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Abstract The phylogeography of species associated with European steppes and extra-

zonal xeric grasslands is poorly understood. This paper summarizes the results of recent

studies on the phylogeography and conservation genetics of animals (20 taxa of beetles,

butterflies, reptiles and rodents) and flowering plants (18 taxa) of such, ‘‘steppic’’ habitats

in Eastern Central Europe. Most species show a similar phylogeographic pattern: relatively

high genetic similarity within regional groups of populations and moderate-to-high genetic

distinctiveness of populations from currently isolated regions located in the studied area.

This distinctiveness of populations suggests a survival here during glacial maxima,

including areas north of the Bohemian Massif-Carpathians arc. Steppic species generally

do not follow the paradigmatic patterns known for temperate biota (south-north ‘‘con-

traction–expansion’’), but to some extent are similar to those of arctic-alpine taxa. There

are three main groups of taxa within Eastern Central Europe that differ in their contem-

porary distribution pattern, which may reflect historical origin and expansion routes.

Present diversity patterns of the studied steppic species suggest that they share a unique

genetic signature and distinct assemblages exist in each of the now isolated areas rich in

steppic habitats. At least some of these areas probably act as present ‘‘interglacial refugia’’

for steppic species. This study strongly supports the need to protect steppic species

throughout their entire ranges in the region, as the continuous destruction of steppic
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habitats in some areas may lead not only to the disappearance of local populations, but also

to the extinction of unique evolutionary units.

Keywords Biogeography � Genetics � Glacial � Interglacial � Refugium � Xeric grassland

Introduction

Phylogeographical studies in extra-Mediterranean Europe have so far been focused on

temperate and arctic-alpine species. The results of numerous works on temperate plant and

animal species have allowed generalisations to be made concerning their phylogeographic

patterns (Hewitt 2000, 2004; Schmitt 2007). These reviews conclude that species adapted

to temperate conditions have reacted to glaciations following a general phylogeographic

paradigm, where species’ range contracts during Pleistocene glaciations into southern

refugia located basically in the area of the Mediterranean peninsulas, and subsequently the

populations expand into other parts of the continent during interglacials (e.g. Taberlet et al.

1998; Petit et al. 2003). This ‘‘contraction–expansion’’ principle has recently been chal-

lenged, as many studies have suggested or proven that refugia were not restricted to the

southern areas, but were present also in western, central and eastern Europe, mainly as

local ‘‘northern’’ or ‘‘cryptic’’ refugia (Stewart and Lister 2001; Schmitt and Varga 2012;

Bartha et al. 2015).

Other studies showed that the populations of boreo-montane species are either phylo-

geographically unstructured or only show a rather shallow differentiation between the

zonal (taiga-associated) and montane populations (Taberlet et al. 1998; Schmitt 2007;

exceptions: Schmitt and Haubrich 2008; Bajc et al. 2011). On the other hand, populations

of arctic-alpine taxa must have been much more widely distributed during glaciations than

in interglacials, including the Holocene (e.g. Schönswetter et al. 2005; Varga and Schmitt

2008; Schmitt 2009). For these taxa, the concept of refugium needs to be modified. The

inclusion of the impact of climate changes in the meaning of the ‘‘refugium’’ has been

postulated (e.g. Bennett and Provan 2008; Ashcroft 2010). That is why the term ‘‘warm

stage refugia’’ was proposed to stress that some species (mainly the cold-adapted) expe-

rience their smallest ranges during warm periods and expand during glaciations

(Holderegger and Thiel-Egenter 2008; Stewart et al. 2010). The phylogeography of the

temperate and cold-adapted species allowed for a more comprehensive understanding of

the history of European fauna and flora. A notion of an ‘‘individual response’’ of species to

climatic oscillations, along with the idea of the disintegration of past ecosystems (i.e. those

present during glacial periods) and the formation of ecosystems de novo without a close

connection to the preceding ones has been proposed (Bhagwat and Willis 2008; Schmitt

and Varga 2012).

However, a third group of organisms which are present in extra-Mediterranean Europe

has been notoriously ignored: species adapted to dry and periodically warm conditions of

the continental zone, mostly inhabiting steppes and other types of dry grasslands. The

phylogeography of continental species was partly included in the reviews of Stewart et al.

(2010) and Varga (2010), but mostly on the basis of chorological data, making the steppe-

dedicated parts of the above papers more thought-provoking than reviewing. The general

disregard for continental elements in reviews about the phylogeography of European

species could be explained by the relatively recent arrival of studies on this group (with the
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á

et
al

.
(2

0
1

3
)

se
q

(m
tD

N
A

),
m

sa
ts

A
T

,H
U

,C
Z

,M
D

,R
O

,R
S

,R
U

,S
K

1
6

S
p
er
m
o
p
h
il
u
s
su
sl
ic
u
s

R
o

d
en

ti
a/

S
ci

u
ri

d
ae

B
ie

d
rz

y
ck

a
an

d
K

o
n

o
p
in

sk
i

(2
0

0
8
),

M
at

ro
so

v
a

et
al

.
(2

0
1

4
)

se
q

(m
tD

N
A

),
m

sa
ts

P
L

,U
A

1
7

C
ri
ce
tu
s
cr
ic
et
u
s

R
o

d
en

ti
a/

C
ri

ce
ti

d
ae

N
eu

m
an

n
et

al
.

(2
0

0
4
,

2
0

0
5
),

B
an

as
ze

k
et

al
.

(2
0

1
0
,

2
0

1
1
,

2
0

1
2
),

S
ch

ro
ed

er
et

al
.

(2
0

1
4
)

se
q

(m
tD

N
A

),
m

sa
ts

A
T

,C
Z

,D
E

,H
U

,P
L

,R
O

,R
U

,S
K

,U
A

1
8

S
ic
is
ta

su
b
ti
li
s

ag
g

.
R

o
d

en
ti

a/
D

ip
o

d
id

ae
C

se
rk

és
z

et
al

.
(2

0
1

5
a,

b
)

se
q

(m
tD

N
A

,
n

u
cD

N
A

)
H

U
,R

U
,U

A

1
9

N
a
n
n
o
sp
a
la
x
le
u
co
d
o
n

su
p

er
sp

ec
ie

s
R

o
d

en
ti

a/
S

p
al

ac
id

ae
H

ad
id

et
al

.
(2

0
1

2
),

K
ry

št
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exception of Iberian steppes, which are probably only distantly related to Eurasian ones,

and have a different origin; e.g. Ribera and Blasco-Zumeta 1998; González-Sampériz et al.

2010). The first phylogeographic papers dealing with steppe species were published in the

first half of the 2000s and the majority of them only in the last decade (see Table 1 for

compilation of references). The increasing amount of data on phylogeographic patterns in

steppic species has allowed this group to be inserted into the general picture of the phy-

logeography of the European biota for the first time. This could be important, as steppic

habitats sustain assemblages very rich in species, among which there are many taxa

restricted only to this type of environment or even endemic to some steppic areas on a

European or local scale (e.g. Pärtel et al. 2005; Mazur and Kubisz 2013; Dengler et al.

2014). Moreover, steppes and steppic species are among the most threatened in Europe due

to natural (i.e. climatic and environmental) reasons, which restrict their distribution during

woodland-dominated interglacial periods, and to the anthropogenic degradation and

fragmentation of steppic patches, especially in the central part of Europe (Cremene et al.

2005; Janišová et al. 2011; Fekete et al. 2014). The situation of some steppic patches and

populations is so serious (especially north of the Carpathians) that this could be the last

chance for an appropriate sampling to be carried out for phylogeographic studies. More-

over, data on the distribution of steppes in the past suggests that different types of xeric and

meso-xeric grasslands were much more abundant and widespread throughout Europe

during glacial times. There were at least two variants of glacial steppes: cold steppes in

front of glaciers (with co-occurrence of tundral elements) and more warm-adapted and

meso-xeric meadow steppes known from southern areas (Willis and van Andel 2004;

Markova et al. 2009). Xeric grasslands and meadow steppes could also persist as local

components in the ‘‘non-analogous’’ assemblages of the lower latitude periglacial open

zonobiom (see: current occurrence of cold-tolerant steppic species from Yakutia to Alaska;

Yurtsev 1982, 2000; Ehlers and Gibbard 2004).

During interglacials (such as our current epoch, the Holocene), the natural steppes in

Europe become basically restricted to the eastern and south-eastern regions, forming part

of a long and narrow Eurasian steppe zone from the inner parts of the Pannonian Basin to

NE China, although similar habitats (called dry/calcareous/xerothermic grasslands) are

known from many dispersed localities in central Europe and the Balkan Peninsula (e.g. on

steep slopes of hills and along river scarps) (Donita et al. 2003; Fekete et al. 2014; Pokorný

et al. 2015). That range shift of steppe-like habitats probably influenced the phylogeog-

raphy of steppic species, which might have been more widespread during ice ages (more

severe climatic conditions notwithstanding, see Berman et al. 2011) but are currently

experiencing range contractions. The current large-scale diversity patterns of steppe spe-

cies follow a decreasing gradient from east to the west. This would imply a recent

immigration from the east to the suitable habitats as genetic diversity should follow a

similar east-to-west decreasing gradient. However, in light of the above vegetation his-

torical reasoning, we could expect a more complicated pattern of genetic diversity sup-

porting an alternative hypothesis of phylogeographic history (i.e. long-term persistence of

steppic species’ populations at the current western edges/patches of their distribution).

In this paper, we review the phylogeographic pattern in steppic species on their western

part of their distribution, Eastern Central Europe (with adjoining East European ranges),

where enough phylogeographic data have been accumulated, and where steppes, forest-

steppes and extrazonal xeric grasslands are all represented. Specifically, we are inquiring

for the following questions:
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1. Are the observed phylogeographic patterns congruent for all the reviewed steppic

organisms?

2. If so, do these patterns conform either to the patterns observed for one presented by the

so far analysed cold-adapted taxa or to the patterns known for temperate biota?

3. Did the mountain chains (i.e. the Bohemian Massif and/or the Carpathians) act as

barriers for the steppic taxa?

4. Is there support for the east-to-west decreasing gradient in phylogeographic pattern?

5. Are there evident genetical ‘traces’ of the existence of extrazonal interglacial refugia

and/or of several migrational waves of the steppic taxa during last Pleistocene cycles

in the Eastern Central Europe?

Additionally, with bearing the limited quantity and quality of available data in mind, we

also try to discuss topics of (i) the dual nature of ‘refugia’ of steppic taxa (i.e. presence of

both ‘warm stage’ and ‘cold stage’ refugia); and (ii) the importance of the observed

patterns in the context of conservation genetics of the highly-endangered steppic taxa.

Methods

Examined area

This review focuses on the available phylogeographic studies of species related to steppes

and other similar types of dry grasslands (called also ‘‘calcareous’’ or ‘‘xerothermic’’,

depending on the area and terminology in use). As we were interested mainly in species

distributed in Eastern Central Europe, we generally narrowed our species choice to taxa
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Fig. 1 Simplified map of the distribution of steppes and forest-steppes (Pontic and Pannonian) and xeric
grasslands in Eastern Central Europe (with adjoining East European ranges) with their regionalisation as
used in the review (Northern—Pannonic—Pontic). (Color figure online)
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which are distributed from Germany and Austria in the west to Ukraine in the east, and

from the southern Baltic coast in the north via the Pannonian Basin to the northern part of

the Balkan Peninsula in the south. We intentionally excluded from the reviewed area the

central-Alpine dry valleys (Braun-Blanquet 1961) and xeric grasslands (alvars) on Baltic

islands (Pettersson 1965) as from these areas phylogeographic and population genetics data

were available for only one of the examined species (Astragalus exscapus; Becker 2012).

For the purposes of this review, we divided the area of Eastern Central Europe (with

neighbouring areas of East Europe) into three different regions (Fig. 1), in respect to the

Bohemian Massif-Carpathians arc:

1. The ‘‘Northern’’ region, comprising areas situated outwards from the arc—mainly

Germany and Poland (Rhine and Oder Valleys, German and Polish Uplands, Kujawy

Basin), with part of Belarus and the westernmost part of Ukraine (until the eastern end

of the Lublin-Lviv Upland); this region was covered by an ice sheet (or was in its

immediate foreland) during at least one Pleistocene glaciation, and currently features

extrazonal, highly fragmented and isolated steppic patches.

2. The ‘‘Pontic’’ region, stretching to the east from the Northern one, as defined above,

and from the East Carpathians, including areas along the border between Romania and

Bulgaria (Wallachian Plain, Dobrogea region), Moldova (Bessarabian Upland), as well

as the adjoining East European areas: most of Ukraine (Podolian Upland, Dnieper

Basin, Crimea) and the steppic/forest-steppic belt of south-western Russia (Central

Russian Upland) up to the northern foot slopes of the Caucasus (Manych plains); this

region was never fully glaciated and it now constitutes the westernmost fragment of

the continuous (zonal) Eurasian steppe belt.

3. The ‘‘Pannonic’’ region, comprising the areas within the Bohemian Massif-Carpathi-

ans arc (Bohemia, Moravia, Pannonian Basin, Transylvanian Basin) and the adjacent

northernmost parts of the Balkan Peninsula to the west and southwest of the Danube;

this region was never glaciated and sustains large extrazonal and edaphic (sandy and

saline) steppic areas within the Pannonian Basin and its surroundings. Their

‘‘deviations’’ from the general zonality are discussed by Fekete et al. (2014).

Data collection

About one third of the studies on the following taxa were carried out by the authors of this

review (see Table 1 for references). Moreover, we searched scientific literature with the

use of the Google Scholar, Biological Abstracts, and PubMed databases, using the fol-

lowing keywords: ‘‘phylogeography’’, ‘‘population genetics’’, ‘‘conservation genetics’’,

‘‘Europe’’, ‘‘steppe’’, ‘‘dry grasslands’’, ‘‘calcareous’’ and ‘‘xerothermic’’. We mainly

selected papers that examine populations across substantial parts of species ranges in

Eastern Central Europe. We omitted eurytopic species which have ranges in both the

continental zone of Eurasia and the Mediterranean region. We also decided to exclude

papers on bird species. On the other hand, we included a few studies which are ‘‘in press’’,

or in the final publication preparation stages (see Table 1 for references).

The final list of the steppic taxa for which genetic data is available includes 38 of them:

six beetles, four butterflies, two species and one complex of snakes, one lizard, four species

and two species complexes of rodents, and 18 flowering plant species, described in alto-

gether 52 articles (Table 1). The nomenclature of taxa and systematic approaches

throughout the paper follow the articles from which the data was derived.
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Elaboration of genetic data

Selected animal and plant taxa were investigated with the use of different types of

molecular markers (DNA sequences or allelic data). Details about the methods and markers

used for particular taxa are described in Information Box 1 and presented in Table 1.

For a majority of the selected taxa, genetic data was available as basic diversity

descriptors (see Box 1 for details). Usually, papers also included different types of algo-

rithms and methods used in clustering and identification of genetic distinctiveness of the

populations and individuals. Moreover, many of the scientific papers featured special maps

visualizing how the genetic diversity of the populations refers to their geographic distri-

bution. Use of different type of markers for elaborating genetic diversity and distinctive-

ness of populations could be problematic as they generally reflect different time-scales.

Whereas mtDNA in animals and AFLPs and plastid haplotypes in plants are usually

utilised for phylogeographic studies reflecting historical changes in taxa’s genetics (usually

dating back to several generations), SSRs are used for contemporary and more recent

description of population genetics and demography, thus reflecting very recent changes in

taxa’s genetics (usually dating back to few generations). Therefore, SSRs were only used

as an additional source of information about genetics of examined taxa since simultaneous

use of both types of markers is common practice that allows for comprehensive phylo-

geographic and population genetic analyses (especially when a study has conservation

implications). As mtDNA data are available for all animals examined, and either AFLPs

and/or plastid data are available for all plants, it was possible to analyse and compare data

within animals and within plants in a similar way (Fig. 2).

Information Box 1 Brief summary of molecular markers and techniques used in the reviewed papers
dealing with phylogeography and population genetics of steppic species

Markers used in the studies reviewed

Allozymes [used for some plants and butterflies]

Mitochondrial DNA (mtDNA)—genes cytochrome oxidase subunits I and II (COI and COII) or
cytochrome-b (CytB) and non-coding control region (CR) [used for animals]

Plastid DNA (cpDNA)—intergenic spacers (accD-psaI, trnH-psbA) [used for plants]

Nuclear sequences—Elongation Factor 1-a (EF-1a) gene, Interphotoreceptor Retinoid-Binding Protein
(IRBP) gene, LFY gene intron, Internal Transcribed Spacers of ribosomal DNA (rITS) [used for
animals and plants]

Microsatellites (SSRs) [used for animals]

Amplified Fragment Length Polymorphism (AFLP) [used for plants]

Random Amplified Polymorphism DNA (RAPD) [used for plants]

Variable Number Tandem Repeat (VNTR) [used for plants]

Analyses applied in the studies reviewed

Haplotype and nucleotide diversities [calculated for sequence markers]

Heterozygosity and allelic richness [calculated for allelic markers]

Phylogenetic trees reconstruction [calculated for sequence markers]

Haplotype (or allele) network building [calculated for both types of markers]

Genotype assignment to clusters [calculated for allelic markers]

Isolation by Distance in Mantel Test (IBD-MT) [calculated for both types of markers]

Analysis of Molecular Variance (AMOVA) [calculated for both types of markers]

Fixation index FST [calculated for both types of markers]
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Fig. 2 Phylogeographic patterns observed for eight selected steppic species from Eastern Central Europe—
four plants (a–d) and four animals (e–h). The colours/greyscale of the circles indicate generalized data
about the presence of distinct phylogenetic lineages and/or genetic clusters identified based on genetic
(phylogeographic, population and conservation genetics) studies. Sources of data: Linum flavum (Linaceae):
Cieślak 2014; Adonis volgensis (Ranunculaceae): Sramkó et al. in prep.; Iris aphylla (Iridaceae):
Wróblewska et al. 2003, 2010; Wróblewska 2008; Scorzonera purpurea (Asteraceae): Meindl 2011;
Centricnemus leucogrammus (Curculionidae): Kajtoch et al. 2009, 2014a; Kajtoch 2011; Melitaea cinxia
(Nymphalidae): Wahlberg and Saccheri 2007; Coronella austriaca (Colubridae): Sztencel-Jabłonka et al.
2015; Galarza et al. 2015; Cricetus cricetus (Cricetidae): Neumann et al. 2004, 2005; Banaszek et al. 2010,
2011, 2012; Schroeder et al. 2014. (Color figure online)
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We examined all of these data to identify the following characters of the selected

steppic taxa:

Character (1): Intra-regional diversity—genetic diversity detected on an intra-regional

geographic scale (i.e. among populations within each of the three regions as defined above,

intra-population diversity notwithstanding), estimated (generalized) into three categories:

(i) ‘‘low’’ (lack of diversity or with very low values of appropriate descriptors, e.g. inter-

population haplotype diversity or heterozygosity below 0.25); (ii) ‘‘moderate’’ (haplotype
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Fig. 2 continued
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diversity or heterozygosity 0.25–0.5) and (iii) ‘‘high’’ (haplotype diversity or heterozy-

gosity above 0.5). It is important to note that some papers did not present the necessary

primary values, and in these cases we tried to assign diversity to these three levels using

other available information like patterns observed in phylogenetic trees/networks or results

of implementation of other assignment algorithms, etc.

Character (2) Inter-regional distinctiveness—genetic differences among examined

populations from any two of the three different regions established for the purposes of the
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Fig. 2 continued
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review (i.e. between Pontic, Pannonic and Northern regions), estimated (generalized) into

three analogous categories (low, moderate, high) based mainly on values of fixation index

FST (or derivative measures as GST or RST) and results of AMOVA and IBD-MT. For

example, we assigned distinctiveness as: (i) ‘‘low’’ for FST below 0.05, (ii) ‘‘moderate’’

when FST was equal to 0.05–0.25 and (iii) ‘‘high’’ for values above 0.25, while for

AMOVA the threshold values among groups (of populations) were\10, 10–50

and[50 %, respectively. As some taxa might comprise populations of low, moderate or
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Fig. 2 continued
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high genetic diversity/distinctiveness depending on the area concerned, consequently the

same taxon could be assigned to more than one of the presented classes.

Character (3) Distinct units around the Bohemian Massif-Carpathians arc—presence of

distinct phylogenetic lineages (clades) or distinct genetic clusters between regions as

described above. Presence of distinct units (yes/no) was directly or indirectly drawn from

the available phylogenetic trees, haplotype/genotype networks and other genotype

assignment algorithms’ implementation results. Data examination for Character 3 was

designed to verify two schemes: (i) (Character 3a) whether any region-specific units of the

taxa were identified in the specified regions, and (ii) (Character 3b) whether all identified

units were distinct among the specified regions. In the first scheme, we allowed for the

presence of some genetic admixture between regions (presumably as the effect of past

expansion or recent dispersion/migration), but the second scheme was applied strictly, as it

described only ‘‘full genetic isolation’’. We used this data to count the frequencies of taxa

expressing similar phylogeographic patterns in each of the selected categories.

The collected data were then analysed separately for animals and plants. We verified

how many taxa show similar phylogeographic patterns in respect to all three characters

described above.

Results

Phylogeographic patterns of steppic species in Eastern Central Europe

Beetles

The methods applied did not reveal any diversity among regional populations of Crioceris

quatuordecimpunctata; for three others, Polydrusus inustus, Cheilotoma musciformis and

Crioceris quinquepunctata, some local populations were also characterized by a lack of

genetic variation (even in intra-population scale, generally not considered in the present

paper). Two other beetles (Centricnemus leucogrammus and Coraebus elatus) showed

low-to-moderate genetic diversity of populations, depending on their geographic locali-

sation (usually higher diversity was observed in the eastern and southern parts of the

range). The pattern of interregional distinctiveness was substantially different, as most of

these species were characterized by high (C. musciformis and C. quatuordecimpunctata) or

moderate-to-high (C. leucogrammus and C. elatus) distinctiveness of their populations

from different regions (Fig. 2e). Only two species (P. inustus and C. quinquepunctata)

showed low genetic differentiation of even distant populations. Finally, most of these

species expressed a significant divergence of phylogenetic lineages occurring in the

Northern, Pontic and Pannonic regions. To the contrary, P. inustus and C. quinquepunctata

expressed low genetic distinctiveness of populations. An interesting pattern was observed

for three species (C. leucogrammus, C. elatus and C. quatuordecimpunctata) in northern

Poland (the Kujawy Basin), where highly distinct phylogenetic lineages, different from all

other Eastern Central European ones, were found. In at least one species (C. musciformis),

the genetic divergence of populations suggests the existence of distinct taxonomic units

(presumably subspecies) in southern Poland, Ukraine and the Pannonian Basin.
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Butterflies

Two butterflies (Polyommatus ripartii and Melitaea cinxia) were found to have low intra-

regional diversity, whereas two others (Maculinea alcon xerophilic ecotype and Maculinea

arion) displayed low-to-moderate or high differentiation within regional populations (the

values were higher in southern ones). Genetic distinctiveness of populations between

regions varied as some species showed high levels of differentiation (M. alcon and M.

arion), whereas others displayed low or moderate levels (P. ripartii and M. cinxia).

Regarding the presence of distinct genetic units across the Carpathians and the Bohemian

Massif, the studied butterflies generally did not show such patterns, with the exception of

M. cinxia populations, which formed some distinct units (but not totally genetically iso-

lated) when compared in north–south and east-south directions (Fig. 2f).

Rodents

Levels of intra-regional genetic diversities of rodent species and species-complexes differ;

however all taxa comprise populations with an identified low genetic diversity. Only for

three of these species (Spermophilus suslicus, Spermophilus citellus and Cricetus cricetus)

there are populations known to have a high intra-regional diversity. They are always the

ones located within continuous species range to the east (Ukraine) or south (the Pannonian

Basin and adjacent areas of the Balkan Peninsula) of the Bohemian Massif-Carpathians

arc. It is important to note that the other rodent taxa were studied using a limited sampling

scheme for phylogenetic purposes, and therefore it was not possible to include these taxa in

analyses on the population level. All the considered steppic rodents showed a high genetic

distinctiveness at an interregional context (this parameter corresponded to the distinc-

tiveness of species within Spalax spp. and within the Nannospalax leucodon superspecies,

and to the presence of different species of Sicista subtilis agg.). Lastly, all of these taxa

have different phylogenetic lineages inhabiting the Pontic and Pannonic regions. In Spalax

spp. and in the N. leucodon superspecies, allopatric species were firstly described based on

osteological characters and chromosomal differentiation and afterwards confirmed with use

of molecular markers. In S. subtilis agg., distinct species were described (S. trizona within

the Pannonic region and S. nordmanni within the Pontic region). Only S. suslicus and C.

cricetus have current natural populations north of the Carpathians and the Bohemian

Massif. These populations are distinct from the Ukrainian ones (especially for S. suslicus,

and partially for C. cricetus, as its eastern lineage spans westward into eastern Poland) and

from the Pannonic ones (although the Pannonic clade of C. cricetus spans northward into

southern Poland, a distinct clade of this species is present in Germany (Fig. 2h); S. suslicus

is replaced in Pannonia and south-eastern Central Europe by S. citellus, and both species

are parapatric only in southern Ukraine and Moldova).

Reptiles

Coronella austriaca harbours a rather high genetic diversity in its regional populations,

whereas the strictly south-eastern Dolichophis caspius, of the same snake family, is much

less diverse genetically on a regional scale. Vipera ursinii and Vipera renardi, which form

a species complex with multiple subspecies, have generally low genetic diversity at an

intraregional scale; however when we consider complexes as a unit, the presence of distinct

taxa in the Pontic region expresses a high diversity of populations from that large area.
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Lacerta viridis has low genetic diversity across all populations studied. Regarding the

interregional distinctiveness of populations, C. austriaca has distinct phylogenetic lineages

in all three regions (Northern, Pontic and Pannonic) (Fig. 2g), but the Carpathians are not

an effective barrier in this case, as this species inhabits xeric grasslands and stony slopes in

mountainous areas, as well. For D. caspius and the V. ursinii complex, species which are

absent in the Northern region, distinct phylogenetic lineages were found in the Pontic and

Pannonic regions. On the contrary, L. viridis has an unstructured mitochondrial diversity in

Eastern Central Europe, albeit highly distinct phylogenetic lineages were found in the

Mediterranean Basin including the sibling species, L. bilineata. At the same time, L. viridis

has a highly reduced genetic diversity in its marginal populations (based on microsatellite

genotyping). Genetic structure of L. viridis suggests that it is not a ‘‘real’’ steppic but rather

a ‘‘Ponto-Mediterranean’’ species.

Flowering plants

The intra-regional genetic diversity of plant species and species complexes is not homo-

geneous, and it is often dependent on the situation of the examined populations in respect to

the entire species range. Within the continuous part of the range, these plants harbour low-

to-moderate genetic diversity. This concerns mainly populations from the Pontic and

Pannonic (including the northern Balkan Peninsula) regions, whereas among populations

located on the edge of the species range or in isolated, peripheral localities (like in Poland or

Germany), the genetic diversity is conspicuously higher. Such a situation could be observed,

for example, in Scorzonera purpurea, Serratula lycopifolia and Stipa pennata. The lowest

diversity values were observed between populations closest to or within the continuous part

of the range (the Pontic region), whereas those from the Northern and Pannonic regions

were more diverse. Regarding the inter-regional distinctiveness of populations, almost all of

the plants examined were assigned to high or moderate-to-high differentiation level groups.

This distinctiveness is especially visible due to the presence of different genetic clusters in

all three of the regions around the Carpathians and the Bohemian Massif region. The

exceptions were Pulsatilla patens, which had a low diversity between some of its Northern

and Pontic populations, and Adonis vernalis, which had a low diversity within the Pontic

and moderate within Pannonic and Northern regions. A somewhat more complicated sit-

uation was found in the case of Astragalus exscapus, where variability of several parallel

markers (allozymes) is presented, some of them displaying divergent patterns (e.g. ADH

showing much higher differentiation within the peripheral Northern (German) populations

than within the more ‘‘central’’ Pannonic (Bohemian, Moravian and lower Austrian) ones,

while for AAT2 or GPI the situation is quite the opposite).

A significant differentiation of populations was also often observed within these

regions, probably caused by long-term isolation. Within the Northern region, distinct

clusters were identified, e.g. in the Małopolska Upland versus the Lviv-Lublin Upland for

Carlina onopordifolia and Linum flavum (Fig. 2a). Similarly, distinct clusters were found

for the German Uplands versus most of eastern Poland versus the remaining part of the

northern range for Iris aphylla (Fig. 2c), and in the German Uplands versus the lowlands of

northern Germany versus northern Poland for Scorzonera purpurea (Fig. 2d). Within the

Pannonic region, such clusters were found for Bohemia-Moravia versus the Pannonian

Basin vs. Transylvania, e.g. in Cirsium pannonicum, Linum hirsutum, S. purpurea, Adonis

vernalis and Stipa pulcherrima. Similarly, both Adonis volgensis and P. patens were

characterized by lineages in the Pannonian Basin that were isolated from their steppic

counter-populations in the Pontic region (Fig. 2b).

Biodivers Conserv (2016) 25:2309–2339 2327

123



Genetic intra-regional diversity and inter-regional differentiation of steppic
taxa populations

Nearly all (94 %) of the examined animal taxa (17 out of 18 for which respective data were

available) displayed low genetic diversity on an intra-regional scale, at least for some of

their populations. Similarly, 94 % of the plants (15 out of 16 for which respective data

were available) have some or all of their populations characterised by low diversity.

Moreover, in only 33 % of animal taxa (six), some or all populations expressed high

diversity. In plants, highly diverse populations were found in 38 % of taxa (six) (Table 2).

Usually, the genetic diversity of the steppic animals increased to the east and to the south,

as the Pontic and Pannonic regions sustained populations much more genetically diver-

sified than the Northern region (Poland and Germany). This pattern was visible even within

the Pannonic region, as Bohemia sometimes possessed only single genetic variant, opposed

to the parts situated more towards the east and south. To the contrary, in plants, many taxa

expressed the opposite pattern of genetic diversity. The majority of their most diverse

populations are in the Northern region, and only a few are in the Pannonic or Pontic ones.

Regarding the genetic distinctiveness of populations on an inter-regional scale, most

steppic taxa were structured geographically: 70 % of animals (14 out of 20) and 94 % of

plants (17 out of 18). Highly distinct phylogenetic lineages and/or genetic clusters were

identified in all, or at least some, distant areas occupied by steppes or other types of xeric

grasslands in Eastern Central Europe (including eight taxa of animals and 14 taxa of plants

that had a high level of differentiation throughout their entire ranges in the area). On the

other hand, 35 % of animals (7 taxa) and 11 % of plants (2) had a low distinctiveness of

population between at least some regions (but only 4 animal taxa had a low genetic

differentiation among all regions of study) (Table 2).

The most interesting phylogeographic patterns arose when the presence of distinct

genetic units (phylogenetic lineages or genetic clusters) were analysed between different

sides of the Bohemian Massif–Carpathian arc.

The Pannonic and Northern regions were found to sustain distinct units in 78 % of the

animal taxa (7 out of 9 taxa present in both regions) in the 3a character (Table 2), or in

22 % of them (2) when counted according to the 3b character. For plants, these numbers

were 100 % (all 16 taxa) and 38 % (6), respectively (Table 2).

Between the Pontic and Northern regions, distinct units were found in 58 % of the

animal taxa (7 out of 12) in the 3a character, or in 50 % (6 taxa) when counted according to

3b character. Analogous values for plants (a comparison between the Pontic and Northern

regions) were 100 % (all 13 taxa) and 46 % (6), respectively (Table 2).

Separate genetic units between the Pannonic and Pontic regions were present in 80 % of

the animal taxa (12 out of 15 taxa) were at least partly separated, whereas 60 % of them (9)

were characterised by full genetic isolation between these regions (Table 2). For plants,

these numbers were 100 % (all 13 taxa) and only 23 % (3), respectively (Table 2).

Discussion

The genetic and phylogeographic data of the populations presented in this review clearly

show that steppic species generally neither follow an east-to west, nor a south-to-north

decreasing phylogeographic pattern. Therefore, we can exclude both a relatively recent
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east-to-west immigration hypothesis and the classical north–south ‘‘contraction–expan-

sion’’ paradigm regularly observed in temperate species (Taberlet et al. 1998; Hewitt 1999,

2000; Petit et al. 2003; Schmitt 2007). The genetic diversity and distinctiveness of steppic

populations is rather similar to the pattern observed in arctic-alpine taxa (e.g.

Schoenswetter et al. 2005; Varga and Schmitt 2008; Schmitt 2009). The geographic

structure of genetic characteristics hint at a more complex history in the western part of the

steppic biom. Cold-tolerant steppic species seem to have been much more widely dis-

tributed and probably more abundant during cold periods than during interglacials (in-

cluding the current one) (Stewart et al. 2010; Varga 2010). It is often postulated that in

Eastern Central Europe, steppe-related species of animals (rodents) and plants (e.g. As-

tragalus exscapus) were distributed more widely during glacial periods than during

interglacials (Pawłowska 1966; Becker 2012; Sommer and Nadachowski 2006). They may

have occupied the extensive areas between the ice sheet in the lowlands of central and

northern Europe and mountain ranges like the Alps, the Bohemian Massif and the

Carpathians. This is probably a consequence of the type of glacial zonation being fun-

damentally different from the recent (interglacial) one. The major dynamic elements of this

glacial zonation were as follows: (i) the fragmentation of the nemoral and boreal forest

zone; (ii) the expansion of diverse continental meadow steppic elements during the cool,

but not extremely cold, phases of glaciations; (iii) the expansion of continental cold steppe

elements in the cryoxeric phases, followed by postglacial fragmentation; (iv) the estab-

lishment of manifold ecotones at the junctions of zonal and intrazonal continental habitat

types (Varga 2010; Schmitt and Varga 2012). Steppic species were probably also wide-

spread in the Pannonian Basin (Magyari et al. 2010).

A history of steppic species in Eastern Central Europe

The existence of steppes and steppic populations during Pleistocene glaciations within the

Pannonian Basin and the Pontic area has been confirmed by paleontological and choro-

logical data (Willis and Van Andel 2004). Both areas were never glaciated and were

localised relatively far from the ice sheet, even during the Sanian/Elsterian glaciation,

which extended most to the south (Ehlers and Gibbard 2004). There is a considerable body

of evidence suggesting that cold steppes and forest steppe associations existed during

Pleistocene glaciations in the Pannonian Basin, and that more eurythermic species could

have survived the last glacial maximum (LGM) at least in favourable microsites (Willis

et al. 2000; Jankovská and Pokorný 2008; Magyari et al. 2010, 2014). On the other hand,

the existence of populations of steppic species north of the Alps, the Bohemian Massif and

the Carpathians is more controversial. This area was only once fully glaciated (the Sanian/

Elsterian glaciation, 730,000–430,000 years ago), whereas during following ice periods,

only some parts of these areas were under the ice sheet. In particular, uplands in central and

southern Germany and south-eastern Poland have not been glaciated since the Sanian/

Elsterian (Lindner et al. 2006; Wysota et al. 2009). Even during that extensive glaciation,

these uplands were not fully ice-covered, or perhaps some areas survived as nunataks

within the ice sheet (Lindner et al. 2006; Lewandowski 2011). Consequently, these uplands

could have been temporarily covered by steppe vegetation during cryoxeric phases of at

least some glacials. This hypothesis finds support in phylogeographic data which shows

that these uplands harbour distinct phylogenetic lineages or genetic clusters of several

steppic species (e.g. beetles: Centricnemus leucogrammus, Cheilotoma musciformis, Cri-

oceris quatuordecimpunctata, hamster Cricetus cricetus and plants: Cirsium pannonicum,

Inula ensifolia, Linum flavum, L. hirsutum and Stipa pulcherrima). This distinctiveness is
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so high compared to other populations in the east and south that it is unlikely to have

developed simply during a Holocene expansion. Some of these are probably remnants of

much larger populations of species that were widely distributed during glaciations and

populations of which are presently isolated by mountain ranges and other areas covered by

unfavourable natural habitats (forests). Another explanation is that their distribution is now

conditioned by land that has been transformed by humans (in both favourable, e.g. agri-

cultural, and unfavourable ways, e.g. urbanized, roads, railways).

It is challenging to estimate when these species expanded into the areas north of the

Bohemian Massif-Carpathians arc, but their current populations must be younger than 430

000 years (from the end of the Sanian/Elsterian glaciation) (Lindner et al. 2006). A few

dating efforts of divergence and expansion times suggest that these northern populations

could have indeed originated 380,000–150,000 years ago (Centricnemus leucogrammus)

or 147,000–85,000 years ago (Cricetus cricetus) and expanded 280,000–110,000 years ago

(C. leucogrammus) or 115,000–10,000 years ago (C. cricetus) (Neumann et al. 2005;

Kajtoch et al. 2009). Spans of these dating suggest that these events took place during Oder

and Warta/Riss glaciations (for C. leucogrammus) or Vistulian/Würm glaciation (for C.

cricetus). These datings of divergence and subsequent expansion of distinct phylogenetic

lineages probably differ for other species. They would depend, for example, on the species’

mobility (by physical movement or seed dispersal), probability of survival in small areas

with a limited population size and tolerance to climatic and environmental changes.

Butterflies and some plants with easy seed dispersal may have expanded (at least to some

of the existing stations) across northern areas in relatively recent times (after the LGM,

26,000–19,000 years ago), whereas some wingless beetles or plants with heavy seeds

would have needed to be present north of the Carpathians-Bohemian Massif earlier and

survive in situ to the present time (if they had expanded after the LGM, there would not

likely be enough time for them to settle all these distant areas and form distinct genetic

units).

Current ‘‘warm stage’’refugia of steppic taxa

Consequently the uplands of southern Germany and south-eastern Poland should be con-

sidered as additional ‘‘warm stage’’ refugia for steppic species, apart from the presumed

major refugia in the Pontic and Pannonic regions (Stewart et al. 2010; Varga 2010).

Moreover, phylogeographic data for several species suggests that the Lublin-Lviv Upland

at the Polish-Ukrainian border is probably a transient zone between genetic units

characteristic for eastern populations (from Ukraine) and those known in the uplands of

southern Poland (Centricnemus leucogrammus, Cricetus cricetus, Inula ensifolia). It could

also be a refugium for some unique genetic clusters (like in Carlina onopordifolia). The

discovery of unique phylogenetic lineages as far north as the Kujawy Basin (C.

leucogrammus, Crioceris quatuordecimpunctata, Coraebus elatus) or eastern Poland and

central Germany (Iris aphylla) is considered to be of high importance as these areas were

deglaciated only 18,000–12,000 years ago (Wysota et al. 2009). Existence of steppic

populations in the Northern region before the Holocene could also explain a high genetic

diversity of some plant species—higher even than observed in ‘‘core’’ populations in

Pontic and Pannonic regions. This high diversity could reflect substructuring of steppic

populations in fragmented xeric grasslands in Germany and Poland. Contrary, in Pannonic

and Pontic regions populations were (and locally are) interconnected (Sutcliffe et al. in

press) so they could be more uniform genetically. Interesting is that this phenomenon

apparently concerns only (the studied) plants but not (the studied) animals, in which
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marginal, isolated populations generally were less diverse than these from the continuous

parts of species’ ranges.

The reviewed phylogeographic patterns suggest a complex history and structured

phylogeography of the eastern (Pontic) and southern (Pannonic) refugia. Several areas in

the Pontic region sustain diverse phylogenetic lineages: (i) the Podolian Upland (western

Ukraine), (ii) Dobrogea (eastern Romania), (iii) Crimea, (iv) eastern Ukraine and southern

Russia (exemplary taxa with distinct lineages in some of these areas: Coraebus elatus,

Spermophilus suslicus, Sicista subtilis agg., Coronella austriaca, Vipera ursinii complex,

Adonis vernalis, A. volgensis, Scorzonera purpurea and Stipa pulcherrima). In the Pan-

nonic region, distinct refugia were identified: (i) Moravia-Bohemia (an exemplary species

with a distinct lineage in this area is Cirsium pannonicum); (ii) the Pannonian Basin

(Linum flavum, L. hirsutum); (iii) the Transylvanian Basin (Adonis volgensis and the

butterfly Kretania pylaon sephirus; Pecsenye et al. 2007) and (iv) the northern Balkan

Peninsula (taxa with distinct units between the northern Balkan Peninsula and the Pan-

nonian Basin are Spermophilus citellus and the Nannospalax leucodon superspecies). The

barrier formed by the Eastern Carpathians to some of the analysed taxa (S. trizona, A.

volgensis, Pulsatilla patens) is especially interesting. These taxa, with a centre of distri-

bution in the Pontic area, are apparently more diverse in the Pannonian Basin (together

with the Transylvanian Basin) than in neighbouring Dobrogea or south-eastern Ukraine.

Development of distinct units between Pontic and Pannonic regions was also predicted by

the distribution modelling of the steppic butterfly Melitaea ornata in which the Pannonian,

Eastern Balkanic and Pontic population groups can be derived from distinct refugia (Tóth

and Varga 2011; Tóth et al. 2012, 2014). Preliminary analyses suggest (W. Paul, in prep.)

that a similar pattern (i.e. conspicuous genetic separation between Pontic and Pannonic

lineages) can be observed in case of another steppic vascular plant, Campanula sibirica.

Unfortunately, the inavailability of (published) full genetic data prevented regular inclu-

sion of these species into the present review.

Some of the steppic species, especially those with ranges confined to the Balkan

Peninsula and the Pannonian Basin, could have a different origin compared to species

which could be derived from former cold steppes. These species (or sibling taxa in species

complexes) have ranges often stretching across Anatolia, the Balkan Peninsula and the

Pannonian Basin. The occurrence of these taxa in the Pannonian Basin’s steppic habitats

could be related to the more ancient expansion of some xeric elements from Anatolia

(where steppes and other types of xeric grasslands also exist) into south-eastern Europe. An

investigation of this pattern needs more phylogeographic data from species inhabiting

Anatolia (and possibly also the Caucasus), the Balkan Peninsula and the Pannonian Basin,

but this is out of the scope of this review.

Prospects beyond steppic species

Our conclusions might not be restricted to steppic species in the strict sense (related to

xeric grasslands), but could possibly be extended to some other taxa related to more meso-

or even hygrophilous continental meadow steppes (like the plants Bistorta affinis, San-

guisorba officinalis and Dianthus superbus and the insects Arcyptera fusca, Gampsocleis

glabra, Tettigonia caudata, Aricia artaxerxes, Maculinea spp. and Melitaea spp.; Varga

2002). Such species are and also were widely co-distributed with more cold- and xeric-

adapted steppic species during glaciations and probably experienced similar range con-

tractions during interglacials. This hypothesis however needs phylogeographic investiga-

tion, as appropriate analyses are available only for the butterflies Lycaena helle (Habel
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et al. 2014) and the Boloria (Proclossiana) eunomia (Nève et al. 2000). This hypothesis is

also supported by the phylogeography of two ecotypes (xeric- and hygrophilous) of the

steppic beetle Coraebus elatus (Kajtoch et al. 2014b).

Conservation implications

From a conservation point of view, the factor of major importance is the low genetic

diversity among (and usually also within) many (local) populations. This genetic depletion

of steppic populations could be explained in two ways, which are not mutually exclusive.

For the populations that displayed a reduced genetic diversity and lack of differentiation

from the main area, this reduced genetic diversity can be explained either by the effect of

drift (i.e. random change in the frequency of alleles in a population) or by founder effect

(i.e. establishment of local populations by a limited number of genetically closely related

individuals). For populations with a reduced genetic diversity and significant differentia-

tion from other regions, a possible explanation is that the long-existing local populations

might have undergone bottle-necks, which could have depauperated genetic diversity while

providing a chance for local genotypes to sweep through the surviving population. The

majority of phylogeographic patterns described in this paper support the second scenario.

Regardless of the reason, low genetic diversity could have a serious impact on the

probability of the survival of these populations as limited variation in genes could lead to

further population decline and extinction (Frankham et al. 2002). There are known

examples of highly threatened or even endangered populations of steppic animals and

plants with low genetic diversity (e.g. Cheilotoma musciformis, Kajtoch et al. 2013;

Spermophilus suslicus, Biedrzycka and Konopiński 2008, Carlina onopordifolia and

Linum hirsutum, Cieślak 2014).

Another issue of conservational importance is the presence of distinct genetic units

(phylogenetic lineages and/or genetic clusters) in different regions occupied by steppic

species in Eastern Central Europe. As we described in the present paper, many steppic

species or species complexes, both animals and plants, showed substantial differentiation

in their populations from different regions (defined for purposes of this review). This

genetic distinctiveness was interpreted in many of the examined steppic organisms as a

presence of different ‘‘evolutionarily significant units’’ and/or ‘‘management units’’

(Moritz 1994; Vogler and Desalle 1994). These units should be treated independently when

planning conservation strategies and managing populations or habitats. Conservation

actions are crucial, as distinct evolutionary units often have different environmental and

ecological requirements, and the mixing of individuals from diverse lineages (e.g. during

translocation or introduction actions) could be harmful for the fitness of progenies and the

survival of populations (outbreeding depression: Frankham et al. 2002). Lastly, these

evolutionary units could also have taxonomic value (e.g. identification of taxonomic

structure like in Sicista subtilis, Cserkész et al. 2015a, b; the ‘‘near to extinction’’ taxa of

the Nannospalax leucodon superspecies, Németh et al. 2013, species within the Vipera

ursinii complex, Ferchaud et al. 2012; Gvozdik et al. 2012; Zinenko et al. 2015, or

presumable subspecies such as in Cheilotoma musciformis and Coraebus elatus; Kajtoch

et al. 2013, 2014a, b).

Obviously, it is impossible to protect all populations of all steppic species which show

substantial genetic distinctiveness (it would be even not possible to investigate all these

populations!). The priority in steppic organism conservation should be to protect those

areas that are characterized by highest biodiversity and simultaneously sustain distinct

genetic units of some selected (flagship, keystone) species. A general list of such areas is
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presented above, but more comprehensive and detailed studies are needed to select par-

ticular ‘‘hot spots’’ where protected areas need to be designed.

Because steppic habitats, communities and populations in Eastern Central Europe are

highly threatened, genetic factors (like these identified based on phylogeographic analyses

here) should be taken into consideration for the conservation of these species and in

managing steppes and xeric grasslands.

Conclusions

Based on the results and the above part of the discussion, in respect to the hypotheses

enumerated in the ‘‘Introduction’’ section it may be stated, that (see also Information

Box 2):

1. The steppic taxa, their similar ecological demands and biogeographical features

notwithstanding, do not show a uniform phylogeographic pattern. However, some

common characteristics include: (i) generally lower intraregional than interregional

genetic diversity of populations (with some species showing very low or lack of

genetic variability on a local scale); (ii) presence of distinct evolutionary units in each

of three defined ‘‘steppic regions’’ (Pannonian, Pontic and Northern) with (iii)

substantial phylogeographic substructuring of populations within regions (usually

inhabiting currently isolated areas rich in steppic habitats).

2. Almost all steppic taxa or their groups show phylogeographic patterns generally

congruent with that defined for cold-adapted (arctic-alpine) species, that is

interglacial-contraction and glacial-expansion dynamic (opposite to the phylogeo-

graphic paradigms known for temperate-related species).

3. In most cases, genetic differences, if any, are clearly connectable to mountain chains,

which have seemingly acted as important barriers for the migration and/or genetic

contact of steppic plants and animals.

Information Box 2 Major conclusions drawn from phylogeographic patterns observed in steppic plants
and animals

Generally low genetic diversity of animal populations in intra-regional scale, especially in marginal
populations, which has serious conservation implications for survival of local populations

Varied genetic diversity of plant populations in intra-regional scale with unexpected lower diversity in
core populations of some species in Pontic region

Substantial genetic distinctiveness of populations inter-regionally and for some taxa also within regions
(substructuring of populations caused by their history and current habitat fragmentation)

High share of species with distinct genetic units across Bohemian Massif and Carpathians arc—presence
of distinct evolutionary significant units in each of three major areas: Northern, Pannonic and Pontic

There is no east-to-west decreasing genetic diversity and distinctiveness, which should be expected in
case of a recent east-to-west migration scenario

Confirmation that Pontic and Pannonic regions were being settled by steppic species throughout cold or
cool phases of the Upper Pleistocene and there are current ‘‘warm stage refugia’’ for steppic species

Proof that at least some steppic species must have persisted in situ also north of the Carpathians-
Bohemian Massif-Alps arc at least since Sanian/Elsterian glaciation (430,000 years ago), which
contradicts the statement of the exclusively human origin of xeric grasslands in Poland and Germany

Urgent necessity to identify ‘‘hot spot’’ areas, which sustain high biodiversity and distinct evolutionary
units of steppic species, for effective protection of steppic habitats and populations
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4. Phylogeographic patterns of steppic species do not follow the current species diversity,

i.e. apparently there is no east-to-west decreasing genetic diversity and distinctiveness

that should be expected in case of a recent east-to-west immigration scenario. Quite

the contrary, the present genetic pattern hint at a more complex phylogeographic

history of steppic species at their present-day western distribution edge.

5. In several cases (e.g. Cheilotoma musciformis, Melitaea cinxia, Coronella austriaca,

Cricetus cricetus, Linum flavum or Scorzonera purpurea), has been found genetic

evidence for the existence of hitherto disregarded extrazonal microrefugia. Interest-

ingly, many of the examined species show distinct evolutionary units not only in the

Pontic and Pannonian regions, where refugia for steppic taxa have already been

considered (Stewart et al. 2010; Varga 2010), but also in the Northern region. This

indicates the presence of extrazonal microrefugia also to the north of the Bohemian

Massif-Carpathians arc. Moreover, the presence of genetic differences without any

apparent geographic barriers within the Northern region in approx. 60 % of examined

animal and all examined plant taxa may reflect the genetic signature of several

separate migrational waves here.
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(genus Nannospalax) inferred from mitochondrial cytochrome b sequence. Biol J Linn Soc
105:446–455

Krzakowa M, Michalak M (2007) Genetic variability of selected marginal populations of Stipa capillata L.
Biol Lett 44:127–135
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Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia? Quat Sci Rev
95:60–79

Markova AK, Simakova AN, Puzachenko AY (2009) Ecosystems of Eastern Europe at the time of maxi-
mum cooling of the Valdai glaciation (24-18 kyr BP) inferred from data on plant communities and
mammal assemblages. Quat Int 201:53–59

2336 Biodivers Conserv (2016) 25:2309–2339

123



Matrosova VA, Savinetskaya LE, Shekarova ON, Pivanova SV, Rusin MYu, Volodin IA, Volodina EV,
Tchabovsky AV (2014) Within and between population polymorphism of the mtDNA control region of
the speckled Ground Squirrel (Spermophilus suslicus). Biol Sci 455:143–148

Mazur M, Kubisz D (2013) Distribution and migration of the xerothermic beetles (Coleoptera) in the Vistula
River valley. Monografie Faunistyczne 26. ISEZ PAN, Kraków

Mazur MA, Kubisz D, Kajtoch Ł (2014) Restricted geographic distribution and low genetic distinctiveness
of steppic Crioceris quinquepunctata (Coleoptera: Chrysomelidae) populations in central-east Europe.
Entom Fenn 25:103–111

Meindl C (2011) New aspects in plant conservation—phylogeography, population dynamics, genetics and
management of steppe plants in Bavaria. PhD thesis, Fakultät für Biologie und vorklinische Medizin,
University of Regensburg, Regensburg

Moritz C (1994) Defining ‘‘Evolutionarily significant units’’ for conservation. Trends Ecol Evol 9:373–375
Nagy ZT, Bellaagh M, Wink M, Paunovic A, Korsós Z (2010) Phylogeography of the Caspian whipsnake in

Europe with emphasis on the westernmost populations. Amphibia-Reptilia 31:455–461
Németh A, Homonnay ZG, Krizsik V, Csorba G (2013) Old views and new insigths—taxonomic revision of

the Bukovina Blind Mole Rat, Spalax graecus (Rodentia: Spalacidae). Zool J Linn Soc 169:903–914
Neumann K, Jansman H, Kayser A, Maak S, Gattermann R (2004) Multiple bottlenecks in threatened western

European populations of the common hamster Cricetus cricetus (L.). Conserv Genet 5:181–193
Neumann K, Michaux JR, Maak S, Jansman HAH, Kayser A, Mundt G, Gattermann R (2005) Genetic

spatial structure of European common hamsters (Cricetus cricetus)—a result of repeated range
expansion and demographic bottlenecks. Mol Ecol 14:1473–1483
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a genetikai variabilitás kapcsolata védett nappalilepke-fajainknál [Connection between population
structure and genetic variability in some protected butterfly species]. In: Forró L (ed) A Kárpát-
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Tóth JP, Bereczki J, Varga Z, Sramkó G, Wahlberg N (2014) Combined DNA and morphometric based
phylogeny of the Melitaea phoebe (Lepidoptera: Nymphalidae) species group. Syst Entom 39:749–757

Varga Z (2002) Zoologische Forschungen in Zentralasien—Ergebnisse und Erlebnisse. Ber Humboldt-Ver
Ung Sonderausg 21:3–53

Varga Z (2010) Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in Eastern
Central Europe. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation
biology. Springe, Berlin, pp 57–87

Varga ZS, Schmitt T (2008) Types of oreal and oreotundral disjunction in the western Palearctic. Biol J Linn
Soc 93:415–430

Vogler A, DeSalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363
Wagner V, Treiber J, Danihelka J, Ruprecht E, Wesche K, Hensen I (2012) Declining genetic diversity and

increasing genetic isolation towards the range periphery of Stipa pennata, a Eurasian feather grass. Int
J Plant Sci 173:802–811

Wahlberg N, Saccheri I (2007) The effects of Pleistocene glaciations on the phylogeography of Melitaea
cinxia (Lepidoptera: Nymphalidae). Eur J Ent 104:675–684

Willis KJ, van Andel TA (2004) Trees or no trees? The environments of central and eastern Europe during
the Last Glaciation. Quat Sci Rev 23:2369–2387
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