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Abstract Land-use change is one of the greatest threats to biodiversity, especially in the

tropics where secondary and plantation forests are expanding while primary forest is

declining. Understanding how well these disturbed habitats maintain biodiversity is

therefore important—specifically how the maturity of secondary forest and the manage-

ment intensity of plantation forest affect levels of biodiversity. Previous studies have

shown that the biotas of different continents respond differently to land use. Any conti-

nental differences in the response could be due to differences in land-use intensity and

maturity of secondary vegetation or to differences among species in their sensitivity to

disturbances. We tested these hypotheses using an extensive dataset collated from pub-

lished biodiversity comparisons within four tropical regions—Asia, Africa, Central

America and South America—and a wide range of animal and plant taxa. We analysed

responses to land use of several aspects of biodiversity—species richness, species com-

position and endemicity—allowing a more detailed comparison than in previous syntheses.

Within each continent, assemblages from secondary vegetation of all successional stages
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retained species richness comparable to those in primary vegetation, but community

composition was distinct, especially in younger secondary vegetation. Plantation forests,

particularly the most intensively managed, supported a smaller—and very distinct—set of

species from sites in primary vegetation. Responses to land use did vary significantly

among continents, with the biggest difference in richness between plantation and primary

forests in Asia. Responses of individual taxonomic groups did not differ strongly among

continents, giving little indication that species were inherently more sensitive in Asia than

elsewhere. We show that oil palm plantations support particularly low species richness,

indicating that continental differences in the response of biodiversity to land use are

perhaps more likely explained by Asia’s high prevalence of oil palm plantations.

Keywords Oil palm � Community composition � Species sensitivity � Beta

diversity � Extinction filter � Biotic homogenization

Introduction

Land-use change is the greatest threat to terrestrial biodiversity in the tropics (Sala et al.

2000; Jetz et al. 2007; Pekin and Pijanowski 2012). Tropical forests are the most biodiverse

terrestrial habitat, with around 50% of the world’s species (Dirzo and Raven 2003; Wright

2005), but roughly 68,000 km2 of tropical forest is lost annually (FAO and JRC 2012)—an

amount that could be increasing by 3% ([2000 km2) each year (Hansen et al. 2013). Of the

11 million km2 that remain, nearly half (5 million km2) is considered to be either degraded

(ITTO 2002) or secondary forest that has regrown after human use (e.g. agricultural

abandonment and clear felling: Wright and Muller-Landau 2006; Lewis et al. 2015) or

natural disturbances (e.g. fires and cyclones: Chazdon et al. 2009). Increasingly, both

primary and secondary forests are converted to plantation forest (Koh and Wilcove 2008;

Wilcove and Koh 2010; Carlson et al. 2013), especially in Asia where demand for palm oil

is a major driver of deforestation (Koh and Wilcove 2007; Fitzherbert et al. 2008). Our aim

here was to compare local (site-level) biodiversity among primary, secondary and plan-

tation forests, testing whether differences vary among continents and across a broad set of

taxa, and seeking to explain any differences that emerge.

Whether secondary forests are of value for biodiversity conservation has long been of

interest. While some studies of particular taxa have reported that secondary vegetation

supports high biodiversity (e.g. Barlow et al. 2007a, b; Berry et al. 2010; Struebig et al.

2013), others have not (e.g. Floren and Linsenmair 2005; Bihn et al. 2008; Gibson et al.

2011). One possible source of heterogeneity in effects is that the conservation value of

secondary vegetation could increase with successional stage, with older secondary vege-

tation approaching natural vegetation in terms of structural complexity (DeWalt et al.

2003) and site-level diversity (Brown and Lugo 1990; Veddeler et al. 2005; Martin et al.

2013; Newbold et al. 2015; Norden et al. 2015). In tropical regions, the recovery of site-

level diversity can be rapid, sometimes within 20–40 years (Dunn 2004), but assemblages

may take much longer than this to approach the species composition seen in primary

vegetation (Martin et al. 2013).

Plantation forests tend to have simpler vegetation architecture than primary or sec-

ondary forests (Fitzherbert et al. 2008) so it is unsurprising that they support less diverse

and compositionally distinct assemblages, across a range of taxa (e.g. vertebrates: Waltert
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et al. 2004; Sodhi et al. 2005; Freudmann et al. 2015, invertebrates: Nichols et al. 2007;

Barlow et al. 2007b; Gardner et al. 2008; Brühl and Eltz 2010; Barnes et al. 2014, mixed:

Newbold et al. 2015; 2016a, b). However, not all studies report such differences between

natural and plantation forests (e.g. Danielsen et al. 2009), suggesting responses may be

heterogeneous. Differences in site-level diversity might be attributable to stand age

(Bremer and Farley 2010; Taki et al. 2010; Wang and Foster 2015), or might reflect

differences in at least two other factors. First, plantations that are managed less intensively,

such as those including shade trees, could retain more of the original biodiversity than

more intensive plantations (Faria et al. 2007; Clough et al. 2009; but see la Mora et al.

2013). Such an effect may occur either within a crop type (e.g., cacao plantations with

more shade trees often support higher species richness: Clough et al. 2009) or between crop

types (e.g. oil palm plantations may be more intensive than other plantations due to their

uniform stand age and understorey clearance: Fitzherbert et al. 2008; Foster et al. 2011;

Wang and Foster 2015). Second, responses may vary among taxonomic groups (Newbold

et al. 2014; Chaudhary et al. 2016): for example, Lawton et al. (1998) found that plan-

tations supported fewer species of bird but more leaf-litter ant species than did primary

forest. If any of these factors tend to differ among regions, then the impact seen on

biodiversity may also differ regionally, a factor not usually accounted for in large-scale

analysis (e.g. Newbold et al. 2015).

Gibson et al. (2011) showed, in a global meta-analysis, that the impact of tropical forest

disturbance on biodiversity was more severe in Asia than in other regions (Africa, South

America and Central America). There are at least two major reasons why the response of

biodiversity to land use might vary among geographic regions, which are not usually

accounted for in large-scale analysis (e.g. Newbold et al. 2015). First, variation among

regions in the prevalence of different types or intensities of land use or in the sampling of

different taxonomic groups, which—as described above—will lead to differences in

observed responses of biodiversity to land use. Second, differences in the intrinsic sensi-

tivity of the biota to land-use change or land-use intensity (Gibson et al. 2011; Gerstner

et al. 2014; Chaudhary et al. 2016; De Palma et al. 2016; Newbold et al. 2016a). Such

differences in sensitivity could arise through regional differences in range size (Orme et al.

2006; Schipper et al. 2008), which probably correlates with ecological flexibility in the

face of environmental changes (Bonier et al. 2007; Cardillo et al. 2008; Slatyer et al. 2013),

or regional differences in land-use (Achard et al. 2002; Lambin et al. 2003), with longer

periods of land use possibly having already filtered out the most sensitive species—a

phenomenon referred to as an ‘extinction filter’—meaning that current land-use differences

have less of an impact (Balmford 1996). Although biogeography will also play a role in

shaping communities within continents (Corlett and Primack 2006), in order to capture

these effects data from a greater spatial grain would need to be utilised, which is not

available for this study.

Extinction filters, and disturbance generally, can affect more than merely numbers of

species. By favouring the establishment of ecologically-flexible or disturbance-tolerant

species, at the expense of disturbance-intolerant endemics, they can cause biotic homog-

enization (McKinney and Lockwood 1999; Arroyo-Rodrı́guez et al. 2013; Püttker et al.

2015; de Solar et al. 2015), i.e., an increase in similarity between communities in different

places. We assess biotic homogenisation in two ways: first, by analysing compositional

turnover (beta diversity) between pairs of sites (McKinney 2006; Devictor et al. 2008;

Karp et al. 2012); and second, by using the distribution of species’ range sizes at a site,

with more disturbed sites predicted to be more dominated by wide-ranging species than

more natural sites (Mandle and Ticktin 2013).

Biodivers Conserv (2017) 26:2251–2270 2253

123



We compared effects of land use on local biodiversity across four tropical regions—

Asia, Africa, Central America and South America—and across a broad range of taxa.

Because of the need for geographic and taxonomic breadth, we used data from the

PREDICTS database (Hudson et al. 2014, 2016), a large compilation of data from pub-

lished spatial comparisons of ecological assemblages at sites facing different anthro-

pogenic pressures. We used a range of measures of biodiversity to capture effects on beta

as well as alpha diversity, focusing on three main questions; (1) How do secondary veg-

etation age and plantation intensity mediate the response of biodiversity to land use

change? (2) Does the effect of land use on local biodiversity vary among continents in the

tropics? (3) Are any among-continent differences more consistent with differences in the

intensity of human land use or with differences in the sensitivity of the biota?

Methods

The PREDICTS database, described in full by (Hudson et al. 2014, 2016), is a large—but

inevitably far from comprehensive—collation of data from published studies worldwide

that have compared biodiversity (typically the abundances or occurrences of sets of spe-

cies, but sometimes simply species richness) of community assemblages at multiple sites

differing in the nature and/or intensity of the human pressure faced. Data used here were

contributed to the PREDICTS project by many researchers and collated into the database

by the project team between March 2012 and December 2015 following many structured

and opportunistic literature searches (see Supplementary Material Appendix A and Sup-

plementary Fig. S1 for publication bias analysis). 140 articles collated in the PREDICTS

database were suitable for this analysis (Fig. 1). Each article that provided data was col-

lated as a ‘source’. When a source separated data collected using different methodologies

(for example, if multiple taxonomic groups were sampled using different techniques), it

was split into corresponding ‘studies’, within which site-level diversity estimates are

comparable. A study contained a set of sites, with each site comprising a single or multiple

sampled plots (i.e. a quadrat or transect, see Hudson et al. 2014 for details).

Using information in the source papers or provided by those papers’ authors, sites were

categorised into eight land-use types: primary vegetation, mature secondary vegetation,

intermediate secondary vegetation, young secondary vegetation, plantation forest, pasture,

cropland and urban (see Hudson et al. 2014 for detailed descriptions of land use

Fig. 1 Location of the 144 studies from which data were acquired, with the 35 countries represented
grouped into four continents: Central America (triangles), South America (squares), Africa (diamonds) and
Asia (circles)
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categories). In this study, we focused on sites in primary vegetation, secondary vegetation

and plantation forest (Table 1). Primary vegetation included sites where there had been

some disturbance, e.g. selective logging, but not complete removal or considerable

destruction of vegetation. The PREDICTS database also contains categorical information

on the intensity of disturbance at each site, which could be important if responses within

primary forest vary with disturbance level (Barlow et al. 2016). We chose to not include

disturbance levels within primary forest due to the lack of data across the all disturbance

levels for the four continent. However, we have shown previously (Newbold et al. 2015)

that disturbance within primary vegetation has minimal impact on average numbers of

species and individuals sampled at sites. Although previous studies have investigated age

of secondary vegetation with a continuous variable (e.g. Dunn 2004), the PREDICTS

database collates secondary vegetation into categories based on successional stage rather

than age to allow comparison between different biomes and to ensure that the maximum

number of studies can be included. In addition, for some of our analyses (specifically the

‘‘focal-taxon models’’ discussed below), to ensure adequate sample sizes for modelling, we

combined primary vegetation and secondary vegetation (encompassing all stages of

recovery) into a single class, ‘‘Natural’’.

We used only those sites located within the tropics (latitude\±23�). These data were

split into four continents—Asia, Africa, South America and Central America—following

Gibson et al. (2011), despite Central and South America’s geographical proximity and

Table 1 Definitions of land use categories based on site level characteristics, showing numbers of studies
and sites in the dataset used in this investigation

Predominant
Habitat

Land use
category

Description Studies Sites

Primary
vegetation

Primary
vegetation

No evidence of prior complete or near complete
destruction of the natural vegetation

150 2453

Secondary
vegetation

Mature
secondary
vegetation

Regeneration following complete removal of primary
vegetation; architectural structure approaching that
of primary vegetation, corresponding to a
completed succession

32 172

Intermediate
secondary
vegetation

Regeneration following complete removal of primary
vegetation; mixed architecture showing a mid-
successional stage

56 466

Young secondary
vegetation

Regeneration following complete removal of primary
vegetation; simple architecture representing an early
successional stage

46 334

Plantation
forest

Low-intensity
plantation
forest

Often have understorey growth, as well as shade trees
with minimal amount of pesticides and fertilizers

47 419

Medium-
intensity
plantation
forest

Monocultures, but with limited amount of pesticides
and fertilizers

47 970

High-intensity
plantation
forest

Monocultures with extensive use of pesticides and
fertilizers, and usually regular clear felling

22 87

See Hudson et al. (2014) for more detailed information on all land use classification
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similar tree communities (Slik et al. 2015). Tropical Australasia and Melanesia provided

too few sites for modelling so were excluded from the analysis.

We excluded studies that did not have sites from at least two of the focal land uses.

Plantation-forest sites were classified into three management-intensity classes (low,

medium and high), resulting in seven land use classes defined in Table 1 (using the same

definitions as Hudson et al. 2014). The plantation crop was classified into one of the

following six categories: wood, fruit/vegetables, coffee, cocoa, oil palm, and a local

mixture of crops. Although it has been shown that the response of biodiversity can depend

upon the timber systems and management practice (Bicknell et al. 2014; Burivalova et al.

2014; Chaudhary et al. 2016), our dataset contained too few sites within the ‘‘wood’’

category to further categorise based on intensity or product. Expansion of rubber planta-

tions is also considered to be another strong driver of land use change and therefore

biodiversity loss within the tropics (Ziegler et al. 2009). There were too few rubber-

plantation sites to model them separately, so they were therefore grouped in the ‘‘wood’’

category. Studies where the sampling focused on a single species or a predetermined list of

species (rather than recording any species within the focal taxonomic or ecological group

that was sampled) were removed to avoid biasing species-richness estimates. The taxo-

nomic focus of each study was coarsely classified into three higher taxa: vertebrates,

Table 2 Numbers of sites in the dataset within each Higher Taxon category and the broad taxonomic
groups that they contain for each continent

Higher taxon Asia Africa Central America South America

Vertebrates 243 1130 401 331

Amphibia 10 (1) 61 (2) 129 (4) 27 (3)

Aves 143 (7) 796 (12) 89 (5) 218 (10)

Mammalia 79 (7) 264 (6) 10 (2) 83 (7)

Reptilia 11 (2) 9 (1) 173 (4) 3 (1)

Invertebrates 462 239 160 591

Mollusca 0 36 (1) 0 0

Arachnida 8 (1) 9 (1) 6 (1) 237 (4)

Blattodea 0 8 (1) 0 0

Coleoptera 290 (4) 37 (3) 24 (2) 65 (6)

Diptera 0 36 (1) 0 6 (2)

Hymenoptera 116 (9) 5 (1) 69 (6) 262 (12)

Lepidoptera 48 (9) 108 (6) 58 (2) 18 (2)

Odonata 0 0 3 (1) 0

Orthoptera 0 0 0 3 (1)

Plants 334 821 169 20

Bryophyta 0 84 (2) 0 4 (1)

Pinopsida 0 0 60 (1) 0

Polypodiopsida 0 63 (2) 0 4 (1)

Liliopsida 0 0 13 (1) 0

Magnoliopsida 334 (10) 652 (9) 96 (4) 12 (2)

Numbers in brackets are the numbers of studies that sampled each taxonomic group (some studies sampled
multiple groups)
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invertebrates and plants (Table 2). Finer divisions (e.g., arthropod orders) would have

reduced sample sizes too far to permit robust modelling. Too few data were available for

fungi to permit modelling so these were excluded.

Several diversity measures were calculated at each site to use as response variables in

the models. Within-sample species richness (hereafter, species richness) was the number of

species sampled at a site. For sites with abundance data, Simpson’s evenness was calcu-

lated by dividing the inverse of Simpson’s D (Smith and Wilson 1996) by the site’s species

richness. Community weighted mean (CWM) loge range size was calculated as a simple

measure of biotic homogenisation (Mandle and Ticktin 2013) as follows. For every taxon

identified to species level by a common or scientific name (see Hudson et al. 2014 for more

information on taxonomic identity), the species’ range size was estimated as the sum of the

areas of 1� grid cells containing a Global Biodiversity Information Facility (GBIF) record

(queried on 11th February 2014). These range estimates were loge-transformed to reduce

skew. For each site with species abundance data, CWM loge range size was calculated as a

weighted mean of the log-transformed species’ values, where the weights were species’

abundances. The mean loge range size was calculated for sites where no abundance data

was available. This approach has previously been shown to correlate with abundance

weighted mean, for characteristics of species other than range size, without biasing results

(Newbold et al. 2012).

Site-level species richness, Simpson’s evenness and CWM loge range size were used as

response variables in linear mixed-effects models, which allow for nested and heteroge-

neous data (Bolker et al. 2009; Zuur et al. 2009). Species-richness models used Poisson

errors with an observation-level random effect (Harrison 2014) to account for overdis-

persion (tested using the sum of the squared Pearson residuals and the ratio of the residual

degrees of freedom), models of Simpson’s evenness and CWM loge range size used

Gaussian errors. We first modelled each response variable in turn with continent, higher

taxonomic group, the full land-use classification (Table 1) and all two-way interactions as

fixed effects. We refer to these models as ‘‘land-uses models’’. To test whether the sen-

sitivity of individual taxa varied among continents to land use (i.e., to exclude confounding

effects of spatial biases in the taxa sampled), four additional species richness models were

used on different taxonomic subsets of the dataset: Aves, herptiles (reptiles and amphib-

ians), Lepidoptera and Hymenoptera (henceforth called ‘‘focal-taxon models’’). The fixed

effects in the focal-taxon models were continent and land use (natural versus non-natural),

and the interaction between them. Each focal-taxon model was fitted separately (rather

than include taxon as an interacting fixed effect) because there were insufficient data for

some taxonomic groups to model natural versus non-natural in each continent. To test

whether differences among continents could have been caused by differences in plantation

crop, species richness was further modelled with all land uses, but with plantation sites

split by crop type, and higher taxon (vertebrate vs invertebrate; plant data were too sparse)

as an interacting fixed effect (‘‘Crop-type models’’).

Each model’s fixed effects were simplified using backwards stepwise selection based on

log-likelihood values (Murtaugh 2009). Interacting variables were removed first if

P[ 0.05, followed by any single variables that were not involved in remaining interactions

and where P[ 0.05 (Zuur et al. 2009). The random-intercepts structure for all models

accounted for variation among sources and studies—for example, differences in method-

ology and location—and, within studies, the spatial structure of sites in the experimental

design (i.e., spatial blocks of sites). Random slopes were also considered but their use was

found to be unfeasible owing to the sample size.
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In addition to the site-level measures of diversity, we estimated the level of biotic

homogenization between each site’s community and the average community in primary

forest. This was calculated using Sørensen’s index (Magurran 2004), which quantifies the

dissimilarity in species composition between two communities based on the number of

shared species. Within each study with at least one primary vegetation site, the Sørensen’s

index was calculated for all pairwise comparisons between sites, and the average calcu-

lated for each land-use pair (e.g., primary vegetation vs secondary vegetation). The

resulting similarities were rescaled within each study so that average similarity of pairs of

sites in primary vegetation sites was 1 (Newbold et al. 2015). These rescaled similarities

were then averaged across studies within each continent separately, to create continent-

specific matrices of compositional similarity between each pair of land uses. A similar

analysis was performed focusing on the plantation land-use category, splitting the sites by

crop type, to produce a single, global matrix. Matrices were then visualized as dendro-

grams, created from the inverse of the pairwise dissimilarity matrix using the R function

hclust, using the ‘‘complete linkage’’ method, which clusters based on similarity.

All analyses were conducted in R (version 3.2.1, R Core Team 2015) using mixed-

effects models in the lme4 package (version 1.1–9, Bates et al. 2015); P values were

obtained using the ‘Anova’ function in the ‘car’ library (version 2.1–0, Fox and Weisberg

2011).

Results

In total, 184 studies in the PREDICTS database, from 140 published articles (See Sup-

plementary Material Appendix B for publication list), met the criteria for inclusion in this

study, representing over 12,000 species. The 4901 sites were located within 39 countries

(Fig. 1), 3413 within the Tropical and Subtropical Moist Broadleaf Forest biome (Sup-

plementary Table S1; The Nature Conservancy 2009), but land uses were reasonably

equally distributed across continents (Variance Inflation Factor \3, Zuur et al. 2010;

analysis not presented, but see Table 3). Sites were sampled between 1992 and 2011

(median = 2006). Simpson’s evenness (which required abundance, not occurrence data)

and CWM loge range size (which required GBIF records for matching species) could be

calculated for 4029 and 4332 of the sites respectively, and Sørensen’s index for 130 of the

184 studies.

The predominant plantation crop for each intensity category varied among continents

(Table 3), with representation of different crops within the PREDICTS database being very

uneven among continents (although the Variance Inflation Factor \3, Zuur et al. 2010;

analysis not presented). This unevenness may partly reflect geographic patterns of different

crops but certainly also reflects current limitations of the database: for example, oil palm

was sampled only in Asia and Africa, despite also being prevalent in South America, and

coffee plantations were not sampled in Asia, although they are present there.

The land-uses model for species-richness was simplified with the removal of one

interaction (continent x higher taxon; Table 4). Species richness often did not differ sig-

nificantly between primary and secondary vegetation within a continent; when it did, sites

in intermediate and young secondary vegetation tended to have more species than primary

vegetation. Richness in plantation forests—especially high-intensity ones—was usually

significantly lower than in primary vegetation; the size of this effect varied among con-

tinents, being biggest in Asia and Africa (Fig. 2).
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The continent 9 higher taxon interaction was also removed from the land-uses model

for Simpson’s evenness during model simplification (Table 4). The response of Simpson’s

evenness to land use pressures differed among continents (Fig. 3), with secondary vege-

tation and plantation forest typically having substantially lower values than primary

vegetation in Africa, Central and South America but not in Asia.

All interaction terms had a significant effect on the land-uses model for CWM loge

range size (Table 4). Within continents, mature secondary vegetation usually had a similar

CWM loge range size to primary vegetation, but young and intermediate secondary veg-

etation sites had higher average range sizes than primary vegetation in all continents

(Fig. 4). Plantation forest was usually associated with significantly larger CWM loge range

size than primary vegetation. High-intensity plantations in Asia showed the largest

increase, with an absolute CWM range nearly 2.5 times larger than that found in primary

vegetation (Fig. 4). In Africa, high-intensity plantation was the only land use showing a

large increase in CWM loge range (Fig. 4), but the paucity of GBIF records for African

species (Supplementary Fig. S2) provides grounds for caution about this result.

All focal-taxon models maintained the interaction between continent and natural versus

non-natural, but there was no indication that any taxon’s response to non-natural land use

differed strongly among continents (Table 4; Fig. 5).

Table 3 The total number of sites (Nsites) and the total number of studies (Nstudies) in each land use within
each continent and overall

Land use Asia Africa Central
America

South
America

All

Primary vegetation Nsites = 528 Nsites = 1079 Nsites = 193 Nsites = 653 Nsites = 2453

Nstudies = 45 Nstudies = 43 Nstudies = 22 Nstudies = 40 Nstudies = 150

Mature S.V Nsites = 16 Nsites = 73 Nsites = 66 Nsites = 17 Nsites = 172

Nstudies = 6 Nstudies = 11 Nstudies = 7 Nstudies = 9 Nstudies = 32

Intermediate S.V Nsites = 61 Nsites = 145 Nsites = 148 Nsites = 112 Nsites = 466

Nstudies = 9 Nstudies = 10 Nstudies = 12 Nstudies = 25 Nstudies = 56

Young S.V Nsites = 87 Nsites = 124 Nsites = 58 Nsites = 65 Nsites = 334

Nstudies = 11 Nstudies = 14 Nstudies = 9 Nstudies = 12 Nstudies = 46

Low-intensity
Plantation Forest

Cocoa (53.7%) Mixture
(44.4%)

Cocoa
(55.1%)

Wood
(55.6%)

Mixture (27%)

Nsites = 82 Nsites = 232 Nsites = 69 Nsites = 36 Nsites = 419

Nstudies = 12 Nstudies = 13 Nstudies = 6 Nstudies = 16 Nstudies = 47

Medium-intensity
Plantation Forest

Oil palm
(78.4%)

Mixture
(60.5%)

Cocoa
(89.3%)

Coffee
(59.5%)

Mixture
(32.8%)

Nsites = 241 Nsites = 519 Nsites = 168 Nsites = 42 Nsites = 970

Nstudies = 16 Nstudies = 13 Nstudies = 8 Nstudies = 10 Nstudies = 47

High-intensity
Plantation Forest

Oil palm
(50%)

Oil palm
(99.4%)

Coffee
(64.3%)

Coffee
(70.6%)

Coffee
(34.5%)

Oil palm
(33.3%)

Nsites = 24 Nsites = 18 Nsites = 28 Nsites = 17 Nsites = 87

Nstudies = 9 Nstudies 4 Nstudies = 4 Nstudies = 5 Nstudies = 22

For plantation forests, we also state the most abundant plantation crop type within our sample of sites, in
each continent and overall, within each plantation forest intensity category. Secondary vegetation has been
abbreviated to S.V
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When modelling effects of plantation-crop type as well as land use on species richness,

the interaction between higher taxon and land use was retained during model simplification

(Table 4), but is not considered further as not all higher taxon were represented in all

plantation-crop types. Oil palm supported fewest species and coffee the most (Fig. 6).

Compositional similarity between land uses showed considerable variation among

continents (Fig. 7). Different management intensities of plantation forest tended to cluster

together or with the secondary vegetation categories, rather than with the primary vege-

tation. When community composition was compared among plantation crop types, across

all continents, secondary vegetation was grouped together with coffee and oil palm (with

oil palm having communities more like young secondary vegetation, and coffee having

communities more like intermediate or mature secondary vegetation), forming a distinct

cluster from primary vegetation and the remaining crop types (Fig. 8).

Discussion

For all measures that we analysed, the response of site-level biodiversity to land use

differed significantly among the four continents. Such differences might be expected given

that continents also differ in biophysical, evolutionary and socio-economic history (Sodhi

Table 4 v2 values for all remaining terms within the mixed effects models

Model Land use (6) Taxon (2) Continent (3) Land use:
continent (18)

Land use:
taxon (12)

Continent:
taxon (6)

Land-uses models

Species richness 521.05* 7.69* 2.69* 184.04* 245.58* –

Simpson’s
evenness

38.09* 18.50* 7.24 64.37* 64.60* –

CWM loge range
size

581.05* 94.47* 11.24* 227.81* 229.70* 20.20*

Model Continent (3) Natural/non-natural (1) Natural/non-natural: continent (3)

Focal-taxon models

Aves
9.69*

39.69*
38.11*

Herptiles
4.13

4.24*
15.60*

Hymenoptera
0.65d.f.=2

6.36*
11.73*d.f.=2

Lepidoptera
3.91d.f.=2

2.64
23.15*d.f.=2

Model Taxon (1) Crop type (9) Crop type: taxon (9)

Crop type
0.04

305.67 *
64.99 *

* P\ 0.05

Dash indicates that the term was removed upon simplification. Degrees of freedom of terms are shown in
brackets next to the model term. In addition, the ‘Continent’ term had reduced degrees of freedom in some
of the ‘Focal-Taxon’ models, owing to some taxa not being represented in all continents
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et al. 2004; Corlett and Primack 2006; Gardner et al. 2009, 2010). These previous studies,

as well as the results of Gibson et al. (2011), suggest that global or pan-tropical studies

should consider continental differences. However, when we fitted models to particular

higher taxa, there was no consistent tendency for the effect of human land use on species

richness to be more severe in any one continent, suggesting that any continental differences

in the inherent sensitivity of the biodiversity are not general across these taxa. There was

an indication that some land uses, particularly more intensive plantation forests, have

larger impacts on biodiversity than others, and the effect of these land uses might be more

pronounced in Asia.
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Fig. 2 Effects of seven land uses on site-level species richness for Asia, Africa, Central America and South
America. From left to right, land uses are: primary vegetation (‘Primary’); mature secondary vegetation
(‘MSV’); intermediate secondary vegetation (‘ISV’); young secondary vegetation (‘YSV’); low-intensity
(‘L’), medium-intensity (‘M’) and high-intensity (‘H’) plantation forests (‘Plantation’). Primary vegetation
is used as the reference level, and changes in diversity in other land uses is measured relative to this
baseline. Error bars show 95% CIs. Grey points show post hoc analysis of impact on species richness of
land use, using only sites in Asia but excluding oil-palm plantation sites
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Plantations generally supported fewer, more widely-distributed species than either

primary or secondary vegetation (Figs. 3, 4). The magnitude of the effects varied among

continents and with land-use intensity: intensively used plantations in Asia and Africa had

particularly low species richness. These results agree with previous studies that found

plantations to be highly detrimental to biodiversity (Barlow et al. 2007b; Brühl and Eltz

2010; Edwards et al. 2010; Freudmann et al. 2015; Gilroy et al. 2015), especially if they are

managed intensively (Faria et al. 2007; Clough et al. 2009; Tadesse et al. 2014; Newbold

et al. 2015). The low biodiversity in intensive plantations is likely to reflect the lack of

structural complexity and the homogeneity in the age of the stands (Fitzherbert et al. 2008;

Clough et al. 2009; Foster et al. 2011; Freudmann et al. 2015). In Asia and Africa, the most

common crop in the high-intensity plantations was oil palm, which supports fewer species

than the other plantation crops in our study (Fig. 6). Indeed, if oil palm data are from

removed from the Asian sites, the high-intensity plantations do not show a significant

difference in species richness compared with primary vegetation (analysis not shown, but
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results shown in Fig. 2 in grey). Considering how widespread oil palm already is in the

tropics (Koh and Wilcove 2007; Wilcove and Koh 2010; Carlson et al. 2013), and its rapid

ongoing expansion of 9% per year (Fitzherbert et al. 2008), its effects on biodiversity are

particularly concerning for conservation.

Central and South American plantations impacted species richness less than those in

Asia and Africa. This may reflect the prevalence of coffee crops in the high-intensity

plantations in our data set for Central and South America. Our data were insufficient to

model management intensity alongside crop identity, meaning we could not test this

possibility. However, most of the Neotropical high-intensity coffee plantations in our

dataset had shade trees (even though these were usually of just a single species), perhaps

providing more structural complexity than in high-intensity plantations elsewhere (Tadesse

et al. 2014).

Many previous studies have shown lower species richness in secondary than primary

vegetation (Barlow et al. 2007a; Gibson et al. 2011; Klimes et al. 2012), especially younger
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Fig. 4 Effect of land use on community weighted mean (CWM) range size for Asia, Africa, Central
America and South America. Land uses are as in Fig. 2. Error bars show 95% CIs
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secondary vegetation (DeWalt et al. 2003; Veddeler et al. 2005; Bihn et al. 2008; Norden

et al. 2009; Newbold et al. 2015), perhaps because the vegetation lacks the complexity

needed to maintain high levels of biodiversity. Although we found that assemblages in

primary and secondary vegetation did not differ strongly in species richness, the differ-

ences in average range size and Simpson’s evenness highlight that the similarity in species

richness hides differences in abundance and species identity—sites in secondary vegetation

have gained some species, particularly wide-ranged species, but lost others, particularly

narrow-ranged species (Struebig et al. 2013; McGill et al. 2015). This illustrates a more

general pattern: land-use change is not only causing a loss of species but also a shift in

community composition (de Solar et al. 2016; Newbold et al. 2016b) towards more

widespread species, resulting in biotic homogenisation (McKinney and Lockwood 1999;

McKinney 2006; Ranganathan et al. 2008; Karp et al. 2012; Mandle and Ticktin 2013;

McGill et al. 2015; de Solar et al. 2015).
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Caution is needed in interpreting our results about average range sizes, owing to col-

lection biases in the records held by GBIF (Yesson et al. 2007; Newbold 2010; Meyer et al.

2015). In particular, our results for Africa, and for some land-uses in Central and South

America, should be taken as preliminary because many of the sites from those regions had

low coverage of species in GBIF (Supplementary Fig. S2). Additionally, our use of large

grid cells limits the precision of range-size estimates, especially for small-ranged species.

However, the worst of the biases in GBIF records are between taxa and large regions

(Meyer et al. 2015), rather than within them; our use of hierarchical mixed-effects models,

and the fact that most of our studies are taxonomically fairly restricted (Hudson et al.

2014), means that we do not typically make direct comparisons across taxa and regions.

For the vertebrates within the PREDICTS database, there is positive correlation between

the mean range size estimates based on GBIF data and IUCN range maps (R2 = 0.63,

analysis not presented); however, as our knowledge of species distributions improves,
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future studies could incorporate more accurate range estimates for species, which should

improve precision and make interpretation easier.

This study used spatial comparisons of compositional similarity between pairs of sites,

which cannot provide complete evidence of biotic homogenisation because they do not

directly consider temporal changes (Olden and Rooney 2006). Many previous studies of

biotic homogenisation have analysed changes over time (e.g. Olden and Rooney 2006; Lôbo

et al. 2011); however, data on spatially distinct communities are much more widely available

than temporal data (McKinney 2006) and have increasingly been used to quantify homog-

enization (Baiser et al. 2012; de Solar et al. 2015). If anything, spatial comparisons are likely

to underestimate the effects of land conversion on biodiversity (França et al. 2016).

Conclusions

Overall, our results suggest that the response of biodiversity to land use varies markedly

among continents, but that this heterogeneity is more likely to reflect differences in the

intensity of land-use pressures experienced, or combined taxonomic and spatial biases in

sampling, rather than systematic differences in the intrinsic sensitivity of species among

regions. Although some trends were consistent among continents, our study highlights

benefits of accounting for continental differences in pan-tropical analyses, to account for

variation in the prevalence of different crop types and for biases in sampling (for example,

of different taxonomic groups). Overall, our results suggest that to reduce species loss and

retain species composition, the intensity of plantations forests should be reduced, either a

reduction in management intensity or the crop grown. Considering that oil palm, the most

detrimental plantation for biodiversity in our study, is still expanding across the tropics,

especially in the Americas, the implication of these results is timely. Although assemblages

in mature secondary vegetation approach those in primary vegetation in terms of species

richness, they tend to be compositionally very distinct, emphasizing the irreplaceability of

primary forests (Gibson et al. 2011) and the limitations of species richness as a biodiversity

metric (Dornelas et al. 2014). The maintenance and expansion of forests globally provide
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one route to climate change mitigation (Hurtt et al. 2011); however, although primary,

secondary and plantation forests may provide similar services in terms of carbon capture

(Martin et al. 2013; Poorter et al. 2016), they support profoundly different ecological

assemblages.
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Newbold T, Butchart S, Şekercioğlu Ç (2012) Mapping functional traits: comparing abundance and pres-

ence-absence estimates at large spatial scales. PLoS ONE 7:e44019
Newbold T, Hudson LN, Phillips HRP et al (2014) A global model of the response of tropical and sub-

tropical forest biodiversity to anthropogenic pressures. Proc R Soc B Biol Sci 281:20141371
Newbold T, Hudson LN, Hill SLL et al (2015) Global effects of land use on local terrestrial biodiversity.

Nature 520:45–50
Newbold T, Hudson LN, Arnell AP et al (2016a) Has land use pushed terrestrial biodiversity beyond the

planetary boundary? A global assessment. Science 353:288–291
Newbold T, Hudson LN, Hill SLL et al (2016b) Global patterns of terrestrial assemblage turnover within

and among land uses. Ecography 39:1151–1163

Biodivers Conserv (2017) 26:2251–2270 2269

123



Nichols E, Larsen T, Spector S et al (2007) Global dung beetle response to tropical forest modification and
fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19

Norden N, Chazdon RL, Chao A et al (2009) Resilience of tropical rain forests: tree community reassembly
in secondary forests. Ecol Lett 12:385–394

Norden N, Angarita HA, Bongers F et al (2015) Successional dynamics in Neotropical forests are as
uncertain as they are predictable. Proc Natl Acad Sci USA 112:8013–8018

Olden JD, Rooney TP (2006) On defining and quantifying biotic homogenization. Glob Ecol Biogeogr
15:113–120

Orme CDL, Davies RG, Olson VA et al (2006) Global patterns of geographic range size in birds. PLoS Biol
4:e208

Pekin BK, Pijanowski BC (2012) Global land use intensity and the endangerment status of mammal species.
Divers Distrib 18:909–918

Poorter L, Bongers F, Aide TM et al (2016) Biomass resilience of Neotropical secondary forests. Nature
530:211–214
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