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Abstract The expansion of lionfish Pterois miles 
across the Mediterranean Sea since its introduction 
via the Suez Canal has been rapid, but the mecha-
nisms by which the expansion occurred have not been 
fully tested. By using a series of Lagrangian particle 
tracking simulations and high-resolution hydrody-
namic models, we tested the hypothesis that passive 
dispersal of larvae could explain the east to west 
expansion of lionfish. By sequentially modelling the 
annual dispersal of larvae, from the first observation 

in Lebanon in 2012 and then modelling dispersal of 
larval from the simulated settlement sites, we showed 
that passive dispersal driven by ocean currents largely 
explained the observed expansion of lionfish until 
2020. The spread of lionfish was likely restricted 
by environmental conditions when the population 
reached the central Mediterranean and the particle 
tracking simulations diverged from observations. 
The results emphasize the potential contribution of 
computational models in understanding the disper-
sal of non-indigenous and range expanding species 
in response to changing environmental conditions, 
identifying high risk areas, and guiding targeted sur-
veillance, early detection, and informing management 
strategies for such species. Given that many non-
indigenous species in the Mediterranean are intro-
duced through a consistent pathway (the Suez Canal), 
the incorporation of interdisciplinary approaches 
and high-resolution biophysical models can pro-
vide fundamental knowledge for management action 
prioritization.
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Introduction

The Mediterranean Sea is a global hotspot area for 
the establishment of marine non-indigenous species 
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(NIS). Nearly 1000 species have been introduced in 
the Mediterranean Sea, including species from the 
Red Sea, the Black Sea and the Atlantic Ocean (Cos-
tello et  al. 2021; Zenetos et  al. 2008, 2022; Zene-
tos and Galanidi 2020). The rate at which NIS are 
being introduced into new areas has been accelerat-
ing, with an average rate of one new species reported 
every eight days, and more invasions are evident in 
the eastern Mediterranean Sea (Costello et al. 2021). 
The primary pathways for the introduction of NIS are 
shipping, aquarium trade, and the Suez Canal (Zene-
tos and Galanidi 2020). Since the opening of the Suez 
Canal in 1869 and subsequent widening and deepen-
ing of the Canal, the coastal ecosystems of the east-
ern Mediterranean Sea have been facing accelerating 
biological changes and the increasing establishment 
of NIS of Indo-Pacific origin (Galil 2023; Kalogirou 
2011).

Increased scientific interest, gradual deepening and 
widening of the Suez Canal, increased sea surface 
temperature (SST) and gradual equalization of Red 
Sea salinity with Great Bitter Lakes are among the 
most important factors that contributed to the increas-
ing rate of reported NIS during the last decades (Galil 
2023; Garrabou et  al. 2022; Kalogirou 2011; Por 
2010; Raitsos et al. 2010). Once a NIS is established 
in a highly connected ecosystem such as the Medi-
terranean Sea, it is impossible to eradicate. Impacts 
of established NIS are dynamic in nature and can 
reduce ecosystems’ resilience, lead to regime shifts 
and degraded ecosystem states while in some cases 
it might add redundancy and provide ecosystem ser-
vices (Chaffin et al. 2016; Kleitou et al. 2021a). These 
species can impact existing ecological interactions 
through e.g. competition for resources, habitat to set-
tle, spawning grounds, grazing or predation, trophic 
cascading effects, or even, filling up empty niches 
(Azzurro et  al. 2007; Bariche et  al. 2009; Batjakas 
et  al. 2023; Kalogirou 2011, 2013; Kalogirou et  al. 
2007, 2012a, b, c; Sala et al. 2011; Savva et al. 2020).

The lionfish Pterois miles (Linnaeus, 1758) was 
among the fastest reported NIS colonizers in the 
Mediterranean Sea with a rapid geographic expansion 
from the eastern to the western parts of the Mediter-
ranean Sea (Bariche et  al. 2013; Poursanidis et  al. 
2020). Lionfish (Pterois miles/Pterois volitans com-
plex) has also been involved in a major invasion in 
the Western Atlantic where an unprecedented popula-
tion expansion across a wide range of natural habitats 

raised important impacts on marine biodiversity 
and ecosystem resilience (Azzurro et  al. 2017; Kle-
tou et al. 2016; Muñoz et al. 2011; Poursanidis et al. 
2020; Whitfield et al. 2007). The Mediterranean lion-
fish population is of Red Sea origin, founded by indi-
viduals immigrating through the Suez Canal (Bariche 
et  al. 2017), likely through multiple introductions 
(Dimitriou et  al. 2019). Even though evidence on 
the relationship between climate and extended distri-
bution of NIS is limited, climate change (increasing 
survival) is often suggested as a main contributor for 
spread of the species (Occhipinti-Ambrogi and Shep-
pard 2007; Poursanidis et  al. 2022). Predicting the 
potential geographic distribution of P. miles in the 
Mediterranean Sea is of high importance for early 
warning and mitigation of NIS management (Kleitou 
et al. 2021c; Poursanidis et al. 2020, 2022). To accu-
rately model and predict future spread of P. miles, the 
mechanism by which it spreads needs to be under-
stood and this can be tested using the recorded expan-
sion of the species since its introduction through the 
Suez Canal.

Lionfish are known to have a relatively small home 
range and limited movement as mature fish with 
estimates ranging from no movement to up to 1.35 
km over 15 days (Tamburello and Côté 2015). It is 
therefore believed that most of the previous distribu-
tion expansion has been due to dispersal in the lar-
val phase (Del Río et  al. 2023; Johnson et  al. 2016; 
Morris and Whitfield 2009). Female lionfish employ 
broadcast spawning, releasing a substantial number 
of eggs in a gelatinous mass (Morris and Whitfield 
2009). This reproductive strategy maximizes disper-
sal through ocean currents while enhancing fertili-
zation by limiting egg predation (Fogg et  al. 2017). 
The eggs and subsequent embryos disintegrate within 
a short period, leading to the release of free-floating 
embryos or larvae. These larvae have a pelagic phase, 
allowing them to disperse over significant distances 
for approximately 20–35 days before ultimately set-
tling in benthic habitats (Ahrenholz and Morris 
2010). It is likely that it is the planktonic larval phase 
which has enabled P. miles to spread rapidly. This 
also aligns with water currents being identified as the 
most influential parameter for transport of lionfish in 
the Western Atlantic (Johnston and Purkis 2011).

This combination of residentiary adults and pelagic 
dispersal of larvae make it an excellent hypothesis 
to address via particle tracking simulations. Particle 



507Testing passive dispersal as the key mechanism for lionfish invasion in the Mediterranean Sea…

1 3
Vol.: (0123456789)

tracking simulations can combine reproductive biol-
ogy knowledge with hydrodynamic models to simu-
late dispersal under specified conditions. Lagrangian 
particle tracking methods have been widely used to 
investigate dispersal of fish, crustaceans, kelp, sea 
urchins and plastics (Castro et al. 2020; Durrant et al. 
2018; Everett et  al. 2017; Hewitt et  al. 2022; Kaan-
dorp et  al. 2020; Schilling et  al. 2020). By using 
Lagrangian simulations in conjunction with high-res-
olution hydrodynamic models of the Mediterranean 
Sea, we aim to test whether the expansion of P. miles 
across the Mediterranean Sea from east to west, up to 
2020, can be explained solely by passive dispersal. If 
so, this may open up the possibility for future predic-
tions of dispersal based upon forecastable ocean cur-
rents enabling targeted monitoring and the establish-
ment of strategic surveillance systems.

Materials and methods

Hydrodynamic model details

To investigate the hypothesis that the spread of Pter-
ois miles in the Mediterranean was primarily driven 
by passive dispersal of larvae following an initial 
introduction, particle tracking experiments were run 
using an offline Lagrangian particle tracking model, 
PARCELS “Probably A Really Computationally Effi-
cient Lagrangian Simulator” (Delandmeter and  Van 
Sebille 2019; Lange and Van Sebille 2017), described 
below. These simulations used daily velocity fields 
from the Mediterranean Sea Analysis and Forecast 
product MEDSEA_MULTIYEAR_PHY_006_004 
(Escudier 2020) and MEDSEA_ANALYSIS_FORE-
CAST_PHY_006_013 (Clementi 2019). These 
products are both high resolution data-assimilating 
coupled hydrodynamic-wave modelling systems 
implemented over the whole Mediterranean Basin 
with horizontal resolution of 1/24° (approximately 
4 km) and 141 vertically unevenly spaced levels and 
have been extensively validated. MEDSEA_MUL-
TIYEAR_PHY_006_004 is a reanalysis spanning 
1987–2019 while MEDSEA_ANALYSIS_FORE-
CAST_PHY_006_013 is the analysis and forecast 
product spanning 2017-present (2021 when we 
accessed data). We only used MEDSEA_ANALY-
SIS_FORECAST_PHY_006_013 velocity fields for 
2019 and 2020.

Particle characteristics and experimental design

The Lagrangian particle simulations were conducted 
using PARCELS v2.0.2 which is an open-source 
framework for simulating Lagrangian particle trajec-
tories, designed to efficiently process large amounts 
of data (Delandmeter and van Sebille 2019; Lange 
and van Sebille 2017). Dispersal simulations were 
conducted using only velocity data from the 29.88 m 
depth layer of the hydrodynamic models which aligns 
with the depth which lionfish larvae are most  com-
monly observed (≈ 30 m) (Mostowy et al. 2020; Spo-
naugle et al. 2019).

Lionfish are known to have spawning year-round 
(although limited) with a peak in spawning activity 
in summer (Mouchlianitis et  al. 2022; Savva et  al. 
2020). To simulate this in our modelling process, 
we released particles all year round but increased 
the release rate by 40 times during May–July, com-
pared to the rest of the year. As lionfish larvae are 
known to have limited horizontal swimming ability, 
and use their fins mainly to maintain vertical depths 
(Mostowy et  al. 2020), no active behaviour was 
included in the simulations and all dispersal was 
driven by ocean currents to truly test passive dis-
persal. A small amount of Brownian motion (10  m2 
 s−1) was used to add variation to particles released 
on the same day in the same location (to simulate 
sub-grid scale effects). Larvae were tracked for 26 
days post spawning to match the mean settlement 
date of the closely related lionfish P. volitans (Ahr-
enholz and Morris 2010). Dispersal was assumed 
to be successful if after 26 days they were in areas 
with a bathymetry shallower than 350 m, parti-
cles which did not settle successfully were defined 
as dispersal mortalities (Hewitt et  al. 2022; Schil-
ling et al. 2020, 2022). As there was no variation in 
pelagic larval duration in our simulations, there was 
no need to apply a mortality rate during the simula-
tions beyond the dispersal mortality.

To simulate the maximum potential spread of P. 
miles in the Mediterranean Sea due to larval dis-
persal we ran simulations of larval dispersal based 
upon the first confirmed observations of lionfish 
which became established. These were two obser-
vations in Lebanon from 2012, both at 34.49° N, 
35.91° E. Particles were released from this location 
every day from 1st January 2012 to 31st December 
2012 with 80 particles released per day during the 



508 H. T. Schilling et al.

1 3
Vol:. (1234567890)

peak spawning period (May–July) and 2 particles 
released every other day (Fig.  1). Particles which 
successfully settled from this dispersal event were 
then used for similar simulations in following years. 
Due to computational limitations, in each year in the 
simulation, the 1000 western-most successful settle-
ment locations were used to release particles. While 
this will bias the overall larvae settlement distribu-
tions in subsequent years, it aligns with our aim of 
modelling maximum dispersal potential, assuming 
spawning locations further west will disperse larvae 
further west. We then visually assessed the disper-
sal of our simulated population expansion with the 
recorded observations in the Mediterranean Sea.

Results

Based upon the simulations of larval dispersal 
from a single introduction in the eastern border of 
the Mediterranean, the larvae first dispersed north 
before spreading west. Within the first year, lion-
fish were estimated to reach the northeast Mediter-
ranean and two years after introduction they began 
to spread west. The westward expansion slowed 
through the more hydrodynamically complex area 
around 25°E. In 2016, our simulations showed a 
small number of larvae settling on the southern 

shore which later established into a larger colony 
between about 22 and 26°E in 2019 and 2020.

There was high agreement between the predicted 
passive dispersal and observed lionfish dispersal 
(Figs.  2 and 3). The rate and direction of spread 
in our simulations was consistent with observed 
lionfish. There were some differences in our simu-
lations and the observed lionfish particularly after 
2018 when our model predicted a larger spread to 
the north, in the Aegean and Adriatic Seas, which 
was not seen in the observed data and actual spread 
may have been restricted by other physicochemical 
or biological parameters. In addition, lionfish were 
observed in Italy and Tunisia (10–15°E) earlier than 
our model predicted.

Discussion

We used Lagrangian particle tracking simulations 
to successfully recreate the spread of lionfish in the 
Mediterranean Sea up to 2020 using only passive dis-
persal. This strongly supports the hypothesis that the 
main mechanism for the dispersal of lionfish across 
the Mediterranean has been successive iterations of 
passive dispersal driven by ocean currents during 
the pelagic larval phase following an initial introduc-
tion through the Suez Canal. In the future, it may be 
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Fig. 1  Mean currents at 29.88 m depth in the Mediterranean Sea during May–July (the main spawning period for lionfish) 2012. The 
red dot represents the original release location for our dispersal simulations based upon the observed sighting of Bariche et al. (2013)
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possible to use forecasts of ocean currents and real-
time detections of lionfish expansion to forecast prob-
able locations of expansion which could be prior-
itized for monitoring or management programs aimed 
at controlling population size, for example targeted 
removal of lionfish by divers (Ulman et al. 2022).

Most NIS in the Mediterranean Sea arrive through 
the Suez Canal (Galil 2023; Galil et  al. 2015) and 
recent enlargements of the Suez Canal coupled with 
climate change are anticipated to facilitate the inva-
sion of more warm water species in the Mediter-
ranean Sea to the detriment of native biological 
communities (Moullec et  al. 2019). The absence of 
effective surveillance systems has been highlighted 
as a major bottleneck in lionfish management, and 
a more strategic and coherent monitoring plan that 
focuses on hotspot and first detection areas has been 
recommended (Kleitou et  al. 2021b). The develop-
ment of innovative ways to predict the dispersal of 
NIS could be fundamental in their effective manage-
ment (Cowen and Sponaugle 2009; James et al. 2023; 
Jones 2015; Levin 2006; Lu et al. 2023; Swearer et al. 
2019).

The life cycle of many marine species begins 
with pelagic stages (e.g. larvae, eggs, spores) whose 

dispersal is largely facilitated by physical transport 
processes (Simons et  al. 2013). Understanding the 
mechanisms that underline NIS dispersal processes 
can unveil invasion pathways/routes, high risk areas, 
and guide effective management actions. In recent 
decades, several approaches have been used to study 
and predict the potential dispersal of species (Jones 
2015; Levin 2006). Application of empirical methods 
(i.e., chemical tagging of larvae, genetic analysis, oto-
lith chemical signatures) are often challenging due to 
logistical and financial constraints (Bode et al. 2019; 
Cowen and Sponaugle 2009; Swearer et  al. 2019). 
Technological advances, supported by a giant leap in 
computational resources, have allowed the develop-
ment of biophysical models that can combine hydro-
dynamics and larval behaviour to simulate larval 
movement (James et al. 2023). Such models are cost-
effective and can offer high spatial and/or temporal 
resolution, and are applicable to many types of eco-
system management questions (Swearer et al. 2019).

In this study, we demonstrated the efficacy of a 
simple passive dispersal biophysical model in predict-
ing the initial stages of lionfish invasion and its subse-
quent spread across the Mediterranean. By simulating 
dispersal patterns using a single introduction point 

Fig. 2  Simulated predicted lionfish settlement sites based upon passive dispersal



510 H. T. Schilling et al.

1 3
Vol:. (1234567890)

(southeast Mediterranean), we confirmed the dynam-
ics of passive larval dispersal and the significance of 
ocean currents as the primary driver of lionfish popu-
lation spread. These findings highlight the potential 
of Lagrangian particle tracking in predicting the pas-
sive dispersal of lionfish larvae and providing a rea-
sonable understanding of invasive species dispersal in 
the Mediterranean Sea, at least for those species with 
planktonic life phase(s). Such models could provide 
several benefits in the field of invasive species man-
agement by identifying potential source locations and 
paths of planktonic NIS, and shedding light on the 
propagule pressure, helping to assess the risk of inva-
sions. Additionally, understanding the connectivity 
and the dynamics of species with pelagic planktonic 
larval phases capable of long-range dispersal via 
ocean currents may enable the identification of sites 
suitable for early warning systems (Crivellaro et  al. 
2022).

The observed dispersal of lionfish aligned with 
our simulation of their maximum dispersal capacity. 
This simulation assumed that spawning locations 
located farther west consistently contributed to the 
lionfish dispersal in each simulation cycle. There-
fore, additional factors might have also assisted 
the lionfish dispersal (e.g. swimming of larvae or 
adults, longer larval/egg drifting phase, opportunis-
tic use of extreme currents) (Leis 2021). In 2020, 
the prediction of passive dispersal in lionfish lar-
vae indicated an extension to the north beyond their 
established range, indicating that other environmen-
tal conditions likely restricted the further popula-
tion expansion of lionfish. This finding agrees with 
species distribution modelling studies which found 
that suitability of areas with minimum surface tem-
perature of 10–15  °C will be low (Loya-Cancino 
et  al. 2023; Poursanidis et  al. 2022). Indeed, the 
performance of our model started decreasing (pre-
dicting larger population expansion/spread) when 
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Fig. 3  Observations of lionfish in the Mediterranean as reported by (Kleitou et al. 2021b). Each dot represents an observation from 
the year it was observed through to 2020
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lionfish reached the 15 °C minimum thermal bound-
ary, highlighting the importance of combining mul-
tiple models to account for physical, environmental, 
biological, and ecological processes and provide 
a more comprehensive understanding of species 
movement dynamics.

While biophysical models have shown promise 
in predicting invasion areas and understanding the 
dynamics of NIS, there are still some limitations 
and areas for future development to optimize their 
predictions. The accuracy of such models requires 
the incorporation of ocean (tide, current velocity and 
direction, wave) and environmental data (tempera-
ture, salinity, nutrients) at high spatial and temporal 
resolution, The availability of such data has not kept 
pace with the dramatic increases in computer proces-
sor speed (Swearer et al. 2019). In addition, the need 
for further empirical research is crucial to improve 
the precision and dependability of marine larval dis-
persal models (Bode et al. 2018, 2019). The scarcity 
of field-based estimates presents a challenge. Factors 
such as the timing and duration of propagule release, 
larval abundance, onset and duration of settlement 
competency, and the magnitude and variability of 
mortality contribute to the complexity of dispersal 
dynamics, can lead to highly variable dispersal out-
comes (Bode et al. 2018; Swearer et al. 2019), which 
if not properly validated may provide inaccurate or 
erroneous results. For example, in the case of lionfish 
in the Mediterranean there is a need to understand if 
the invasive population is adapting its physiology to 
new habitats, it may be that there could be variations 
in aspects such as larval duration compared to their 
native habitats. Priority for collection of field based 
estimates could be given to species of high concern 
for the region such as those listed in the European 
Union List (EC/2016/1141) (Kleitou et al. 2021b) or 
species identified as high risk through horizon scan-
ning exercises (Peyton et  al. 2019, 2020; Tsiamis 
et al. 2020). By combining high resolution data with 
empirical evidence, we can proactively improve our 
ability to prevent and manage invasive species inva-
sions, preserving the integrity of ecosystems and 
minimize their ecological and economic impacts.
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