (2014) The Odonata (Insecta) of Patagonia: a synopsis of their current status with illustrated keys for their identification. Zootaxa 3784(4):345–388

    Article  Google Scholar 

  • Nóbrega CC, De Marco P (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505

    Article  Google Scholar 

  • Oliveira-Junior JMB, Juen L (2019) The zygoptera/anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop Entomol 48(4):552–560

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, Marco Júnior P, Juen L (2015) Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40(6):733–744

    Article  Google Scholar 

  • Oppel S (2005) Habitat associations of an Odonata community in a lower montane rainforest in Papua New Guinea. Int J Odonatol 8(2):243–257

    Article  Google Scholar 

  • Outomuro D, Johansson F (2019) Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North American dragonflies (Odonata: Libellulidae). Ecography 42(2):309–320

    Article  Google Scholar 

  • Pagel MD, May RM, Collie AR (1991) Ecological aspects of the geographical distribution and diversity of mammalian species. Am Nat 137:791–815

    Article  Google Scholar 

  • Paulson D (2006) The importance of forests to neotropical dragonflies. In: Rivera AC (ed) Forests and dragonflies. Rivera, Spain, pp 79–101

    Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758

    Article  PubMed  Google Scholar 

  • Pianka ER (1989) Latitudinal gradients in species diversity. Trends Ecol Evol 4(8):223

    Article  Google Scholar 

  • Pintor AF, Schwarzkopf L, Krockenberger AK (2015) Rapoport’s rule: do climatic variability gradients shape range extent? Ecol Monogr 85(4):643–659

    Article  Google Scholar 

  • Pontarp M, Bunnefeld L, Cabral JS, Etienne RS, Fritz SA, Gillespie R, Hurlbert AH (2019) The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol Evol 34(3):211–223

    Article  PubMed  Google Scholar 

  • Prance GT (1982) Forest refuges: evidence from woody angiosperms. Biol Diver Trop 137–158

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rahbek C (1997) The relationship among area, elevation and regional species richness in Neotropical birds. Am Nat 149:875–902

    Article  CAS  PubMed  Google Scholar 

  • Rapoport EH (1982) Areography. Pergamon Press, Geographical Strategies of Species

    Google Scholar 

  • Ribas CR, Schoereder JH (2006) Is the Rapoport effect widespread? Null models revisited. Glob Ecol Biogeogr 15:614–624

    Article  Google Scholar 

  • Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527

    Article  Google Scholar 

  • Rohde K, Heap M, Heap D (1993) Rapoport effect does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am Nat 142(1):1–16

    Article  Google Scholar 

  • Rosenzweig ML (1992) Species diversity gradients: we know more and less than we thought. J Mammal 73:715–730

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. - Cambridge Univ. Press, Cambridge

  • Roy K, Jablonski D, Valentine JW (1994) Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for “Rapoport effect.” Proc Natl Acad Sci USA 91:8871–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero A (1994) Latitudinal correlates of the sizes of mammalian geographical ranges in South America. J Biogeogr 21:545–559

    Article  Google Scholar 

  • Ruggiero A, Werenkraut V (2007) One-dimensional analyses of Rapoport’s rule reviewed through meta-analysis. Glob Ecol Biogeogr 16(4):401–414

    Article  Google Scholar 

  • Sformo T, Doak P (2006) Thermal ecology of interior alaska dragonflies (Odonata: Anisoptera). Funct Ecol 20:114–123

    Article  Google Scholar 

  • Shepherd UL (1998) A comparison of species diversity and morphological diversity across the North American latitudinal gradient. J Biogeogr 25:19–29

    Article  Google Scholar 

  • Smith FDM, May RM, Harvey PH (1994) Geographical ranges of Australian mammals. J Anim Ecol 63:441–450

    Article  Google Scholar 

  • Stevens GC (1989) The latitudinal gradient in geographic range: how so many species coexist in the tropics? Am Nat 133:240–256

    Article  Google Scholar 

  • Stevens GC (1996) Extending Rapoport effect to Pacific marine fishes. J Biogeogr 23:149–154

    Article  Google Scholar 

  • Stevens RD, Tello JS (2018) A latitudinal gradient in dimensionality of biodiversity. Ecography 41(12):2016–2026

    Article  Google Scholar 

  • Swaegers J, Janssens SB, Ferreira S, Watts PC, Mergeay, McPeekStoks MAR (2014) Ecological and evolutionary drivers of range size in Coenagrion damselflies. J Evol Biol 27(11):2386–2395

    Article  CAS  PubMed  Google Scholar 

  • Valgas AB, Diniz Filho JAF, Sant’Ana CER (2003) Macroecologia de icterinae (aves: passeriformes): efeito rapoport e modelos nulos de distribuição geográfica. Ararajuba 11(1):57–64

    Google Scholar 

  • Willig MR, Lyons SK (1998) An analytical model of latitudinal gradients of species richness with an empirical test for marsupials and bats in the New World. Oikos 81:93–98

    Article  Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34(1):273–309

    Article  Google Scholar 

  • Zuur A, Leno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We want to thank the Biodiversity in Oriental Amazon Research Program (PPBio), to Conservation International (CI), Agropalma Group, 33 Forest, State Fund for the Amazon Research (FAPESPA), Tropical Forest Institute (IFT), CIKEL Ltd and BRC Consortium and Hydro Alunorte Company, for the logistic and financial support. MER thanks to the Santa Cruz State University—UESC for financial and logistic support (Project Number PROP 00220.1100.1922). We are grateful for the Ecology and Conservation Graduate Program of Mato Grosso State University for constant support. We thank IPAM and PELD/CNPq (nº 23038.000452/2017-16; site TANG) for the support during fieldwork, the members of the Laboratory of Ecology and Conservation of UFPA for assistance with analysis, discussion and revision of the manuscript. TBM thanks the Mato Grosso Federal Institute of Scientific and Technological Education (IFMT) for conceding a license to conduct this research. We thank the National Council for Scientific and Technological Development (CNPq) for productivity grants to LJ (Process (304710/2019-9), RGF (Process 307836/2019-3) and PDM (process 305542/2010-9). We are also grateful to CAPES, through PROCAD-AMAZONIA/CAPES, for funding the senior internship scholarship for LJ to conduct research at the University of Florida (Process 88881.474457/2020-01). FAM was supported via the European Union’s Horizon 2020 research and innovation programme under grant agreement No 854248. LBC thanks CNPq for granting her a scholarship (Process 154761/2018-4). We thank Fernando Geraldo de Carvalho and Frederico A. A. Lencioni for assistance in identifying the collected material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Barros Miguel.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work. The authors have no conflict of interest to declare that are relevant to the content of this article.

Research involving human and animal rights

The authors declare that there was no research involving human and/or animal participants, Plant Reproducibility and Clinical Trials Registration. No funding was received to assist with the preparation of this manuscript. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by B.D. Hoffmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miguel, T.B., Calvão, L.B., Alves-Martins, F. et al. Odonates in warm regions of south america largely do not follow Rapoport’s rule. Biodivers Conserv 31, 565–584 (2022). https://doi.org/10.1007/s10531-021-02350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02350-0

Keywords

Navigation