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water regimes over time. A widening thermal niche 
may eventually overcome thermal barriers, further 
expanding the range and enhancing transmission 
opportunities for host generalist parasites. This study 
assesses the observed (field observations) and theo-
retical (species distribution models) range expansion 
of N. davidi and associated parasites in Europe. We 
report three newly established N. davidi populations 
from thermally polluted waters in central Europe 
(Germany, Hungary, and Slovakia) and provide fur-
ther evidence of its range expansion into colder 
environments. Species distribution models predict 

Abstract The release of ornamental pets and asso-
ciated pathogens outside their native range might 
directly or indirectly impact the recipient community. 
In temperate regions, e.g., central Europe, feral fresh-
water species of tropical and sub-tropical origins are 
mainly constrained to thermally polluted waters and 
thermal springs. However, species with high envi-
ronmental plasticity and reproduction rates, such as 
the shrimp Neocaridina davidi, may adapt to colder 
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thermally suitable habitats in the Mediterranean and 
a foreseeable expansion into Western Europe and the 
Balkans by 2050. We confirm the presence of the 
microsporidian parasite Ecytonucleospora hepatope-
naei in feral N. davidi populations across Europe and 
expand the list of microsporidians found in this host 
from two to four. Furthermore, we provide the first 
evidence of parasite spillover from/to the invasive 
crayfish Procambarus clarkii, suggesting that parasite 
exchange with native biota might be possible. Such 
possibility, coupled with an ongoing range expansion 
of N. davidi bolstered by human-mediated introduc-
tions and climate change, will likely exacerbate the 
impact on native biota.

Keywords Atyidae · DNA barcoding · 
Ecytonucleospora hepatopenaei · Invasive species · 
Ornamental trade · Shrimp diseases

Introduction

Freshwater habitats are particularly prone to biologi-
cal invasion (Casatti et al. 2006; Gherardi 2007). Inva-
sive species can directly and indirectly impact entire 
ecosystems and their native communities. Generally, 
invaders lead to substantial declines in the abundance 
and diversity of resident species and alter ecosystem 
functioning (Ricciardi and MacIsaac 2011; Cucher-
ousset and Olden 2011; Britton et  al. 2023). Direct 
impacts typically involve biotic interactions such as 
predation, competition, and pathogen transmission, 
while indirect impacts often imply changes in habitat 
structure, water clarity, nutrients, and organic matter 
concentrations (Cucherousset and Olden 2011; Gal-
lardo et al. 2016; Britton et al. 2023). Direct and indi-
rect impacts might not follow the same trajectories; 
thus, the outcome of biological invasions depends on 
the complex interplay of various processes, some of 

which, including the role of invasive species as vec-
tors for pathogens, urgently require further investiga-
tion. The interplay of all these processes makes the 
ecological impact of invasive species hard to predict. 
Nevertheless, the impact of biological invasion, bol-
stered by the worldwide introduction of non-native 
species, has likely led to the present-day global biota 
homogenization in freshwater ecosystems (Olden 
et al. 2018).

With increased global connectivity and trade, 
the number of introduction pathways for non-native 
freshwater species is growing at an unprecedented 
pace (Saul et  al. 2017; Turbelin et  al. 2022). The 
introduction of a broad spectrum of non-native organ-
isms in freshwater habitats is commonly associated 
with aquaculture practice, recreational angling, pet 
trade, cultural activities, governmental stocking, 
mosquito biocontrol, or shipping and boating activi-
ties (Cambray 2003; Savini et al. 2010; Capinha et al. 
2013; Patoka et  al. 2018; Bernery et  al. 2022). In 
Europe, the pet trade is increasingly recognized as an 
emerging pathway for the introduction of non-native 
species and their associated symbionts (Padilla and 
Williams 2004; Duggan 2010; Lipták and Vitázková 
2015; Patoka et al. 2016).

The increased availability and popularity of aquar-
ium animals, coupled with the inability of the own-
ers to care for them due to high fecundity, aggressive 
behavior, large adult size, misinformation, and non-
return policies by vendors, may result in deliberate 
introductions into natural ecosystems (Patoka et  al. 
2018; Banha et  al. 2019; Gippet and Bertelsmeier 
2021; Bláha et al. 2022). Consequently, introductions 
are tendentially biased toward the cheapest and most 
successful pets, which are also generally the most 
prolific and environmentally adaptable species (Gip-
pet and Bertelsmeier 2021). Such traits make them 
more likely to adapt to local conditions and become 
invasive (Blackburn et al. 2011).

Although introduced non-native species might not 
necessarily become successful invaders in recipient 
ecosystems, they might negatively affect them, e.g., 
via pathogen transmission, which could persist in 
the system even after the original host disappearance 
(Simberloff et  al. 2013). Enemy release theory sug-
gests that invaders partially lose their associated para-
sites when released into new environments (Torchin 
et  al. 2003). However, the remaining parasites can 
spillover to susceptible native species, conferring a 
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competitive advantage to the invading hosts (Strauss 
et  al. 2012; Telfer and Bown 2012). For instance, 
the oomycete Aphanomyces astaci (Schikora 1906), 
the causative agent of the crayfish plague, co-intro-
duced in Europe alongside North American crayfish, 
induced mass mortality among the native crayfish 
species (Svoboda et  al. 2017). On the other hand, 
invasive species might also acquire local parasites, 
amplifying (spillback) or diluting (dilution) their 
prevalence in native species (Strauss et al. 2012; Tel-
fer and Bown 2012).

Parasite spillover is particularly relevant, consid-
ering that commercially successful freshwater pets 
are typically mass-produced in intensive aquacul-
ture farms. Captive pets often have higher pathogen 
burdens than their wild counterpart due to potential 
immunosuppression from inbreeding, high densities, 
and lack of stringent biosecurity measures (Landaeta-
Aqueveque et  al. 2014; Maceda-Veiga and Cable 
2019; Wood et al. 2022; Maciaszek et al. 2023). This 
is the case for pet fish like the guppy (Poecilia reticu-
lata Peters, 1859), the convict cichlid (Amatitlania 
nigrofasciata Günther, 1867), and crustaceans like 
crayfish and atyid shrimps which have established 
feral populations across the globe including Europe 
(Mrugała et  al. 2015; Emde et  al. 2016; Maceda-
Veiga and Cable 2019; Maciaszek et al. 2023).

Atyid shrimps, especially the cherry shrimp (Neo-
caridina davidi Bouvier, 1904), syn. N. denticulata 
sinensis, and N. heteropoda), are among the most 
successful organisms involved in the pet trade due to 
vibrant colors and ease of keeping (Maciaszek et al. 
2018; Bláha et  al. 2022). Neocardina davidi pos-
sesses high fecundity and environmental plasticity, 
with captive individuals successfully breeding in a 
wide range of conditions (14–30  °C, pH 6–8.2, gH 
0–27 °C) (Namaei Kohal et al. 2018; Maciaszek et al. 
2023). However, low winter temperatures in tem-
perate regions commonly prevent their survival and 
range expansion once released, constraining them to 
thermally-polluted waterbodies (Veselý et  al. 2015; 
Weiperth et  al. 2019). Water temperatures in the 
native habitat of N. davidi in Southeast Asia range 
from 6 °C in winter to 30 °C in summer (Klotz et al. 
2013). Those temperatures are higher than winter 
temperatures in central Europe; however, a warm-
ing climate might facilitate the establishment of this 

thermophilic species in the foreseeable future (Klotz 
et al. 2013; Jabłońska et al. 2018).

Permanent, self-sustaining feral populations of 
N. davidi are already known from thermal waters in 
Canada, Germany, Hungary, and Poland and even 
unheated waters in Israel, Japan, the French overseas 
territory of la Reunion, and the USA (Klotz et  al. 
2013; PM 2017; Jabłońska et al. 2018; deBruyn 2019; 
Levitt-Barmats et  al. 2019; Weiperth et  al. 2019). 
Moreover, further observations of likely N. davidi 
have been reported worldwide. The most recent was 
from southern France via the iNaturalist app (tomja-
monneau 2023). However, these are single observa-
tions, often lack genetic data, and until proven oth-
erwise, do not represent self-sustaining populations. 
Nevertheless, they highlight the ongoing releases of 
these non-native shrimps in natural environments.

The effects of N. davidi introduction are known to 
be multi-dimensional. Reported ecological impacts of 
N. davidi are, for instance, the replacement of native 
shrimps with similar ecological niches (Onuki and 
Fuke 2022), alteration of meiofaunal assemblages 
(Weber and Traunspurger 2016), and changes in leaf-
litter breakdown in invaded areas (Schoolmann and 
Arndt 2017). The high feeding rate of the omnivorous 
N. davidi, estimated to be over half of its body weight 
per day, implies that other less efficient native crusta-
ceans relying on the same resources may be outcom-
peted (Schoolmann and Arndt 2017). However, nei-
ther habitat suitability nor the ecological impact of N. 
davidi on European ecosystems has been thoroughly 
investigated. Likewise, the risk posed by co-intro-
ducing symbionts associated with N. davidi remains 
unclear.

Neocaridina davidi hosts a wide range of 
commensals and parasites (Ohtaka et  al. 2012; Liao 
et al. 2018; Bauer et al. 2021; Maciaszek et al. 2023), 
some of which have been co-introduced with N. davidi 
outside their native range (Niwa and Ohtaka 2006; 
Patoka et  al. 2016; Maciaszek et  al. 2021b; Kakui 
and Komai 2022). Among them, Ecytonucleospora 
(= Enterocytozoon) hepatopenaei (EHP) (Wang 
et al. 2023) has been detected using molecular tools 
in a German population of feral N. davidi (Schneider 
et al. 2022). EHP is a microsporidian parasite known 
to infect the hepatopancreas of shrimps, resulting 
in stunted growth and impaired immunity. Its 
transmission occurs directly via the oral-fecal route, 
cannibalism, or exposure to contaminated water 
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(Tangprasittipap et  al. 2013; Subash et  al. 2022). 
EHP is known to infect cultured penaeid shrimps 
(Chaijarasphong et  al. 2021) but can also infect 
other freshwater, brackish, and marine invertebrates 
(Karthikeyan and Sudhakaran 2020; Krishnan et  al. 
2021; Munkongwongsiri et  al. 2022; Wan Sajiri 
et  al. 2023). Most recently, EHP has been reported 
in dragonflies with persisting infections in their 
terrestrial imago stage and, more worryingly, from 
the red swamp crayfish (Procambarus clarkii Girard, 
1852), a prominent invader in freshwater ecosystems 
worldwide (Dewangan et al. 2023; Ling et al. 2024). 
Therefore, confirming the presence of EHP and 
other microsporidian infections in feral N. davidi 
populations is imperative. Likewise, assessing N. 
davidi-related parasite infections in co-occurring 
crustaceans is paramount, as they might spread to 
native and invasive biota.

This study aims to assess the range expansion of N. 
davidi and its associated parasites in Europe, confirm 
the presence of EHP in the feral populations, iden-
tify possible parasite spillover/spillback from and to 
co-occurring crustaceans (amphipods, crayfish, and 
isopods), and experimentally test the possibility of 
pathogen transmission between alien and native biota. 
Furthermore, in light of ongoing climatic changes, we 
infer current and near-future habitat suitability for N. 
davidi in Europe and the Mediterranean using species 
distribution models.

Materials and methods

Sampling sites

The sampling of N. davidi and co-occuring crusta-
ceans (amphipods, crayfish, and isopods) took place 
between September 2021 and May 2023 in multiple 
locations across Germany, Hungary, Slovakia, and 
Poland (Table  1 and Fig.  1). Two catchments have 
been investigated in Germany: the Erft in North 
Rhine-Westphalia and the Blies in Saarland. The Erft 
is a tributary of the River Rhine with a long history 
of thermal pollution (Schoolmann and Arndt 2018). 
Neocaridina davidi was first reported from the Gill-
bach in 2013, a thermally polluted tributary of the 
River Erft, and later from the lower and upper Erft 
and the Rhine (Klotz et  al. 2013; Schoolmann and 
Arndt 2018; Bierbach et  al. 2022; Schneider et  al. 

2022). Two citizen scientists also reported sightings 
of N. davidi in the upper part of the Erft via the iNat-
uralist app (aymac 2021; drmichaelbraun 2021). The 
heated waters of the Gillbach, which are fed entirely 
by the cooling water of the nearby lignite-fired pow-
erplant of Niederaußem, hosted a community of 
organisms commonly found in the pet trade, includ-
ing, among others, P. reticulata and A. nigrofasciata 
(Klotz et al. 2013; Lukas et al. 2017b).

The second German catchment, the Blies, is a 
tributary of the River Saar, subject to post-mining 
water discharges (Franzaring 2022). Warm and saline 
waters from a former coal mine now used as a geo-
thermal plant are released in one of its tributaries, 
the Sinnerbach. The heated water is discharged into 
a so-called ‘water garden’ for cooling, which flows 
into a nearby creek, the Klinkenbach, before converg-
ing into the Sinnerbach. The water garden is an artifi-
cial recreational area characterized by cloudy, saline 
waters (pH 7.5–7.9, DO 3.6–9  mg/l, 1850–1900  µs) 
and a temperature constantly above 26 °C (Table 1). 
The garden is home to a thriving community of 
freshwater pets, which includes cichlids, cyprinids, 
poecilids, and crayfish such as P. clarkii (Lukas et al. 
2017a). Neocaridina davidi was first filmed on-site in 
2020 by a YouTuber (Krabbelkeller 2020). From the 
outflow of the water garden into the Klinkenbach, the 
water temperature still remains above 20 °C until the 
upper part to the Sinnerbach.

Two localities in Hungary have been investigated: 
the thermal water of Miskolctapolca and those of the 
Városliget Park in Budapest. In Miskolctapolca, the 
thermal waters of the Békás pond and the outflow-
ing Hejő creek, a tributary of the River Tisza, host 
a wide variety of ornamental fish, shrimps, crayfish, 
amphibians, and turtles which have been extensively 
described in recent publications (Weiperth et al. 2019; 
Maciaszek et al. 2021a; Bláha et al. 2022). Here, N. 
davidi was first recorded in the autumn of 2017 and 
has maintained a stable population since then. Occa-
sionally, shrimps have been observed to venture into 
the colder downstream water of Hejő creek (< 6 °C) 
between late autumn and early spring (Weiperth et al. 
2019). The second location, the thermal water of 
Városliget Park, comprises large and small thermal 
spring ponds. The warmest of the large ponds hosts 
pet-traded crayfish such as P. clarkii, marbled cray-
fish (Procambarus virginalis Lyko, 2017), and five 
Cherax species (Weiperth et al. 2020). All ponds are 
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Table 1  Sampling areas and sites where N. davidi were collected, including temperature, pH, dissolved oxygen, and conductivity 
measured at the collection date

Sampling area Sampling sites Coordinates Date Tem-
perature 
(°C)

pH DO (mg/l) Conduc-
tivity (µs/
cm)

Erft catchment (DE) Erft in Bergheim 50.966607, 6.613078 26/10/2021 21.6 6.9 – 750
Erft near Neuss 51.168308, 6.704281 26/10/2021 17.6 7.9 – 856
Kleine Erft near industrial 

outflow
50.942189, 6.659522 24/02/2022 22.1 – – –

Kleine Erft near industrial 
outflow

50.942189, 6.659522 24/11/2022 18.4 – – 1068

Finkelbach 50.980763, 6.578115 14/12/2021 9.0 7.7 9.8 620
Finkelbach 50.980763, 6.578115 24/02/2022 9.7 –
Gillbach 200 m below power-

plant outflow
50.997865, 6.661693 26/10/2021 21.2 7.9 – 1470

Gillbach 3 km below power-
plant outflow

51.014611, 6.684583 26/10/2021 19.8 7.5 – 1470

Gillbach 11 km below power-
plant outflow

51.089833, 6.688056 26/10/2021 16.7 7.2 – 1542

Blies catchment (DE) Water garden near geothermal 
plant outflow

49.351179, 7.114634 16/09/2021 26.5 7.9 9.0 1850

Water garden 300 m below 
geothermal outflow

49.352081, 7.119069 16/09/2021 28.8 7.5 3.6 1900

Water garden 500 m below 
geothermal outflow

49.352328, 7.121528 16/09/2021 28.2 7.9 6.6 1870

Klinkenbach 750 m below 
geothermal outflow

49.353775, 7.123450 16/09/2021 28.6 7.8 7.5 2000

Klinkenbach 750 m below 
geothermal outflow

49.353775, 7.123450 03/02/2022 29.3 8.1 4.5 2274

Klinkenbach 1 km below 
geothermal outflow

49.354401, 7.126394 03/02/2022 27.7 8.4 3.6 2134

Sinnerbach 2.8 km below 
geothermal outflow

49.352848, 7.146605 03/02/2022 21 8.6 6.0 1775

Sinnerbach 3.7 km below 
geothermal outflow

49.349784, 7.158135 04/03/2023 20.5 8.4 – 1852

Blies 5 km below geothermal 
plant outflow

49.350809, 7.170278 04/03/2023 13.2 7.9 – 1076

Miskolctapolca (HU) Békás thermal pond 48.062361, 20.747833 29/11/2022 24.6 8.5 4.0 551
Hejő creek near thermal pond 

outflow
48.062444, 20.748389 29/11/2022 14.8 8.3 5.7 536

Hejő creek 100 m below ther-
mal pond outflow

48.063361, 20.749611 29/11/2022 13.1 8.3 3.2 551

Hejő creek 900 m below ther-
mal pond outflow

48.068194, 20.756861 29/11/2022 11.1 8.5 6.5 554

Városliget Park (HU) Szent István thermal spring 
pond

47.518364, 19.084177 21/05/2023 28.9 8.4 3.1 796

Čepčínsky creek (SK) 200 m below thermal spring 48.861667, 18.838556 08/05/2023 20.2 – – –
1 km below thermal spring 48.867944, 18.835306 08/05/2023 15.7 – – –

Dolna Odra (PL) Ciepły canal 600 m below 
powerplant outflow

53.211742, 14.467465 27/05/2023 27.4 – – 735

Ciepły canal 1 km below 
powerplant outflow

53.215342, 14.470639 27/05/2023 24.0 – – 740
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interconnected and drain via a subsurface channel 
into the main arm of the Danube River. Among these 
is also Szent István spring pond, a small artificial 
pond at the base of a fountain fed by thermal water 
(28.9 °C, pH 8.37, DO 3.1 mg/l, 796 µs, Table 1).

In Slovakia, N. davidi was first observed in 2021 
by Martin Dobrota, a citizen scientist in the upper 
part of the Čepčínsky creek, a tributary of the River 
Turiec (Váh River Basin). The creek originates from 
a thermal spring and has a length of 7 km. Its upper 
section hosts a population of P. clarkii, which likely 

Fig. 1  Map of sampling 
areas where Neocaridina 
davidi individuals were col-
lected. Black dots indicate 
sites visited in the present 
study. White dots indicate 
additional areas in which N. 
davidi has been observed in 
previous studies or reported 
by citizen scientists via 
the iNaturalist app. The 
maps were generated using 
ArcGIS with data extracted 
from OpenStreetMap
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escaped from one of Europe’s largest aquaculture 
facilities focused on breeding exotic fish species, mol-
lusks, and crustaceans for the pet trade (Lipták et al. 
2023).

Neocaridina davidi has been present in Poland at 
least since 2003 in the Ciepły canal, a thermally pol-
luted artificial channel in the lower section of the 
River Oder, near Gryfino (Jabłońska et  al. 2018). 
The 3.5 km long channel receives heated water from 
the Dolna Odra Power Station cooling system. In its 
proximity, the annual mean temperature is 20.9  °C 
(Maciaszek et  al. 2021b). Besides N. davidi, several 
alien species, including pet trade-related ones like the 
Asian clam (Corbicula fluminea Müller, 1774), the 
pirapitinga (Piaractus brachypomus Cuvier, 1818), 
and P. clarkii are well-established on-site (Jabłońska 
et al. 2018; Maciaszek et al. 2021b; Ondračková et al. 
2023). However, in the summer of 2022, fish and 
mollusks living in the River Oder, including the arti-
ficial canal where N. davidi was previously collected, 
experienced unprecedented mass mortality caused by 
the toxic golden alga Prymnesium parvum (Carter 
1937), an alga associated with saline waters (Mar-
chowski and Ławicki 2023).

Sampling collection and processing

Neocaridina davidi and co-occuring amphipods, 
decapods, and isopods were collected using hand nets 
and immediately preserved in 96% ethanol for mor-
phological and molecular analyses of hosts and para-
sites. Moreover, the carapax, including a section of 
the hepatopancreas, of 50 additional freshly dissected 
individuals collected from the Kleine Erft (Germany) 
on November 2022 were fixed in Davidson’s freshwa-
ter solution for 24 h and later transferred to 70% etha-
nol for histological examination. The rest of the body 
was preserved in 96% ethanol and processed for mor-
phological and molecular analyses of hosts and para-
sites. The Kleine Erft population was chosen after the 
first batch of individuals collected during this study 
(February 2022) were confirmed to be infected with 
EHP via molecular screening. A total of 50 pet-traded 
N. davidi were later bought from different retailers 
and private keepers. These were euthanized by ice 
submersion until the absence of eye stalk responses. 
After death, they were cut in half lengthwise, one side 
preserved in 96% ethanol for molecular identification 
of host and parasites and the other homogenized for 

a subsequent infection experiment with isopods and 
amphipods.

All hosts (amphipods, crayfish, isopods, and 
N. davidi) were morphologically and molecularly 
identified, measured, and dissected in the laboratory. 
The hosts were screened for internal parasites, and 
the guts were removed to avoid microsporidian 
contamination in downstream molecular analyses. 
Additionally, small portions of preserved muscles 
from five P.clarkii individuals collected during 
another study (Lipták et  al. 2023) were also 
molecularly screened for microsporidians. Epibionts 
were not analyzed as their conservation in ethanol-
preserved specimens is generally poor.

Molecular analyses

DNA was isolated from hosts using either a modi-
fied salt precipitation protocol described by Grabner 
et  al. (2015) or using a 10% solution of Chelex 100 
resin (Bio-Rad Laboratories, Hercules, CA, USA) 
following the protocol described in Hupało et  al. 
(2023). Host molecular identification was performed 
using the universal eukaryotic primers LCO1490 
(5′-GGT CAA CAA ATC ATA AAG ATA TTG G-3′) 
and HCO2198 (5′-TAA ACT TCA GGG TGA CCA 
AAA AAT CA-3′) (Folmer et  al. 1994) or LCO1490-
JJ (5′-CHACW AAY CAT AAA GAT ATY GG-3′) and 
HCO2198-JJ (5′-AWA CTT CVGGRTGVCCA AAR 
AATCA-3′) (Astrin and Stüben 2008). When possi-
ble, ten N. davidi individuals for each sampling point 
and each retailer were randomly chosen for molecular 
identification. Other crustaceans were identified fol-
lowing the same procedure.

Microsporidians presence in the examined 
hosts was initially screened with the universal 
microsporidian primers V1F (5′-CAC CAG GTT 
GAT TCT GCC TGAC-3′) (Zhu et  al. 1993) and 
Micuni3R (5′-ATT ACC GCGGMTGC TGG CAC-3′) 
(Weigand et  al. 2016) targeting the small subunit 
ribosomal RNA (SSU rRNA) gene. Subsequently, 
infected individuals (i.e., bands clearly visible in 
the gel) were screened for EHP using a single PCR 
with the species-specific primers ENF779 (5′-CAG 
CAG GCG CGA AAA TTG TCCA-3′) and ENR779 
(5′-AAG AGA TAT TGT ATT GCG CTT GCT G-3′) 
targeting the SSU rRNA gene (Tangprasittipap 
et  al. 2013) and a nested PCR with the SWP1F 
(5 ′-TTG CAG AGT GTT GTT AAG GGTTT-3 ′) , 
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SWP1R (5′-CAC GAT GTG TCT TTG CAA TTTTC-
3′), SWP2F (5′-TTG GCG GCA CAA TTC TCA 
AACA-3′), and SWP2R (5′-GCT GTT TGT CTC 
CAA CTG TAT TTG A-3′) primers targeting the 
spore wall protein of EHP (Jaroenlak et  al. 2016). 
All PCR reactions excluding those used for the 
LCO1490-JJ and HCO2198-JJ primer pair consisted 
of 20  μL composed of 10 μL of 2 × AccuStart II 
PCR ToughMix (Quantabio), 1  μL of each primer 
(0.5  μM), 0.35  μL of 50 × GelTrack Loading Dye 
(Quantabio), 6.65 μL MilliQ water and 1 μL of DNA 
template. For the LCO1490-JJ and HCO2198-JJ 
primer pair, the PCR reaction consisted of 20  μL 
assay with 10  μL of Dream-TaqTM Hot Start 
Green PCR Master Mix (Thermo Fisher Scientific, 
Waltham, MA, USA), 1.6  μL (5 uM) of each 
primer, 4.8  μL of nuclease-free water and 2  uL of 
DNA template per reaction. PCR settings for DNA 
fragment amplification varied between different 
primer sets and are described in detail in the 
Supplementary file (S1). PCR products were sent 
either unpurified to Microsynth Seqlab (Germany) 
or purified (LCO1490-JJ and HCO2198-JJ) to 
Eurofins Genomics (Cologne, Germany) for 
Sanger sequencing. Enzymatical purification was 
obtained with 10 U of Exonuclease I (ExoI) and 1 
U of thermosensitive alkaline phosphatase (FastAP) 
(both Thermo Fisher Scientific) for 5  μL of PCR 
product with an incubation step at 37 °C for 25 min 
followed by an inactivation step at 85 °C for 15 min.

Raw sequences were quality-checked and edited 
using Geneious v2023.0.1 (Biomatters, Ltd., New 
Zealand). Only sequences with a minimum length 
of 200  bp were retained for the analyses. Obtained 
sequences were compared against GenBank records 
using BLASTN (blast.ncbi.nlm.nih.gov). Host 
and parasite sequences were separately aligned 
using the MAFFT v7.490 algorithm with standard 
settings (Katoh et  al. 2019). Maximum likelihood 
phylogenetic trees with bootstrap support values 
(1000 replicates) were produced in IQ-Tree 2.2.0 
(Minh et  al. 2020) using the TIM3 + F + G4 
substitution model for microsporidians and the 
TPM2u + F + I + G4 substitution model for N. 
davidi based on Bayesian information criterion. A 
haplotype network was inferred using the Minimum 
Spanning Network method in PopArt v1.7 (Leigh and 
Bryant 2015), whereas the visualization of N. davidi 
haplotypes for each area investigated was obtained 

with the R package mapmixture (Jenkins 2023). All 
the sequences generated in this study were submitted 
to NCBI GenBank (accession numbers OR610860-71 
and OR613110-12 for hosts, and OR616363-71 for 
microsporidians).

Histological analyses

Whole animal preparations were processed for his-
tological analyses via initial fixation in Davidson’s 
freshwater fixative (~ 48  h) before being transferred 
into 70% ethanol. Only infected individuals (con-
firmed via molecular analyses) were used. These were 
infiltrated with paraffin wax in an automated tissue 
processor (ethanol-xylene substitute wax). Wax-infil-
trated tissues were then embedded into wax blocks 
and sectioned at 4  µm to attain a single section per 
specimen through the center of the animal. Each sec-
tion was then mounted upon a glass slide and stained 
with hematoxylin and eosin, following a standard 
de-wax and rehydration protocol. The slides were 
screened for pathogens using a Leica DM500 light 
microscope and photographed with the integrated 
camera system.

Infection experiment

Potential horizontal transmission of EHP from N. 
davidi to the native macroinvertebrates Asellus 
aquaticus (Linnaeus, 1758) and Gammarus pulex 
(Linnaeus, 1758) (co-habitants at the invasion site) 
was experimentally assessed. Three groups of ten 
A. aquaticus and ten G. pulex were transferred from 
the respective rearing tanks into the experimental 
tanks (acclimatization: 24 h). These were lab-reared, 
microsporidian-free individuals (F2 of individuals 
collected in the Boye catchment, NRW, Germany). 
After that, homogenized tissues of five EHP-
infected N. davidi (EHP positive using nested PCR 
and preserved at 4 °C < 24 h) were provided as feed 
(inoculant) over three days to the treatment groups 
(two groups of ten individuals per species). The 
use of EHP-infected homogenized tissue provides 
simultaneous exposure to spore-infected water and 
direct oral infections via the ingestion of infected 
tissue remains. EHP-infected homogenized tissue 
was preferred over exposure to EHP-infected shrimp 
feces to maximize the possibility of transmission by 
exploiting the scavenger habits of A. aquaticus and G. 
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pulex. In parallel, homogenized tissues of five EHP-
free N. davidi individuals were fed to the control 
groups (one group of ten individuals per species). 
Each homogenized shrimp was diluted in 4  ml of 
water and evenly distributed among tanks on days one 
and three to minimize ammonia production.

Both G. pulex and A. aquaticus were observed to 
feed on the material provided. After 20  days, all G. 
pulex and A. aquaticus were collected and molecu-
larly screened for EHP following the procedure 
described in “Molecular analyses” Section.

All G. pulex and A. aquaticus were held in 3-L 
containers illuminated daily for eight hours with 
6500  K LED bars. The container setup consisted of 
a thin layer of gravel barely covering the bottom, Java 
moss (Taxiphyllum barbieri Iwatsuki, 1982), three 
alder leaves, and water from the respective rearing 
tank (17.1  °C, pH 7.92, 426  µs). No filtering, aera-
tion, or heating was used. The experimental tanks 
were left for 4 weeks before the experiment to reduce 
potential ammonia spikes when feeding homogenized 
N. davidi and avoid water changes that could reduce 
the number of infective spores in the tank.

Influence of temperature on N.davidi and EHP 
infectivity

Temperature influences survival rate and sex ratios 
in N. davidi, resulting in a larger proportion of 
females born at higher temperatures (Serezli et  al. 
2017). This may boost propagule spreading from 
thermally altered to colder areas. Thus tempera-
ture-dependent sex ratio of sexed individuals was 
assessed using a pairwise Chi-square across dif-
ferent temperature categories (< 15, 15–19.99, 
20–24.99, and > 25 °C). The infectivity of EHP may 
be affected by temperature, given its warm climate 
origins. Therefore, the influence of temperature on 
EHP prevalence in all feral N. davidi was investi-
gated using Generalized Linear Model (GLM) 
logistic regression with infected/uninfected as the 
dependent variable and carapax size, sex (female, 
male, and unsexed), and temperature categories as 
independent variables. The results were reported as 
odd ratios. The model did not include water conduc-
tivity, a proxy for salinity, as this has not been con-
sistently measured (Table  1), nor was a distinction 
made between sampling sites and sampling season. 
A direct comparison of prevalence across sampling 

sites and seasons was impossible due to a low num-
ber of samples and mismatched sampling periods. 
Therefore, we employed an exact binomial prob-
ability estimation with a 95% confidence interval 
to estimate the infection rate of background popu-
lations at each site using the exactici package (Fay 
2023). Statistical and descriptive analyses were 
performed with the open-source software R (ver-
sion 4.3.2, R Core Team 2023) via the RStudio GUI 
(version 2023.06.0, RStudio Inc.).

Species occurrence presence-only data

Species distribution models (SDMs) were employed 
to predict habitat suitability for N. davidi across cen-
tral Europe and the Mediterranean region using the 
Maxent algorithm on presence-only data. The tax-
onomy of N. davidi remains somewhat unclear as N. 
davidi, and N. denticulata (De Haan 1844) are often 
used interchangeably in the literature, and natural 
hybridization between these species and N. palmata 
(Shen 1948) may occur (Onuki and Fuke 2022). 
Therefore, we constrained our data to N. davidi clade 
A and B, leaving out clade C as the latter, according 
to the most recent phylogenetic and morphological 
analyses of Onuki and Fuke (2022) are likely hybrids 
between N. davidi and N. palmata.

All available DNA sequences (COI gene) of 
Neocaridina with a minimum length of 500  bp 
were retrieved from NCBI GenBank on February 
2024, totaling 307 entries (Supplementary file S2). 
Sequences not belonging to wild collected individu-
als, those from outside eastern Asia, those from indi-
viduals belonging to species or clades other than N. 
davidi clade A and B, and those where retrieving the 
sampling location was impossible even by screening 
the related literature were excluded. Geographical 
coordinates for samples with only the location name 
were retrieved from Google Maps. We eliminated 
duplicate entries and kept only those from sampling 
locations more than 10  km apart. The final dataset 
consisted of 51 entries, which were also used to con-
struct the phylogenetic tree mentioned in “Molecular 
analyses” Section (Fig. 2). Native and invaded areas 
of N. davidi in eastern Asia span from southern China 
to northern Japan, encompassing a wide range of 
environmental variables. Different populations might 
have distinct thermal tolerances. Therefore, we split 
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them into southern (Clade B1) and northern (Clade 
A and B2) populations (Fig.  2) to account for pos-
sible climatic adaptations and generated two sepa-
rate SDMs. Note that the clades were heavily biased 
towards either Taiwan or northern China and northern 
Japan (Fig. 2).

Species distribution models

The software Maxent version 3.4.4 (Phillips et  al. 
2017) and R were employed for modeling habitat 
suitability of southern (n = 26) and northern 
(n = 25) N. davidi populations. Given the patchy 
distribution of available data and the sampling 

locations’ relative proximity, bias files for both 
models were generated using two-dimensional 
kernel density estimation via the MASS package 
(Ripley et al. 2023). Leave-one-out cross-validation 
was used to test the models, and the jackknife test 
was used to identify the most important variables. 
Maximum entropy modeling was done using 10.000 
background sites, 500 iterations, a regularization 
multiplier of 1, auto features, and a logistic output.

Bioclimatic data with a spatial resolution of 
2.5 arc minutes for 1979–2013 (Karger et  al. 
2017) provided by Paleoclim (http:// www. 
paleo clim. org) and downscaled CMIP6 SSP245 
(intermediate greenhouse gas emissions scenario) 

Fig. 2  Maximum likeli-
hood phylogenetic tree of 
feral Neocaridina davidi. 
Grey dots represent boot-
strap support values above 
90%. Sequences obtained 
in this study are indicated 
in bold, and the outgroup 
sequence is highlighted in 
grey

http://www.paleoclim.org
http://www.paleoclim.org
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projections for 2050 (2041–2060 period) provided 
by WorldClim (https:// world clim. org) were used 
to model habitat suitably in the present day and 
near future. For near-future projections, we used 
the average values of four global climate model 
ensembles (ACCESS-CM2, HadGEM3-GC31-LL, 
MIROC6, and MPI-ESM1-2-HR) deemed suitable 
for continental Europe and the Mediterranean area 
(Raju and Kumar 2020; Seker and Gumus 2022).

With a lack of detailed knowledge of the focal spe-
cies, simpler models are more accurate than those 
calibrated using a broader set of bioclimatic vari-
ables (Low et al. 2021). Therefore, as predictors, we 
prioritized the use of the minimum and maximum 
temperature variables. Neocaridina davidi is primar-
ily constrained by its thermal tolerance, and artificial 
aquatic ecosystems exist even in relatively arid areas, 
as exemplified by invaded regions of Israel (Levitt-
Barmats et  al. 2019). To improve realism and trans-
ferability, we excluded precipitation variables that 
contributed more than the temperature and removed 
those that were highly correlated (Pearson’s r > 0.8) 
using the package ENMTools (Warren et  al. 2021). 
The resulting bioclimatic variables used for the mod-
els were BIO5—maximum temperature of the warm-
est month, BIO6—minimum temperature of the cold-
est month, and BIO18—precipitation of the warmest 
quarter.

Present and near future habitat suitability were 
projected on Central Europe and the Mediterranean. 
The AUC value for the first model was 0.88 (good), 
while that of the second was 0.61 (poor). A value 
above 0.5 indicates that the Maxent model performs 
better than random. We kept the second model despite 
the poor score, as it was consistent with the known 
distribution of N. davidi and, therefore, deemed bio-
logically relevant. The widely used AUC values are 
often misleading and unrealistic when it comes to the 
biological significance of SDMs (Lobo et  al. 2008). 
N. davidi clade B1, exported from Taiwan, is cur-
rently present in the European pet trade and thermally 
altered waters. Still, they have been observed in the 
northern regions of China and Japan. Therefore, we 
created an average ensemble of habitat suitability pro-
jections derived from southern and northern regions 
for a more realistic representation of present and 
near-future predictions for this clade.

Results

A total of 658 shrimps and 353 co-occurring crusta-
ceans (303 amphipods, 5 crayfish, and 45 isopods) 
were collected. All shrimps were N. davidi clade 
B1 (Fig.  2). Morphological identification of feral N. 
davidi was corroborated by molecular identification 
with five haplotypes detected, here named ‘Ndh1’, 
‘Ndh2’, ‘Ndh3’, ‘Ndh4’, and ‘Ndh5’ (Figs.  2 and 
3). Ndh1 showed 100% similarity to feral N. davidi 
previously collected in Germany (OM468123). 
‘Ndh2’ was 100% similar to feral and pet-traded 
individuals previously found in Poland (MG816764 
and MG816765), pet-traded individuals in Canada 
(MG319788), and wild individuals from Taiwan 
(MG816764 and MG734262), while ‘Ndh3’ and 
‘Ndh5’ had 100% similarity to wild Taiwanese sam-
ples (MG734280 and MG734258). ‘Ndh4’ was 100% 
similar to feral individuals previously collected in 
Hungary (OM214466).

Neocaridina davidi was present at all sites, includ-
ing the Gillbach, where other pet-traded species dis-
appeared, and the Ciepły canal, which was affected 
by the mass mortality event in the Oder during the 
summer of 2022. In the water garden (Blies catch-
ment), N. davidi co-occurred with pet-traded spe-
cies, including previously unreported species such as 
Ancistrus sp., Hemichromis spp., molly (P. sphenops 
Valenciennes, 1846), platy (Xiphophorus maculatus 
Günther, 1866), and P. virginalis. In the Szent István 
spring pond N. davidi co-occurred with pet-traded 
fish (e.g., Poecilidae) and the invasive crayfish P. vir-
ginalis. Neocaridina davidi inhabited environments 
with a wide range of water parameters (9–29.3  °C, 
pH 6.9–8.6, 3.1–9.8 mg/l DO, and 551–2274 µs/cm, 
Table 1) and 30.2% of the collected individuals origi-
nated from water below 15 °C.

Among the N. davidi collected, 316 were females 
(119 were ovigerous), 237 were males, and 105 were 
individuals of undetermined gender. With an average 
carapax length of 5.09 ± 1.00 SD (range 3.06–7.99) 
mm, females were larger than males 4.38 ± 0.75 SD 
(3.01–6.38) mm. The proportion of females and males 
was relatively similar across temperature categories 
(Chi-square test, χ2(3, 553) = 6.88, p = 0.076). There 
was no clear evidence of a temperature-dependent sex 
ratio. Populations of N. davidi living at temperatures 
between 15 and 20 °C showed the highest proportion 

https://worldclim.org
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of ovigerous females (61.54%) and those living above 
25 °C the lowest (14.63%).

Among the investigated feral N. davidi, 5.62% 
were infected with microsporidians, mostly EHP 
(5.02%, Table  2). However, neither carapax length, 
sex (female, male, unsexed), nor temperature pre-
dicted EHP infections (all OR 95% CI crossed 1, 
Table  3). Half of the investigated areas hosted feral 
populations of N. davidi infected with EHP. The 
highest prevalence was found in the Erft catchment 
(9.30%). However, binomial probability estimations 
calculated for each sampling site indicated a potential 
prevalence of up to 84.14% among the background 

populations (Table  4). EHP was the only microspo-
ridian found in pet-traded N. davidi, reaching 14% 
prevalence. EHP was not found in other macroinver-
tebrates collected in the wild, and no EHP-infected 
individual was found in the infection experiment of 
G. pulex and A. aquaticus.

The detection of EHP relied on molecular analy-
ses. SSU rRNA sequences showed 99.9–100% 
similarity with those obtained from the whiteleg 
shrimp (Penaeus vannamei Boone, 1931) from 
India, China, South Korea, and Vietnam, and poly-
chaete worms Marphysa spp. collected in India. All 
infected N. davidi shared the same EHP haplotype 

Fig. 3  a) Map of feral 
Neocaridina davidi 
haplotypes (‘Ndh1’ to 
‘Ndh5’) across Europe and 
b) Minimum Spanning 
haplotype network includ-
ing pet traded individuals. 
(1) Erft catchment, (2) Blies 
catchment, (3) Dolna Odra, 
(4) Čepčínsky creek, (5) 
Városliget Park, and (6) 
Miskolctapolca
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(100% similarity). Likewise, EHP spore wall pro-
tein sequences belonged to a single haplotype, which 
showed 98.64% similarity to sequences obtained from 
P. vannamei collected in India, Thailand, and Malay-
sia. Histology of EHP-positive N. davidi revealed 
infected hepatopancreatic tubules, presenting eosino-
philic cytoplasmic inclusions of early spore develop-
ment as well as later mature spore stages (Fig. 4).

Besides EHP, three other microsporidian isolates, 
two of which were new to science, were detected in 
N. davidi (Table 2, Fig. 5). Those in Čepčínsky creek 
were infected with an undescribed microsporidian 
isolate, here named Microsporidium sp. SCC01. The 
closest described species was Enterocytospora arte-
miae (Rode et al. 2013) (JX915760; 83.23% identity, 
99% coverage, e-value = 6e−80). The same micro-
sporidian was also detected in two P. clarkii collected 

Table 2  Prevalence of microsporidians in different crustacean species, including pet traded decapods

The Genbank accession number of each host is indicated in the bracket after the host name

Host (Genbank accession number) Pooled sample N Prevalence % Microsporidian

Asellus aquaticus (OR613110) Blies catchment (DE) 4 0
Erft catchment (DE) 35 2.86 (1/35) Microsporidium sp. EFB02
Miskolctapolca (HU) 2 0
Dolna Odra (PL) 4 0

Crangonyx pseudogracilis (OR610871) Erft catchment (DE) 31 0
Dikerogammarus haemobaphes (OR610868) Dolna Odra (PL) 13 0
Dikerogammarus villosus (OR610869) Erft catchment (DE) 30 0
Gammarus fossarum (OR610870) Blies catchment (DE) 4 0
Gammarus pulex (OR610867) Blies catchment (DE) 18 27.78 (5/18) Microsporidium sp. 505
Gammarus roeselii (OR613111) Erft catchment (DE) 93 1.08 (1/93) Microsporidium sp. V-B

33.33 (31/93) Nosema sp. clade B
Miskolctapolca (HU) 101 2.97 (3/101) Dictyocoela roeselum

4.95 (5/101) Microspordium sp. HMI02
0.99 (1/101) Nosema sp. clade B

Gammarus tigrinus (OR610864) Dolna Odra (PL) 5 0
Neocaridina davidi (OR610860-65) Blies catchment (DE) 140 5.00 (7/140) Ecytonucleospora hepatopenaei

Čepčínsky creek (SK) 110 1.82 (2/110) Microsporidium sp. SCC01
Erft catchment (DE) 193 9.30 (18/193) Ecytonucleospora hepatopenaei

0.52 (1/193) Micorsporidium sp. EFB01
Dolna Odra (PL) 36 0
Miskolctapolca (HU) 168 4.76 (8/168) Ecytonucleospora hepatopenaei

0.59 (1/168) Microspordium sp. HMI01
Városliget Park (HU) 11 0
Pet trade (DE) 50 14.00 (7/50) Ecytonucleospora hepatopenaei

Pontogammarus robustoides (OR610866) Dolna Odra (PL) 8 0
Procambarus clarkii (OR613112) Čepčínsky creek (SK) 5 40.00 (2/5) Microsporidium sp. SCC01

Table 3  Logistic regression output table from GLM showing 
the influence of carapax size, sex (female, male, and unsexed), 
and temperature categories (15–19.99  °C, 20–24.99  °C 
and ≥ 25 °C) on Ecytonucleospora hepatopenaei prevalence

The table includes Odd Ratios, Odd Ratios 95% confidence 
intervals, P values, and McFadden pseudo-R2

Predictors Odd ratios 95% CI P

Host sex M 1.39 0.60–3.14 0.418
Host sex ND 0.25 0.04–1.40 0.127
Carapax size in mm 0.64 0.41–1.01 0.056
Temperature 15–19.99 °C 1.33 0.48–3.56 0.580
Temperature 20–24.99 °C 1.09 0.44–2.80 0.847
Temperature > 25 °C 0.60 0.15–2.05 0.429
Observations 658
R2 McFadden 0.034
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Table 4  Observed prevalence of Ecytonucleospora hepatopenaei in Neocaridina davidi for every sampling site with a 95% confi-
dence interval for background population prevalence based on binomial probability estimation

Sampling area Sampling sites N Ecytonucleospora 
hepatopenaei preva-
lence %

background population 
95% CI prevalence %

Erft catchment (DE) Erft in Bergheim 9 22.22 (2/9) 2.81–60.01
Erft near Neuss 2 0 0–84.19
Kleine Erft near industrial outflow 72 11.11 (8/72) 4.92–20.72
Finkelbach 92 8.70 (8/92) 3.83–16.42
Gillbach 200 m below powerplant outflow 3 0 0–70.76
Gillbach 3 km below powerplant outflow 7 0 0–40.96
Gillbach 11 km below powerplant outflow 8 0 0–36.94

Blies catchment (DE) Water garden near geothermal plant outflow 8 0 0–36.94
Water garden 300 m below geothermal outflow 4 0 0–60.24
Water garden 500 m below geothermal outflow 7 0 0–40.96
Klinkenbach 750 m below geothermal outflow 22 13.64 (3/22) 2.91–34.91
Klinkenbach 1 km below geothermal outflow 48 2.08 (1/48) 0.05–11.07
Sinnerbach 2.8 km below geothermal outflow 23 0 0–14.82
Sinnerbach 3.7 km below geothermal outflow 10 20 (2/10) 2.52–55.61
Blies 5 km below geothermal plant outflow 18 5.56 (1/18) 0.14–27.2

Miskolctapolca (HU) Békás thermal pond 79 10.13 (8/71) 4.99–21.00
Hejő creek near thermal pond outflow 65 0 0–5.52
Hejő creek 100 m below thermal pond outflow 13 0 0–24.71
Hejő creek 900 m below thermal pond outflow 11 0 0–28.49

Városliget Park (HU) Szent István thermal spring pond 11 0 0–28.49
Čepčínsky creek (SK) 200 m below thermal spring 52 0 0–6.85

1 km below thermal spring 58 0 0–6.16
Dolna Odra (PL) Ciepły canal 600 m below powerplant outflow 26 0 0–13.23

Ciepły canal 1 km below powerplant outflow 10 0 0–30.85

Fig. 4  Histopathologi-
cal images of the infected 
hepatopancreas of Neo-
caridina davidi, revealing 
cytoplasmic inclusions in 
the hepatopancreatic epithe-
lial alpha and beta cells. A 
The relative morphology of 
the cytoplasmic inclusions 
reflects different develop-
ment stages (reflecting 
the putative sporophorous 
vesicle, arrow 1; and infec-
tive spore stages, arrow 2). 
B Cytoplasmic inclusions 
of microsporidian spores 
(black arrows) within the 
hepatopancreatic epithelia. 
The white arrows indicate 
example host nuclei. HL 
hepatopancreatic tubule 
lumen, HS haemal sinus
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on site. One N. davidi individual collected from the 
Békás pond was infected with an undescribed iso-
late, here named Microsporidium sp. HMI01. The 
closest described species was Jirovecia branchilis 
(Liu et  al. 2023) (AF484694; 83.97% identity, 81% 
coverage, e-value = 1e−69). One individual from 
Finkelbach was infected with Microsporidium sp. 
EFB01 (OM467902; 99.50% identity, 69% coverage, 
e-value = 1e−94), a microsporidian isolate previously 
observed in N. davidi by Schneider et al. (2022).

Six other microsporidians were detected exclu-
sively in amphipods or isopods co-occuring with 
N. davidi (Table  2, Fig.  5). Among these were 
Nosema sp. clade B sensu Bacela-Spychalska et al. 
(2023) (OR165989; 99.60% identity, 100% cov-
erage, e-value = 9e−174), Dictyocoela roeselum 
(Haine et  al. 2004) (MG773219; 100% identity, 
100% coverage, e-value = 0.0), and Microspori-
dum sp.V-B (MK719363; 99.06% identity, 100% 
coverage, e-value = 5e−157) found in Gammarus 

roeselii (Gervais 1835), Microsporidium sp. 505 
(FN434085; 99.14% identity, 100% coverage, 
e-value = 5e−171) found in G. pulex and two unde-
scribed microsporidians. The first of which was 
found in G. roeselii and here named Microsporid-
ium sp. HMI02. The closest described species was 
Helmichia lacustris (Voronin 1998) (GU130406; 
90.46% identity, 84% coverage, e-value = 6e−86). 
The second, here named Microsporidium EFB02, 
was found in A. aquaticus. The closest described 
species was Euplotespora binucleata (Fokin et  al. 
2008) (DQ675604; 84.23% identity, 96% cover-
age, e-value = 2e−74). None of the other hosts were 
infected (Table 2).

In central Europe, N. davidi and their parasites 
occur in thermal and adjacent colder waters. Waters 
in Central Europe, if not thermally altered, have low 
predicted habitat suitability for southern and north-
ern N. davidi populations (Fig.  6). More favora-
ble conditions are present in the Mediterranean. Its 

Fig. 5  Maximum likeli-
hood phylogenetic tree of 
microsporidians identi-
fied in this study. Grey 
dots represent bootstrap 
support values above 90%. 
Sequences obtained in this 
study are indicated in bold, 
and the outgroup sequence 
in grey. The names and cir-
cumscriptions of microspo-
ridian clades sensu Bojko 
et al. (2022) are indicated 
in red
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Fig. 6  Maxent derived present-day and near-future habitat 
suitability projections for southern (Taiwan-biased) and north-
ern (northern China-Japan-biased) populations of Neocaridina 
davidi in Central Europe and the Mediterranean. Near-future 
predictions (2050) based on CMIP6 SSP245 average val-

ues of four global climate model ensembles (ACCESS-CM2, 
HadGEM3-GC31-LL, MIROC6, and MPI-ESM1-2-HR) for 
the period 2041–2060. Unheated waters currently invaded by 
southern and northern population of Neocaridina davidi are 
indicated with a red dot on the respective map
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coastline and islands offer moderately to highly suit-
able habitats to northern N. davidi populations, while 
the southeastern Mediterranean seems more favorable 
for the southern populations. Broader areas than those 
currently occupied by the species are deemed suit-
able. These are expected to expand under a climate 
change scenario with intermediate greenhouse gas 
emissions.

Predictions for the northern populations of 
N.davidi indicate a notable increase in suitable 
habitats by 2050 in Western Europe and the Balkans 
but a worsening for the southern Mediterranean. 
Areas with suitable habitats might shrink for 
the southern N.davidi populations if no climatic 
adaptations or thermal plasticity is accounted for. 
The average projection ensemble of both populations 
for 2050 indicates limited habitat suitability in 
continental Europe, mainly across the Iberian 
peninsula. The most influential predictor of habitat 
suitability in all projections was BIO6—minimum 
temperature of the coldest month. This predictor 
contributed between 75.7 and 99.2%, thus retaining 
the most useful information by itself.

Discussion

The release of ornamental pets and associated para-
sites into novel environments might pose severe risks 
to native biota (Sures 2011; Svoboda et  al. 2017; 
Patoka et  al. 2018). Deepening the knowledge of 
invading hosts and parasites is paramount, especially 
for commercially successful ornamental pets. Com-
mercially successful ornamental pets, like N. davidi, 
are widely available, easy to breed, and often toler-
ant to a wide range of environmental variables. This 
makes them more prone to releases and increases 
their chances of establishing in new locations (Lipták 
and Vitázková 2015; Bláha et  al. 2022). A possible 
invasion risk is not covered by the EU regulation No. 
1143/2014 on the prevention and management of the 
introduction and spread of invasive alien species, as 
shrimps are not currently listed as species of concern. 
We present the discovery of three newly established 
N. davidi populations across Europe and mounting 
evidence of an ongoing range expansion into colder 
water. Furthermore, we confirm the presence of EHP 
infections in feral N. davidi and other microsporid-
ian parasites, including one shared with the highly 

invasive crayfish P. clarkii, highlighting a possible 
parasite spillover.

The presence of feral N. davidi in central Europe 
dates back to 2003, with the report of a population 
in Poland (Jabłońska et al. 2018). Since then, further 
populations have been discovered in Germany and 
Hungary (Klotz et  al. 2013; Weiperth et  al. 2019). 
The current study increased this list with three more 
thermally polluted sites in Germany, Hungary, and 
Slovakia. The latter is the first report of this species 
in the country. The geographic distribution of feral 
N. davidi, as evidenced by their haplotypes, primar-
ily reflects what is available in the pet trade of the 
respective countries. The haplotype ‘Ndh2’ was dom-
inant in Poland, Slovakia, and the Hungarian popula-
tion of Városliget Park, Budapest. The dominance of 
this haplotype in the eastern part of central Europe 
is unsurprising, as the pet market in these countries 
often shares similar suppliers. Accordingly, this hap-
lotype has previously been reported from the Polish 
pet trade (Jabłońska et al. 2018), and the Slovakian N. 
davidi population may have escaped from the nearby 
aquaculture farm that supplies the Slovak, Hungar-
ian, and Polish markets. On the other hand, ‘Ndh1’ 
and ‘Ndh3’ were only found in Germany, where these 
haplotypes are traded.

Escapes from aquaculture farms are a known issue, 
particularly in Southwestern Europe, where biosecu-
rity measures are often lacking (Maceda-Veiga et al. 
2013). Colder water in temperate regions might pre-
vent warm-adapted species from establishing. Never-
theless, numerous pets, including the topmouth gudg-
eon (Pseudorasbora parva Temminck and Schlegel, 
1846), the oriental weather loach (Misgurnus anguil-
licaudatus Cantor, 1842), and apple snails (Pomacea 
spp.), have become invasive in Europe (Beyer 2004; 
Franch et  al. 2008; Gilioli et  al. 2017). Other intro-
duced pets have failed to establish outside thermal 
waters due to a lack of physiological plasticity, but 
this might change in the future, thanks to a warming 
climate (Ribeiro et al. 2008; Weiperth et al. 2019).

High physiological plasticity may have favored the 
establishment of N. davidi even outside such bounda-
ries. Accordingly, N. davidi seems to be relatively 
unaffected by perturbations in the thermal regime 
of cooling water systems. As seen for the Gillbach, 
where most ornamental species, except for N. davidi, 
perished following a temperature decrease due to the 
partial decommissioning of the powerplant in 2020 
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and 2021 (RWE 2021). Likewise, most ornamental 
species hosted in the water garden were also present 
in the lower warm part of the Klinkenbach until its 
confluence with the Sinnerbach, where cold and warm 
water mixed, with only N. davidi occurring in the 
colder downstream waters. Neocaridina davidi had 
higher thermal tolerance than other pets, with roughly 
one-third of the individuals collected in waters below 
15  °C. Furthermore, N. davidi were collected from 
waters containing as little as 3.1 mg/l dissolved oxy-
gen, indicating they can thrive even in oxygen-poor 
environments. Accordingly, the N. davidi popula-
tion in the Ciepły Canal survived oxygen deprivation 
associated with the algal explosion event that infested 
the saline waters of the Oder River in the summer of 
2022 (Marchowski and Ławicki 2023).

Temperature did not strongly influence N. davidi 
sex ratios. This contradicts previous experimental 
findings where the sex ratio appeared to be strongly 
influenced by temperature (Serezli et al. 2017). How-
ever, such experimental studies do not take predation 
into account. Females are generally larger and often 
more colorful than males. Accordingly, the coloration 
of females collected across different sampling sites 
was mixed, ranging from brown-grey to red, blue, 
green, and black, while that of males was mainly 
transparent-gray-brown. Consequently, increased vis-
ibility of females likely results in higher predation 
pressure and a more balanced sex ratio, as observed 
in the present study. Such a dynamic might lessen 
propagule pressure from thermal to colder waters, 
hindering colonization success. This might hold par-
ticularly true for water nearing 20 °C, in which 80% 
of the population is expected to be composed of 
females (Serezli et  al. 2017). Ideal breeding condi-
tions in feral N. davidi seem to be found between 15 
and 20 °C, as shown by the large proportion of ovi-
gerous females. However, ovigerous females were 
also observed at temperatures below 10 °C, suggest-
ing that reproduction in these waters is not limited to 
the summer season only. This finding, coupled with 
the relatively high proportion of individuals collected 
in water below 15  °C, indicates that species’ range 
expansion to colder waters might be possible in the 
upcoming years.

A range expansion of N. davidi into colder waters 
is unsurprising; previous studies have postulated such 
a prediction (Klotz et al. 2013; Schneider et al. 2022). 
Although considered thermophilic, N. davidi is not 

strictly a tropical species. In truth, its native habi-
tats includes waters ranging from 6  °C in winter to 
30 °C in the summer (Klotz et al. 2013). Accordingly, 
even N. davidi clade B1, originating from the warm 
waters of Taiwan, has been observed in the colder 
waters of northern regions of China and Japan (Zhou 
et al. 2021; Onuki and Fuke 2022). However, waters 
in Central Europe, unlike those in the Mediterranean, 
have low predicted habitat suitability for southern 
and northern N. davidi populations, unless thermally 
altered. Winter temperatures are 2–4  °C lower than 
those registered in Asian water bodies but similar to 
those reported from thermally-polluted rivers such as 
the River Rhine, Europe’s seventh-longest and busi-
est waterway (Wetzel 2001; van Vliet et  al. 2011), 
known for its enormous proportion of invasive spe-
cies (Sures et al. 2019). Nevertheless, a rise in water 
temperatures, an increase in the frequency and dura-
tion of heat waves, and a decrease in recurring cold 
spells during winter facilitate the acclimatization of 
thermophilic species (van Vliet et al. 2013; Jabłońska 
et al. 2018; Woolway et al. 2021).

In a climate change scenario with intermediate 
greenhouse gas emissions, broader areas than those 
currently occupied are expected to become suitable 
by 2050 in Western Europe and the Balkans, largely 
sparing those of Central Europe. This is based on the 
assumption that southern N. davidi populations will 
show similar thermal tolerances to those observed in 
their northern counterpart. The critical thermal min-
ima and the lower incipient lethal temperature in ther-
mophilic freshwater decapods depend on the dura-
tion and temperature of the acclimation phase (Dı́az 
Herrera et al. 1998; Kır and Kumlu 2008). Since feral 
N. davidi have been present in Europe for approxi-
mately 2 decades, it is likely that, over time, a gradual 
insurgence of cold-adapted individuals among the 
established populations may result in a thermal niche 
expansion. However, thermal tolerance studies on N. 
davidi are urgently needed to confirm such assump-
tions. Furthermore, hybrids between N. denticulata, 
N. davidi, and N. palmata are found in nature (Onuki 
and Fuke 2022) and likely in the pet trade, as sug-
gested by the relatively high genetic variability in 
feral N. davidi across the globe. Hybrids between 
populations with low genetic distance but high vari-
ability might have a higher thermal tolerance due to 
outbreeding overdominance, thus becoming more 
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invasive than any parental population (Facon et  al. 
2005; Hupało et al. 2018).

An expansion of N. davidi into colder water might 
also result in the spread of associated pathogens, 
as seen for parasites that have been co-introduced 
outside their native range (Niwa and Ohtaka 2006; 
Maciaszek et  al. 2021b; Kakui and Komai 2022; 
Schneider et al. 2022). Enemy release theory suggests 
that invaders partially lose their associated parasites 
when released into new environments (Torchin 
et  al. 2003). Parasites may be lost due to a lack of 
suitable environmental conditions if their tolerance 
differs from that of their hosts or because they cannot 
complete their life cycle (Lymbery et  al. 2014; 
Chalkowski et  al. 2018). Therefore, the successful 
establishment of parasites in novel environments is 
more likely to occur in generalist species with simple 
life cycles, i.e., for species using vertical or horizontal 
transmission without the need for intermediate hosts 
(Lymbery et al. 2014; Prati et al. 2022).

These include the microsporidian EHP, which was 
previously detected in a German population of feral 
N. davidi (Schneider et  al. 2022). This parasite pos-
sesses a simple life cycle, has been reported from a 
variety of invertebrate hosts, and can be considered 
a host generalist (Karthikeyan and Sudhakaran 2020; 
Krishnan et  al. 2021; Munkongwongsiri et  al. 2022; 
Wan Sajiri et al. 2023). The presence of EHP-infected 
feral N. davidi in sites with different water parameters 
indicates that this parasite is resilient to various envi-
ronmental conditions. Accordingly, EHP is tolerant 
to salinity between 2 and 40 ppt, albeit its transmis-
sion at low salinity is reduced (Aranguren Caro et al. 
2021), and its distribution range spans from tropi-
cal to temperate areas (Kim et  al. 2022). Consider-
ing water salinization across Europe, bolstered by 
industrial discharges and droughts, EHP’s prevalence 
might increase in the forseable future. Moreover, the 
release of spores via waste water of home aquaria 
might constitute an additional source of propagules 
reaching aquatic environments.

The spread of EHP into European water can be 
attributed to pet trade dynamics as the vast majority 
of N. davidi sold on the global market are imported 
from Taiwan due to cheaper production costs 
(Maciaszek et al. 2018). Taiwanese farms are located 
in the southern part of the island in close proximity to 
the coast, an area also known for the intensive farm-
ing of non-native L. vannamei, the primary host for 

EHP (Aranguren Caro et al. 2021; Kim et al. 2022). 
This area relies heavily on groundwater for aquacul-
ture, which is subject to salinization due to seawater 
intrusion (Dibaj et al. 2020). Water salinization cou-
pled with intensive farming enhances the infectivity 
of EHP (Aranguren Caro et  al. 2021); consequently, 
a higher load of spores is available in the environ-
ment. Thus, EHP spores might spread across aquacul-
ture facilities via water movement and flying insects 
reaching N. davidi farms. Accordingly, dragonflies, 
often abundant near shrimp farms, serve as suitable 
hosts for EHP (Dewangan et  al. 2023). Infected N. 
davidi may then end up unnoticed in the global mar-
ket, favored by loose regulations and a lack of rele-
vant information.

Spillover events, such as that of EHP from L. van-
namei to susceptible native biota, are not rare events 
even in temperate regions, as exemplified by the out-
break of crayfish plague in Europe (Svoboda et  al. 
2017). Parasites that are able to switch from intro-
duced to native host species can have greater patho-
genic effects in native hosts because they lack a coev-
olutionary history (Mastitsky et  al. 2010). However, 
non-native species might also acquire local parasites, 
amplifying (spillback) or diluting (dilution) their 
prevalence in native species (Strauss et al. 2012; Tel-
fer and Bown 2012).

No parasite spillback from native species to N. 
davidi was detected. However, it is possible that other 
parasites like trematodes, e.g. Plagiorchidae, which 
are common in Central Europe, might find a suit-
able host in N. davidi, as has been seen for N. den-
ticulata in its native range (Okabe and Shibue 1952). 
On the other hand, parasite spillover seems to have 
occurred between N. davidi and the invasive crayfish 
P. clarkii, as they shared a common microsporidian, 
Microsporidium sp. SCC01. Given the distant rela-
tionship between the two hosts, we can assume that 
this parasite is of a generalist nature in terms of host 
preference. The other two microsporidians found in 
N. davidi, namely Microsporidium sp. EFB01 and 
Microsporidium sp. HMI01 were not detected in other 
biota. Similarly, EHP was not detected in amphipods 
and isopods collected from the field or in G. pulex 
and A. aquaticus subjected to experimental infection. 
It is not excluded that a spillover might have occurred 
under experimental conditions with longer exposure 
to EHP infective spores. Nonetheless, it is still possi-
ble that EHP could spread to native biota, as has been 
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observed for parasites in other invasive crustaceans 
(Bacela-Spychalska et al. 2012; Svoboda et al. 2017). 
Such spread may be facilitated by climate change and 
invasive species acting as vectors.

The ongoing rise in temperature and salinization of 
freshwater ecosystems is likely to bolster the spread of 
N. davidi and the transmissibility of EHP, enhancing 
the availability of propagules that might infect native 
biota. Procambarus clarkii, which often co-occurs 
with N. davidi in thermally altered waters, may act as 
a vector. Accordingly, EHP has recently been detected 
in Chinese populations of P. clarkii (Ling et al. 2024). 
This is particularly concerning as P. clarkii is widely 
distributed and is one of Europe’s most invasive cray-
fish species (Oficialdegui et al. 2019).

The discovery of two additional microsporid-
ians in N. davidi compared to a previous study 
(Schneider et  al. 2022) is a clear indication that 
screening for parasites invisible to the naked eye 
in pet-traded organisms is unfortunately not a com-
mon practice. Although microsporidians are more 
likely than other parasites to successfully establish 
in new areas due to their simple life cycle, general-
ist nature, and high environmental resilience, they 
are often neglected in biological invasion studies. 
The impact asserted by invading microsporidians 
on native crustaceans, with the exception of those 
found in prominent amphipod invaders such as the 
killer shrimp (Dikerogammarus villosus Sovinsky, 
1894) and the demon shrimp (Dikerogammarus 
haemobaphes Eichwald, 1841), remains unclear and 
requires further studies.

To conclude, the range expansion of N. davidi in 
Europe is ongoing and is likely to continue in the 
future, supported by warming temperatures. The 
increasing presence of feral N. davidi and ongoing 
water salinization presents unique opportunities for 
the spread of EHP and potentially other host general-
ist parasites to native biota, leading to unpredictable 
outcomes. Therefore, it is imperative to closely mon-
itor the expansion of feral N. davidi and undertake 
comprehensive experimental infection studies on a 
broader range of potential native hosts using various 
environmental conditions, spore concentrations, and 
exposures.
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