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Abstract
Characterizing genetic diversity and structure of populations is essential for the effective 
conservation of threatened species. Orchis patens sensu lato is a narrowly distributed tetra-
ploid species with a disjunct distribution (i.e., Northern Italy, North Africa and the Canary 
Islands), which is facing a severe decline. In this study, we evaluated levels of genetic 
diversity and population structuring using 12 new nuclear microsatellite markers. Our 
analyses of genetic differentiation based on multiple approaches (Structure analysis, PCA 
analysis, and F-statistics using the ploidy-independent Rho-index) showed that gene flow is 
low across the range of O. patens s.l., particularly in the Canary Islands. Clear differences 
in allele frequencies between Italy, Algeria and the Canary Islands underlie the genetic dif-
ferentiation retrieved. Our study provides support for the recognition of O. canariensis as a 
sister species to O. patens and the separation of the Italian populations as a new subspecies 
of O. patens. Despite the high heterozygosity values found in all populations (ranging from 
0.4 to 0.7), compatible with the tetraploid status of the species, small population sizes and 
reduced gene flow will be likely detrimental for the different populations in the long term, 
and we recommend immediate conservation actions to counteract further fragmentation 
and population decline.
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Introduction

As we are facing the sixth age of extinction (Swarts and Dixon 2009; Barnosky et al. 2011), 
an increasing number of species are threatened by decreased population sizes, habitat deg-
radation and habitat fragmentation. Endangered species are in most cases characterised by 
small, fragmented and declining populations (Brooks et al. 2002). Such limited groups of 
individuals are at high risk of extinction owing to decreased genetic diversity and the grow-
ing effect of biological stochasticity (Fahrig 2003; Henle et al. 2004). There is strong evi-
dence, indeed, that genetic factors, such as low genetic diversity and consequently reduced 
reproductive fitness, are driving threatened taxa to extinction (Spielman et al. 2004; Vel-
lend and Geber 2005; Garner et  al. 2020). Preserving genetic diversity is therefore one 
of the essential requirements to ensure population survival (Hoban et  al. 2020; Laikre 
et  al. 2020), especially under anthropogenic and environmental pressures, including cli-
mate change (Hewitt 2004; Jump et al. 2009). Rare species with low genetic diversity are 
more vulnerable to environmental and biological stresses compared to species with higher 
genetic diversity (Leimu et al. 2006; Honnay and Jacquemyn 2007; Aguilar et al. 2008), 
and small, isolated and declining populations of rare species, under climate change, may 
also become maladapted (Borrell et al. 2020). Habitat fragmentation or the complete loss 
of the habitat are major reasons for depletion of genetic variation in plants (Young et al. 
1996; Frankham et al. 2002). Generally, species with narrow distribution ranges or small 
and/or isolated populations are more affected by loss of their natural habitat, and they are 
more susceptible to extinction due to depletion of genetic diversity than those species that 
are widely distributed and have relatively large, non-fragmented populations (Hamrick and 
Godt 1996; Frankham et al. 2002; Pandey et al. 2015), although life-history traits may play 
an important role in buffering genetic diversity loss (Honnay and Jacquemyn 2007).

Spatial distribution of genetic variation within a species may offer useful insights into 
fundamental ecological and environmental processes and information important for iden-
tifying distinct genetic groups (if present) across its range (Allendorf and Luikart 2007; 
Mkare et  al. 2017; Gargiulo et  al. 2019a). The delineation of conservation units for an 
endangered species is critical not only for their long-term survival, but also for directing 
the prioritization of conservation efforts (Petit et al. 1998; Schwartz et al. 2007; Volkmann 
et al. 2014; Mkare et al. 2017; Médail and Baumel 2018). Characterizing genetic diversity 
and structure of populations is useful in informing assisted gene flow (Borrell et al. 2020), 
or to identify high priorities for effective conservation of threatened species (Fay 2018; 
Väli et al. 2019). This is even more urgent for orchids, as approximately half of the 1641 
currently assessed in the IUCN Red List are in the categories Vulnerable, Endangered and 
Critically Endangered (Fay 2020; IUCN, 2020).

The genus Orchis, which includes about 20–25 species, is divided into two subgen-
era, Orchis and Masculae, with the first commonly called the “anthropomorphic group” 
(Kretzschmar et al. 2007). The topology of Bateman et al. (2003) shows the non-anthropo-
morphic Orchis species are well-supported as monophyletic. Cytological examinations of 
different Orchis taxa have revealed a main chromosome number of 2n = 42 (e.g. Mrkvicka 
1992; Aedo and Herrero 2005), but exceptions with aberrant values have been found in 
section Robustocalcare (2n = 40; Hautzinger 1978), which includes the only tetraploid spe-
cies in the genus, O. patens. However, more recent counts indicated tetraploid O. patens 
with 2n = 84 (Pridgeon et al. 2001; Bernardos et al. 2006).

Orchis patens sensu lato is a species with a disjunct geographic range, with O. patens 
subsp. patens occurring in Italy (Liguria region) and North Africa (Algeria and Tunisia), 
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and O. patens subsp. canariensis occurring in the Canary Islands (Orsenigo et al. 2016). 
Several authors have considered O. canariensis (syn. O. patens subsp. canariensis) and 
O. patens (syn. O. patens subsp. patens) as sister species (e.g., Bateman et al. 2003; Ber-
nardos et al. 2006), unlike WCSP (2020), in which O. canariensis is considered as the bas-
ionym of O. patens subsp. canariensis. Although not resolving relationships in O. patens 
s.l., ITS-based phylogenetic analyses showed that O. patens s.l. is the sister group of O. 
spitzelii (Bateman et al. 2003), a species predominantly found in Mediterranean regions, 
including northern Africa and western Asia, with outlying populations on the island of 
Gotland. A recent study on seed micromorphology of O. patens subsp. patens, however, 
identified some similarities with the O. mascula group (Calevo et  al. 2017), a group of 
taxa distributed in Europe, north-western Africa and western Asia, thus opening up the 
hypothesis of an allotetraploid origin. Orchis patens is assessed in the Italian (Orsenigo 
et al. 2016) and European IUCN Red Lists (Rankou 2011) as Endangered (EN), and in the 
Mediterranean IUCN Red List (Calevo et al. 2018) as Vulnerable (VU), but all the assess-
ments agree that, given the clear morphological differences between subspecies and the 
lack of studies investigating genetic diversity, clarifying taxonomic uncertainties at species 
and subspecies levels should be a priority for the conservation of O. patens s.l.

Moreover, although O. patens is reported as the only tetraploid species of the genus 
(Mrkvicka 1992; Pridgeon et al. 2001), it is not clear whether different cytotypes (ploidy 
levels) occur (Bernardos et al. 2006) and codominant markers, especially microsatellites, 
may provide indirect information through the allele counts observed (Besnard and Baali-
Cherif 2009; Gompert and Mock 2017). In this study, we designed new nuclear microsatel-
lite markers to elucidate genetic structure and diversity in O. patens s.l., which will aid in 
the development of appropriate conservation strategies. In particular, our aims were to i) 
ascertain the occurrence of gene flow among populations, with a focus on indirectly detect-
ing differences in ploidy; ii) evaluate the infraspecific delimitation and taxonomic rank of 
O. patens subsp. patens and O. patens subsp. canariensis; iii) verify the potential use and 
informativity of the markers herein developed in other congeneric species.

We refer to Canarian populations as O. canariensis and to African and Italian popula-
tions as O. patens s.s. from here on.

Materials and methods

Plant material

We collected leaf samples from populations of both subspecies, representative of the distri-
bution range of the species. Samples of O. patens s.s. were collected in north-western Italy 
(in figures referred to as OP samples, Fig. 1a and d), in four localities of the Liguria region 
(16 samples from Romaggi, 11 samples from Breccanecca, 12 samples from Portofino and 
six samples from Capreno), and in two localities of Algeria (Fig. 1b and e): ten samples 
from Ait Zikki, in the Bejaia region (in figures referred to as OPAZ samples), and ten sam-
ples from Ain Talhi, in the Souk-Ahras region (in figures referred to as OPSA samples), 
carefully avoiding natural hybrids. Samples of O. canariensis (Fig. 1c and f) were collected 
from Tenerife (ten samples, in figures referred to as TN), Gran Canaria (ten samples, in 
figures to referred as GC) and La Gomera (nine samples, in figures referred to as LG). Col-
lection of plant material was performed after requesting permission from the competent 
authorities and respecting regional rules.
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DNA extraction and Illumina sequencing

Total genomic DNA was extracted from silica-dried leaf tissues using the DNeasy Plant 
Mini Kit (QIAGEN) according to the manufacturer’s instructions, after disruption with 
TissueLyser. The quantity and quality of DNA samples were assessed by spectrophotome-
try (ND-1000 Spectrophotometer NanoDropH; Thermo Scientific, Wilmington, Germany) 
and by electrophoresis on a 1% agarose gel.

A genome-skimming approach (Straub et al. 2012; Dodsworth 2015) was used for the 
detection of microsatellites (Viruel et  al. 2018; Landoni et  al. 2020). Genomic libraries 
were prepared using NEBNext® UltraTM II DNA Library Prep Kit for Illumina® (New 
England Biolabs, Ipswich, MA, United States) with AMPure XP magnetic beads for size 
selection (300–350  bp) and NEBNext® Multiplex Oligos for Illumina® (Dual Index 
Primer Sets I and II) as barcodes for simultaneous sequencing (Viruel et al. 2019). Library 
quality was evaluated using a QuantusTM fluorometer (Promega Corp.) and an Agilent 
4200 TapeStation (Agilent Technologies, Santa Clara, CA, United States). Multiplexed 

Fig. 1  Inflorescences and leaves of Orchis patens s.s. from Italy (a, d) and Algeria (b, e), and O. canarien-
sis from Gran Canaria (c) and La Gomera (f). It is possible to notice differences in morphology and colours. 
In particular, leaves in O. canariensis (f) are larger and more rounded than those lanceolate of the sub-
species patens (d, e). Furthermore, leaves in the Italian populations (d) present pale spots that are instead 
absent in the African populations (e), the one described by Desfontain (1799). Pictures by Jacopo Calevo 
(a, c, d), Khellaf Rebbas (b, e) and Ángel B. Fernandez (f)
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libraries were then sequenced on an Illumina MiSeq (Illumina, Inc.) lane. Trimmomatic 
v0.35 (Bolger et  al. 2014) was used to remove low-quality reads and adapter sequences 
flagged by FastQC v0.11.7 (Andrews 2010).

Microsatellite design and analysis

Microsatellites were identified and primers designed with MSATCOMMANDER 1.0.8 
(Faircloth 2008); duplicate reads and those containing more than one SSR array were man-
ually checked and removed. Primers fulfilling the following criteria were selected: optimal 
size 18–22  bp, not directly flanking the SSR motif, lacking ambiguous bases, low self- 
and pair-product complementary parameters, amplicon expected size < 300 bp, and melting 
temperature (Tm) difference < 1.5 °C (Viruel et al. 2018).

Preliminary screening was carried out for 40 nuclear primer pairs on a 2% agarose gel. 
After testing and optimization of primers with a subset of samples, the final set of mark-
ers consisted of 12 microsatellite primer pairs (Table 1);other primer pairs were discarded 
due to issues with reproducibility and PCR product yield, possibly resulting from the tetra-
ploid status of the species. Representative sequences for the microsatellite sequences were 
deposited in GenBank (accession numbers MT799099-MT799110).

PCR mix was prepared by adding 6 μL of (2 ×) DreamTaq PCR MasterMix (Ther-
moFisher Scientific), 0.5 μL of 0.4% (w/v) bovine serum albumin (BSA), 0.5 μL of each 
primer (10 μM), 1 μL of template DNA (ca. 10 ng/μL), and  H2O up to a final volume of 
10 μL. Amplifications were performed with the following PCR conditions: 4 min of initial 
denaturation at 94 °C followed by 25 to 35 cycles (see Table 1 for primer details) of 30 secs 
of denaturation at 94 °C, 30 secs of annealing (see Table 1 for temperature details), 45 secs 
of elongation at 72 °C and an extra extension of 10 min at 72 °C, with the exception for 
primer pairs Opat_27 for which it was necessary to perform a touch-down PCR by decreas-
ing annealing temperature of 0.2 °C at each cycle (see Table 1). One μL of PCR product 
was added to 10 μL HiDi™ formamide (Applied Biosystems) and 0.15 μL 500 ROX Size 
Standard (Applied Biosystems) and capillary electrophoresis was run on an ABI3730 DNA 
Analyzer (Applied Biosystems).

Fragment sizing was performed in GeneMapper v.5 (Applied Biosystems) and peaks 
were visually checked before assigning final allele sizes. We inferred the minimum chro-
mosome number from the maximum number of peaks detected; this procedure has been 
shown to give results consistent to flow cytometry (Besnard and Baali-Cherif 2009; Stark 
et al. 2011; Nemorin et al. 2013; Teixeira et al. 2014; Donkpegan et al. 2015; Gompert and 
Mock 2017). We used the R package polysat v1.7 (Clark and Jasieniuk 2011; Clark and 
Schreier 2017) to explore segregation patterns in our microsatellite loci. Understanding 
whether loci are polysomic or are inherited as separate subgenomes can give some clues 
about the origin of polyploidy in O. patens and, most importantly, can inform about the 
correct treatment of the dataset for subsequent analyses (Dufresne et al. 2014; Hardy 2016; 
Meirmans et al. 2018; Meirmans and Liu 2018). To avoid the bias induced by population 
structure, we kept individuals from Italy, Algeria and the Canary Islands as three separate 
populations before performing the analyses in polysat; we used the function processData-
setAllo with default parameters and excluding the locus Opat_38 (see results).

To check the transferability of the primers hereby developed, we also tested them in five 
other ‘non-anthropomorphic’ Orchis taxa, O. provincialis, O. mascula subsp. mascula, O. 
mascula subsp. ichnusae, O. spitzelii, and O. × fallax (O. patens × O. provincialis), and four 
anthropomorphic species, O. anthropophora, O. simia, O. militaris and O. purpurea.
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Table 1  Primer pairs designed for nuclear microsatellite loci in Orchis patens s.l 

GenBank accession numbers: MT799099-MT799110. Ta, annealing temperature

Primers ID Msat motif Primer sequences Expected 
length 
(bp)

Length (bp) Ta(°C) PCR Cycles

Opat_11 (ACT)13 (FAM) GGT GAA ATG AGT 
CGG AAG TC

221 81–239 55 30

ACC GCA CTG CAA ATA AAT 
CC

Opat_13 (CCG)9 (JOE) GAA CCG TAC CGA GTG 
AGA C

150 133–147 55 30

CTG AGC TAT GAA CCA GTC 
CC

Opat_14 (ACAT)10 (JOE) GGG TAG GGC AGC TAT 
AAA GG

235 209–239 55 35

AGA GAA GGT GGA AGA AGG 
TG

Opat_20 (AC)17 (FAM) CTA ACG CGG TCC 
AAT TCT TC

112 91–116 59 30

GGT ACT ATC GGG TTG GCC 
Opat_27 (CT)14 (FAM) GTT CAC AAC ATT GCG 

AGA GG
173 129–183 60–0.2 30

TCT TGG GAG GTT ACA GCT 
TC

Opat_29 (CTT)11 (JOE) ATG GTT CCT CTG GTT 
CTT CG

130 110–139 53 25

CAA TAG CCT TCT TTG CCG TC
Opat_30 (AG)13 (FAM) TGT CAC CAC GGA 

ACA GTT AC
173 152–218 53 30

CTC TCC AAA CTC CTC CAA 
CC

Opat_32 (CT)20 (FAM) CCA TCA CAT TGA CTG 
CAT CTG 

197 168–204 53 25

GAA TTC ACG TCT CTG GGC A
Opat_34 (CT)14 (FAM) AGG CAG GTC TGA 

TTC GAT ATG 
174 153–193 52 30

GAA CAC GAC ATT GCC CAG A
Opat_36 (CT)8 (JOE) TAT CCA CTG CTC GCT 

ATG TG
134 127–177 53 30

CAC ATC AGC TTC GAT GGA 
GA

Opat_38 (CT)10 (JOE) TGC AAC AAC CAC TTT 
CTC AC

115 101–103 53 25

CTA GCA CAA GGA TGC TGA 
GT

Opat_39 (GA)15 (FAM) GGA AGT TAG TCC CTC 
CGA AC

147 138–236 53 30

CTC CAA GTC AAT TTC GCA 
TCT 
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Genetic diversity and structure

As we did not have prior information about the extent of gene flow in O. patens s.l., we 
conducted the analyses both by grouping individuals based on geographical regions (i.e., 
Italy, Algeria and the Canary Islands) and on sampling localities (i.e., nine sampling locali-
ties across the three regions).

Standard population genetic parameters such as mean number of alleles (Num), effec-
tive number of alleles (Eff_num), observed heterozygosity (HO), gene diversity (HS) and 
inbreeding coefficient GIS based on the 12 nuclear microsatellites were estimated using the 
program GenoDive v.3 (Meirmans and Van Tienderen 2004; Meirmans 2020). In addition, 
we performed a hierarchical analysis of molecular variance (AMOVA; Meirmans 2012) 
based on the Rho-statistics (ρ-statistics), which is ploidy-independent (Ronfort et al. 1998). 
All analyses in GenoDive were performed by applying the correction for unknown dos-
age of the alleles. Test for deviations from Hardy–Weinberg proportions was not attempted 
since it was not possible to record allelic dosage information for all the loci (Meirmans 
et al. 2018; Gargiulo et al. 2019b). We used the programme SPAGeDI v.1.5 (Hardy and 
Vekemans 2002) to produce a matrix of pairwise Rho values testing significance with 
20,000 permutations; in addition, we estimated the selfing rate per locality using the stand-
ardized identity disequilibrium (Hardy 2016). Monomorphic loci were excluded from the 
computations.

We further analyzed genetic structure using different approaches. In polysat, we con-
structed a neighbor-joining tree based on a square dissimilarity matrix and we performed 
a principal component analysis (PCA) based on Bruvo distances (Bruvo et al. 2004). The 
model-based clustering procedure implemented in Structure v2.3.4 (Pritchard et al., 2000) 
was used to evaluate the number of different genetic clusters, K. We applied the Reces-
sive Alleles model (Falush et al. 2007) to handle missing allelic dosage information. Pre-
liminary analyses were conducted both with the Admixture model and the Non-Admixture 
model, testing 1 < K < 8. The final analysis was conducted with K ranging from 1 to 8, with 
a 5 × 105 burn-in period, 5 × 105 MCMC runs, and ten iterations per each K value, using the 
Non-Admixture model for the total dataset, and the Admixture model for subsets based on 
sampling locations and infraspecific delimitations. The most likely value of K was evalu-
ated using ΔK (Evanno et al. 2005) and the estimators introduced by Puechmaille (2016) 
for uneven datasets (MedMedK, MedMeanK, MaxMedK and MaxMeanK) implemented 
in STRU CTU RESELECTOR (Li and Liu 2018). Structure results were summarized with 
CLUMPAK (Kopelman et al. 2015). Simulations studies have shown that Structure is par-
ticularly robust compared to other clustering methods when dosage information is incom-
plete, even in the presence of mixed ploidies (Stift et al. 2019).

Results

Microsatellite design and analysis

Selected primer pairs, microsatellite motifs, and size ranges are reported in Table  1. 
The 12 newly designed nuclear microsatellite primer pairs amplified all samples and 
the resulting loci were variable with some exceptions. In particular, locus Opat_38 was 
not variable for the Italian O. patens but showed at least two alleles (Table  2) in the 
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Table 2  Locus-based estimates of genetic diversity for the Orchis patens s. l. populations

N number of individuals studied per population, Num average number of alleles per locus, Eff_num the 
effective number of alleles, HO observed heterozygosity, HS gene diversity, GIS inbreeding coefficient. 
Peaks: maximum number of peaks observed in individual electropherograms
* Notice that Opat_38 was monomorphic in the Italian populations of O. patens and polymorphic in Algeria. 
No amplification product was detected in the samples from the Canary Islands. Opat_39 was monomorphic 

Loci ID (populations) N Num Eff_num HO HS GIS Peaks

Italy 45
Opat_11 9 3.978 0.859 0.754 − 0.139 4
Opat_13 3 2.118 0.683 0.532 − 0.285 3
Opat_14 5 3.354 0.852 0.707 − 0.205 4
Opat_20 4 1.571 0.280 0.371 0.246 2
Opat_27 6 2.319 0.689 0.573 − 0.201 4
Opat_29 5 2.123 0.313 0.540 0.421 3
Opat_30 6 4.601 0.893 0.788 − 0.132 4
Opat_32 9 5.488 0.854 0.824 − 0.036 4
Opat_34 8 4.051 0.837 0.759 − 0.103 3
Opat_36 6 2.234 0.526 0.559 0.059 3
Opat_38* 1 1.000 0.000 0.000 – 1
Opat_39* 8 2.896 0.820 0.659 − 0.245 3
Mean (excluding monomorphic) 6.273 3.157 0.691 0.642 − 0.056
Algeria 20
Opat_11 11 4.418 0.900 0.786 − 0.145 3
Opat_13 5 2.463 0.721 0.605 − 0.192 3
Opat_14 7 3.527 0.842 0.728 − 0.156 3
Opat_20 6 3.867 0.258 0.788 0.672 2
Opat_27 5 1.317 0.213 0.251 0.154 4
Opat_29 7 4.449 0.463 0.809 0.428 2
Opat_30 10 5.758 0.792 0.844 0.062 4
Opat_32 10 4.894 0.925 0.808 − 0.145 3
Opat_34 11 6.617 0.771 0.869 0.113 4
Opat_36 3 1.311 0.162 0.251 0.352 2
Opat_38* 2 1.487 0.000 0.364 1.000 1
Opat_39* 9 4.090 0.875 0.768 − 0.140 3
Mean 7.167 3.683 0.577 0.656 0.121
Canary Islands 29
Opat_11 5 2.995 0.848 0.673 − 0.260 3
Opat_13 2 1.075 0.066 0.073 0.090 2
Opat_14 4 2.145 0.718 0.540 − 0.331 3
Opat_20 13 6.497 0.480 0.872 0.450 2
Opat_27 15 10.416 0.621 0.925 0.329 4
Opat_29 8 3.487 0.422 0.736 0.426 2
Opat_30 22 4.984 0.937 0.808 − 0.160 3
Opat_32 8 5.098 0.330 0.835 0.604 2
Opat_34 11 6.055 0.491 0.859 0.428 2
Opat_36 2 1.231 0.000 0.201 1.000 1
Opat_39* 1 1.000 0.000 0.000 – 1
Mean (excluding monomorphic) 9 4.398 0.491 0.716 0.257
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Algerian populations, and it did not show any amplification product in the samples from 
the Canary Islands. Locus Opat_39, with multiple alleles in O. patens from Italy and 
Algeria (Table 2), was not variable for samples from the Canary Islands.

The number of alleles as inferred by the maximum number of peaks in the electro-
pherograms was four in all populations. Every genotyped individual had at least one 
locus displaying three peaks, except GC8 in the Canary Islands, which exhibited two 
peaks at every locus (Table  2). Therefore, we did not find strong evidence of popu-
lations with mixed ploidy. The analysis in polysat showed that polysomic inheritance 
prevailed at all loci, with one exception represented by locus Opat_36 in the Algerian 
samples (Fig.  2). Consequently, data were treated as for autopolyploid species in the 
subsequent analyses.

To verify the transferability of these microsatellite loci, we tested the primers in 
other Orchis taxa (Table 3). Opat_27, Opat_32, Opat_34, Opat_36 and Opat_38 did not 
amplify O. provincialis samples (with locus Opat_38 being variable only in Algerian 
O. patens). All the primers were transferable to O. × fallax, the natural hybrid between 
O. patens and O. provincialis, with the only exception of Opat_13 and Opat_38 that 
showed no variability (they were not variable in O. provincialis and O. patens, respec-
tively). Six out of 12 primer pairs successfully amplified and showed variability also 
in O. mascula subsp. mascula and O. mascula subsp. ichnusae samples. Three primer 
pairs amplified and showed variability also in O. spitzelii. Furthermore, Opat_13 ampli-
fied and was variable also in four ‘anthropomorphic’ species: O. anthropophora, O. 
simia, O. militaris and O. purpurea (Bersweden et al. in rev.).

in the samples from the Canary Islands, but polymorphic in O. patens from Italy and Algeria. All mean val-
ues of genetic diversity indices were computed after the exclusion of Opat_38 and Opat_39

Table 2  (continued)

Fig. 2  Examples of heatmaps of the P-values for correlations between alleles in Algerian populations; the 
colour gradient represents the range of P-values (red: 0; light yellow: 1). Left: locus Opat_36 showing a dis-
omic pattern in the Algerian individuals. Right: locus Opat_20 showing a polysomic pattern
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Genetic diversity and structure

Genetic diversity parameters for each population and locality are summarized in 
Tables 2 and 4. The results indicate that genetic diversity indices are similar across all 
populations and localities, except Tenerife, which shows slightly lower heterozygosities 
and number of alleles (Table 4). The number of effective alleles (Eff_Num) per popula-
tion varied between 3.2 (in Italy, averaged over 11 polymorphic loci) and 4.4 (in the 
Canary Islands, averaged over ten polymorphic loci). The lowest Ho was found in the 
Canary Islands populations (0.49, reflecting the low HO observed in Tenerife; Table 4) 
and the highest in the Italian populations (0.69); HS ranged between 0.64 in Italy and 
0.72 in the Canary Islands (Table  2). Negative values of GIS were found in all popu-
lations, possibly reflecting the tetraploid status of the species; however, locus-specific 
high GIS were found for Opat_20 and Opat_29, possibly indicating null alleles or drop-
out (i.e., alleles that do not produce amplification by PCR). The highest selfing rate, as 

Table 3  Result of cross-species transferability in Orchis taxa using the 12 microsatellite primers developed 
from Orchis patens s.l 

X-markers successfully amplified a variable PCR product; O-markers successfully amplified but the product 
was not variable;—markers that did not show any amplification pattern; NA untested

Species Opat markers

11 13 14 20 27 29 30 32 34 36 38 39

O. patens (Italy) X X X X X X X X X X O X
O. patens (Algeria) X X X X X X X X X X X X
O. canariensis X X X X X X X X X X - O
O. provincialis O O X X - O O - - - - X
O. mascula X X X NA NA X O X NA X NA O
O. mascula subsp. ichnusae X X X NA NA X O X NA X NA O
O. spitzelii NA NA NA NA NA NA NA X NA X NA X
O. × fallax X O X X X X X X X X O X

Table 4  Genetic diversity indices as estimated from samples of Orchis patens s. l. collected in each locality

Monomorphic loci were excluded from the computations
* Selfing rate based on the standardised identity disequilibrium, as calculated in SPAGeDI, using allelic phe-
notypes. SE: standard error based on jackknife over loci

Locality Sample Size Num Eff_num HO HS GIS Selfing Rate (SE)*

Portofino (Italy) 12 5.1 3.085 0.653 0.622 -0.049 0.072 (0.159)
Breccanecca (Italy) 11 4.4 3.196 0.706 0.648 -0.09 0
Romaggi (Italy) 16 4.6 2.942 0.675 0.639 -0.056 0.098 (0.139)
Capreno (Italy) 6 4.3 2.990 0.689 0.666 -0.035 0 (0.157)
Bejaia (Algeria) 10 6 3.497 0.653 0.69 0.054 0.288 (0.187)
Souk-Ahras (Algeria) 10 5.1 3.149 0.557 0.634 0.122 0.035 (0.238)
Tenerife (Canary Islands) 10 2.8 2.070 0.44 0.439 -0.003 0 (0.367)
Gran Canaria (Canary Islands) 10 4.7 2.921 0.503 0.62 0.188 0
La Gomera (Canary Islands) 9 6.8 3.893 0.535 0.66 0.189 0.160 (0.223)
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computed in SPAGeDI was found in the Algerian locality OPAZ; absence of selfing was 
estimated in Italian and Canarian localities (Table 4).

The hierarchical AMOVA (Table 5) showed most of the variation at the individual 
level, which is expected when using polymorphic (and polyploid) microsatellite loci. 
Moreover, differentiation among groups was the highest for the group formed respec-
tively by Algerian/Italian populations and the Canary Islands populations (Rho_ct: 
0.421) and the lowest when one of the groups included Italian and Canarian populations 
(Rho_ct: 0.162). In parallel, the matrix of pairwise Rho-values indicated strong differen-
tiation among populations in Italy, Algeria and the Canary Islands and also among the 
individuals collected in different islands of the archipelago (Fig. 3). When performing 
AMOVA on the Italian subpopulations, for which we had more localities and individu-
als (i.e., 45), the results (Table 6) pointed to higher levels of variation within (89.8%) 
rather than between the subpopulations (10.2%).

The neighbor-joining tree based on the square matrix of genotype dissimilarities 
obtained with polysat indicated three clear clusters (Fig.  4). In particular, the cluster 
including all the samples from the Canary Islands (light blue) is divergent from the 
other two. The same pattern was observed in the principal component analysis (PCA) 
based on Bruvo distances (Fig. 5).

DeltaK values computed on the output of the Structure analysis indicated a strong 
signal for K = 2 (Supplementary information Fig. S1), whereas the other estimators 
(MedMedK, MedMeanK, MaxMedK and MaxMeanK) indicated three clusters (Supple-
mentary information Fig. S2). The clusters underlined, once again, a strong genetic dif-
ferentiation between O. patens s.s. and O. canariensis) (Fig. 6).

The analysis conducted on the Italian and Algerian populations identified four poten-
tial clusters (Supplementary information Fig. S3), whereas the analysis conducted on 
the samples from the Canary Islands identified three clusters (Supplementary informa-
tion Fig. S6). In both cases, it was possible to observe an important division driven by 
regionality (Fig. 7) which, in the Canary Islands, are consistent with the three islands 

Table 5  Hierarchical analyses of 
molecular variance (AMOVA) 
of Orchis patens s. l., using 
a ploidy-independent Infinite 
Allele Model (Rho-statistics)

OP-O. patens, Italy; AL-O. patens Algeria; CI-O. canariensis, Canary 
Islands; % Vari.-Percentage of variation, 9999 permutations; Rho_st 
proportion of variation within locations; Rho_sc proportion of vari-
ation among locations within groups; Rho_ct proportion of variation 
among groups; *** p < 0.001. Monomorphic loci were excluded from 
the computation

Groups Source of Variation % Vari F-stat F-value

OP
AL
CI

Within locality
Among localities within group
Among groups

0.468
0.119
0.413

Rho_st
Rho_sc
Rho_ct

0.532
0.203***

0.413***

OP-AL
CI

Within locality
Among localities within group
Among groups

0.415
0.163
0.421

Rho_st
Rho_sc
Rho_ct

0.585
0.282***

0.421***

AL-CI
OP

Within locality
Among localities within group
Among groups

0.477
0.288
0.235

Rho_st
Rho_sc
Rho_ct

0.523
0.376***

0.235
OP-CI
AL

Within locality
Among localities within group
Among groups

0.482
0.357
0.162

Rho_st
Rho_sc
Rho_ct

0.518
0.425***

0.162
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where samples were collected. For each of the Algerian and the Italian subsets, two 
clusters were identified (Supplementary information Figs. S4–S5) (Fig. 7).

Discussion

Preserving genetic variation is imperative to ensure the existence of any species, especially 
under anthropogenic and environmental stresses, including climate change (Hewitt 2004; 
Jump et al. 2009). For this reason, rare species with a narrow distribution or a fragmented 
habitat, and therefore potentially low genetic diversity, are a priority for studies aimed at 
investigating genetic diversity to establish appropriate conservation strategies. Orchidaceae 

Fig. 3  Heatmap of the pairwise differentiation among Orchis patens s.l. in different sampling localities, 
using the Rho-statistic as calculated in SPAGeDI on the 12 microsatellite loci

Table 6  Analysis of molecular variance (AMOVA) on the Italian subpopulations (45 individuals, four sub-
populations) by using a ploidy independent Infinite Allele Model

*** p < 0.001

Source of variation SSD d.f MS Variance 
components

%Var F-stat F-value

Within population 73.023 41 1.781 1.781 0.898 – –
Among population 11.926 3 3.975 0.202 0.102 Rho_st 0.102***



1305Biodiversity and Conservation (2021) 30:1293–1314 

1 3

Fig. 4  Neighbor-joining tree of Orchis patens s.l. based on a square dissimilarity matrix based on the 12 
microsatellite loci. There are three clear clusters consistent with sampling countries. A “canariensis” cluster 
(TN, GC and LG samples; light blue), an Italian cluster (OP samples; blue) and an Algerian cluster (OPAZ 
and OPSA samples; gold)

Fig. 5  Principal component analysis (PCA) of Orchis patens s.l. based on Bruvo distances among individu-
als, based on the 12 microsatellite loci. The three major groups are consistent with the Neighbor-joining 
tree, but it is possible to observe further diversification within populations. In particular, African samples 
(gold) seem to cluster in two minor groups (samples were collected in two different locations in Algeria). 
Canary Islands—light blue; Italy—blue; Algeria—gold)
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are characterized by a diverse range of reproductive strategies (Cozzolino and Widmer 
2005; Duffy and Johnson 2017; Schatz et al. 2020), geographic distribution and life histo-
ries that are reflected in a variety of patterns in the population genetic structure of different 

Fig. 6  a Structure clustering results for 94 samples of Orchis patens s.l. (45 samples from Italy, 20 from 
Algeria and 29 samples from Canary Islands) based on the variation at 12 microsatellite loci. Barplots 
are reported for K = 2 (top) and K = 3 (bottom), as determined using the Evanno method (Fig. S1) and the 
Puechmaille’s estimators (Fig. S2); b Structure barplots of genetic differentiation in O. patens s.s. for all the 
Italian and Algerian sampling localities included in the present study

Fig. 7  Structure barplots of genetic differentiation in Orchis patens s.l. for all the sampling localities 
included in the present study, based on the variation at 12 microsatellite loci. Each barplot is based on the 
most likely K value retrieved using the Evanno method and the Puechmaille’s estimators (see Supplemen-
tary Figures)
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species (Swarts et al. 2009). Clear species delimitations are important for orchids because 
many of the currently recognized species are of conservation concern and threats continue 
to increase due to habitat degradation (Cozzolino et al. 2003; Fay 2018). In this study we 
used 12 newly developed nDNA markers to determine the level of genetic differentiation 
among populations of the O. patens polyploid group, with a view to resolving taxonomic 
uncertainties for conservation purposes (Rankou 2011; Swarts et al. 2014; Orsenigo et al. 
2016; Calevo et al. 2018; Médail and Baumel 2018).

Genetic structure and taxonomic delimitation

Our analyses of genetic differentiation based on different approaches revealed the same 
clear clustering of samples (Figs. 3, 4, 5, 6), suggesting that the microsatellite data pre-
sented here carry a clear signal of population subdivision. In particular, samples from the 
Canary Islands are included in a genetic cluster divergent from the Italian and Algerian 
populations and are, in turn, characterized by genetic subdivision depending on the island 
of provenance (Figs. 3, 7; Table 5). The failure to amplify a product using Opat_38 in the 
Canary Island populations further implies genetic divergence between O. canariensis and 
O. patens s.s. This locus was successfully amplified in the samples from Italy and Algeria. 
Even though both the Italian and Canarian plants were recently found to share the same 
mycobiont showing a high level of phylogenetic conservativism in their symbiotic interac-
tions (Calevo et al. 2020), our results support the separation of O. canariensis as a distinct 
(probably sister) species, as initially described from Tenerife by Lindley (Orchis canarien-
sis, Lindley 1835) based on morphological characters and as recognised by some authors 
(e.g., Aceto et  al. 1999; Bateman et  al. 2003) based on phylogenetic analyses. Analysis 
of the genetic structure based on microsatellites has proved to be informative in reveal-
ing cryptic infraspecific structure and subspecies delimitation, for example in the genera 
Greenwayodendron (Lissambou et al. 2019) and Lophira (Ewédjè et al. 2020).

The genetic structure of O. canariensis, as characterized by the number of subpopu-
lations and the frequencies of different genetic variants (alleles) in each subpopulation 
(Chakraborty 1993), might be indicative of a high degree of genetic isolation among the 
subpopulations on the different islands. The strong clustering of Canarian populations (that 
mirrors the island of provenance) has been observed in other endemic plants of the islands 
such as Lotus sessilifolius (Yang et al. 2018) and Bethencourtia spp. (Rodríguez-Rodríguez 
et al. 2018), and the genetic differentiation among island populations may reflect the very 
beginning of speciation as proposed for the endemic Kleinia neriifolia by Sun and Vargas-
Mendoza (2017). This, as suggested by the latter authors, might be expected as the ocean 
acts as a natural barrier among the islands.

At the same time, there is also some evidence of differentiation between the Italian and 
Algerian populations of O. patens s.s. (Figs. 3, 4, 5, 6, 7), which provides a genetic basis 
for the treatment of the Italian populations as a subspecies of Orchis patens. As mentioned 
for O. canariensis, microsatellite amplifications revealed a subpopulation-specific pat-
tern (Tables 2 and 6) even among samples from Italy and Algeria, which may suggest that 
mutations in the priming sites are consistent with intraspecific divergence. This may be 
promoted by the tetraploid status of O. patens, in which the two chromosome sets undergo 
a range of somatic mutations and diverge if gene flow is reduced (Moody et al. 1993; Meir-
mans and Liu 2018). Morphologically, the Italian populations are characterized by slightly 
spotted leaves (Fig. 1d), whereas spots are absent in African individuals (Fig. 1e) and were 
not mentioned in the first description of the species from Algeria (Desfontaines 1799). 



1308 Biodiversity and Conservation (2021) 30:1293–1314

1 3

Further morphological studies should be focused on detecting morphometric differences 
among the subspecies based on their entire phenotype, in order to strengthen their taxo-
nomic circumscription and to collect more data about functional differences towards their 
conservation.

Influence of polyploidy on current genetic diversity patterns

Although populations of O. patens have experienced natural and anthropogenic fragmenta-
tion, and fruit set is low and affected by hybridization with the sympatric species O. pro-
vincialis, the genetic structure found here reflects historical gene flow, especially between 
Italy and Algeria. Orchis patens may have been relatively common in the past within its 
narrow range and therefore the genetic effects of recent fragmentation and reduction in 
population number may yet to be detected. In polyploid species, loss of genetic diversity 
by drift is slowed down because of the availability of multiple allele copies compared to 
diploid species (Moody et  al. 1993; Meirmans and Liu 2018). In addition, the effect of 
gene flow is amplified as more gene copies are involved. Consequently, the effects of frag-
mentation and genetic erosion may be not evident until more generations have elapsed. The 
levels of heterozygosity we found in O. patens are compatible with that of other polyploid 
species (Gargiulo et al. 2019b; Hagl et al. 2020), and in particular tetraploid orchid popu-
lations, such as Gymnadenia conopsea (HO = 0.77; Gustafsson and Thorén 2001) and the 
Dactylorhiza majalis complex (HO = 0.77 averaged across tetraploids; Balao et al. 2016). 
It is also possible that the current distribution of O. patens reflects long-distance dispersal 
from one of the three areas towards the other two, although our results do not allow us to 
speculate further on the most likely explanation.

Regarding the origin of O. patens s.l., the group has been considered sister of the O. 
spitzelii group based on an analysis of the ITS region (Bateman et al. 2003). These simi-
larities have led to the hypothesis that O. patens could have been derived from the latter 
species as an autotetraploid, but a recent study based on seed micromorphology as a taxo-
nomic tool also highlighted similarities with the O. mascula group (Calevo et al. 2017), 
suggesting the possibility of an allopolyploid origin. Our microsatellite analysis did not 
recover a segregation pattern typical of allopolyploid species (allopolyploidy is generally 
associated with disomic inheritance, at least for some loci). However, current segregation 
patterns are not always informative of past events, as the inheritance may shift from dis-
omic to polysomic and vice-versa (Stift et al. 2008). However, more analyses are needed 
to better understand the origin of O. patens and the potential taxa involved in the allopoly-
ploidization (Ramsey and Schemske 1998; Soltis et al. 2010; Barker et al. 2015).

Conclusions and implications for conservation

Combining molecular evidence from our newly developed nuclear microsatellite markers 
with the geographical distribution of the studied populations, we propose the recognition 
of O. patens subsp. canariensis as a separate (possibly sister) species, i.e., O. canariensis, 
and the treatment of the Italian populations of O. patens as a distinct subspecies. Moreover, 
the primer set for the 12 microsatellite loci with transferability potential represents a useful 
tool for interspecific research in the genus Orchis. Our study of species delimitation within 
the O. patens s.l. complex can offer guidelines for further morphological and genetic inves-
tigations and conservation studies. Therefore, we recommend the following actions:
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• Orchis canariensis should be assessed for the IUCN red list;
• the Mediterranean assessment of O. patens (Calevo et al. 2018) should be revised tak-

ing into account the taxonomic delimitation suggested here (which will probably lead 
to a higher category of threat), the evidence of restricted gene flow, narrow range and 
low number of individuals (Orsenigo et al. 2016);

• given that the availability of the main symbiotic fungus of O. patens s.l. at global scale 
seems not to be a limiting factor for their distribution (Calevo et al. 2020), conservation 
actions aimed at preventing further habitat fragmentation should be taken. In particu-
lar, local authorities and agencies in Algeria, Tunisia (where the natural population is 
already potentially extinct), Italy and the Canary Islands should institute measures to 
protect remaining individuals from damage and illicit collection.

• Further non-destructive sampling, even if difficult due to the rarity and low density of 
the species, may be required to better investigate the level of inbreeding and its contri-
bution to the reproduction of the populations. Once reproduction mechanisms are clari-
fied, strategies which facilitate pollination should be taken into account, also consider-
ing the low fruit-set of the species.
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