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Abstract  Invasive annual grasses can promote eco-
system state changes and habitat loss in the American 
Southwest. Non-native annual grasses such as Bro-
mus spp. and Schismus spp. have invaded the Mojave 
Desert and degraded habitat through increased fire 
occurrence, severity, and shifting plant community 
composition. Thus, it is important to identify and 
characterize the areas where persistent invasion has 
occurred, identifying where subsequent habitat deg-
radation has increased. Previous plot and landscape-
scale analyses have revealed anthropogenic and 

biophysical correlates with the establishment and 
dominance of invasive annual grasses in the Mojave 
Desert. However, these studies have been limited 
in spatial and temporal scales. Here we use Land-
sat imagery validated using an extensive network of 
plot data to map persistent and productive popula-
tions of invasive annual grass, called hot spots, across 
the entire Mojave Desert ecoregion over 12  years 
(2009–2020). We also identify important variables 
for predicting hot spot distribution using the Random 
Forest algorithm and identifying the most invaded 
subregions. We identified hot spots in over 5% of 
the Mojave Desert mostly on the western and east-
ern edges of the ecoregion, and invasive grasses were Supplementary Information  The online version 
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detected in over 90% of the Mojave Desert at least 
once in that time. Across the entire Mojave Desert, 
our results indicate that soil texture, aspect, winter 
precipitation, and elevation are the highest-ranking 
predictive variables of invasive grass hot spots, while 
anthropogenic variables contributed the least to the 
accuracy of the predictive model. The total area cov-
ered by hot spots varied significantly among subre-
gions of the Mojave Desert. We found that anthropo-
genic variables became more important in explaining 
invasive annual establishment and persistence as spa-
tial scale was reduced to the subregional level. Our 
findings have important implications for informing 
where land management actions can prioritize reduc-
ing invasive annual persistence and promoting resto-
ration efforts.

Keywords  Bromus · Invasion · Schismus · Remote 
sensing · Invasive non-native annual grasses

Introduction

Invasive annual grasses can degrade ecosystems by 
altering community structure and enhancing or chang-
ing disturbance regimes (D’Antonio and Vitousek 
1992; Pimentel et  al. 2005; Vitousek et  al. 1997). 
Annual grass invasions can accelerate fire return 
intervals, compete with native species, and change 
biogeochemical cycles (Brooks et al. 2004; D’Antonio 
and Vitousek 1992; Wilcox et  al. 2012). The rapid 
spread of invasive annual grass, often accelerated by 
climate change, calls for an urgent need to understand 
the current distribution of successful invaders, spatial 
patterns of productive populations, and the biophysi-
cal and anthropogenic factors associated with those 
invasions (Abatzoglou and Kolden 2011; Bradley 
2009; Sandel and Dangremond 2012). The distribu-
tion and abundance of invasive annual grasses vary 
interannually making characterizations of invasions at 
relevant scales has been a costly and difficult task in 
past years. Recently, the advancement of remote sens-
ing monitoring technologies has helped improve the 
detection and spread of invasive plants across spatial 
and temporal scales (Bradley 2014; Dahal et al. 2022; 
Klinger et al. 2019; Pastick et al. 2021).

Invasive annual grasses have been documented 
in regions throughout the world, and have been par-
ticularly influential in the American Southwest and 

West, where wildfire occurrence has dramatically 
increased in some areas, such as in the Mojave Desert 
and Great Basin (Brooks and Matchett 2006; Fusco 
et al. 2019; Vitousek et al. 1997; Vitousek et al. 1996; 
Whisenant 1990). The drylands of this region feature 
large gaps between native perennials, providing avail-
able habitat for opportunistic invasion of non-native 
grasses (Beatley 1966; Chambers et  al. 2007; Gill 
et al. 2018). Specifically, species invading the Mojave 
Desert include winter annuals from the genus Bro-
mus, primarily Bromus rubens L. and Bromus tecto-
rum L., and the genus Schismus, primarily Schismus 
barbatus var. arabicus (Nees) and Schismus barba-
tus (L.) Thell. These Eurasian grasses are thought 
to have been introduced to western North America 
sometime in the latter half of the nineteenth century 
or early twentieth century (Brooks 2000a; Salo 2005), 
and have a wide physiological tolerance for both cold 
and warm extremes (Bykova and Sage 2012; Loria 
and Noy-Meir 1979). As winter annuals, they are pri-
marily fall and winter germinating species (Brooks 
2000a, 2000b), with the most significant growth 
occurring in the early spring, but they can also ger-
minate following sufficient rainfall in the spring and 
summer (Beatley 1974). High spatial and temporal 
variation in precipitation in arid systems contributes 
to variability in the distribution of productive popula-
tions of annual plants between years, with extremes 
represented in super bloom years within the Mojave 
Desert (Beatley 1974; Wallace and Thomas 2008). 
Invasive annual grasses in the west and southwest-
ern United States can green-up earlier in the spring 
and often senesce earlier in the summer compared to 
native perennial plants (Beatley 1974; Brooks 1999a; 
DeFalco et al. 2007). These phenological differences 
make invasive annuals good targets for remote detec-
tion of invasion and have been key in many important 
studies examining the distribution of invasive plants 
using satellite imagery (Bishop et  al. 2019; Bradley 
2014; Bradley et  al. 2018; Dahal et  al. 2022; Vil-
larreal et  al. 2019). However, inferences made from 
remote sensing about invasive annual plants are 
informed by plot-scale studies which have effectively 
investigated correlates to invasion and consequences 
of invasion by annual grasses in the Mojave Desert.

Prior plot-scale studies have yielded important 
conclusions about annual grass invasion patterns and 
consequences over relatively short time periods and 
small spatial extents (Abella et al. 2012; Brooks and 
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Berry 2006). Annual grass invasion has been con-
sistently found to increase fine fuel loads, fuel con-
tinuity, and fire occurrence in the region (Brooks and 
Matchett 2006; Davies and Nafus 2012; Germino 
et al. 2015). These changes pose risks to fire-intoler-
ant native species due to the absence of evolutionary 
pressures resulting from historically infrequent fires 
in the region (Brooks 1999a; Brooks et  al. 2004). 
Additionally, non-native annual grasses alter hydrol-
ogy and negatively impact important vertebrate habi-
tats throughout the Mojave Desert (Brooks and Esque 
2002; Rowland and Turner 1964; Wilcox et al. 2012). 
Studies examining correlates of invasion have differed 
in focus and conclusions. For example, invasive annu-
als were found dominating areas near dirt roads and 
in years with lower-than-average rainfall in the west-
ern Mojave (Brooks and Berry 2006). In contrast, 
work in the central Mojave near Lake Mead found 
that B. rubens populations were found at middle to 
high elevations and were correlated with higher-than-
average rainfall (Abella et  al. 2012; Duniway and 
Palmquist 2020). In addition, soil characteristics and 
nutrient additions such as nitrogen input have been 
found to locally control abundance as investigated in 
Joshua Tree National Park (Allen et al. 2009). Differ-
ences in focus and correlated variables of previous 
plot-scale studies of invasive annual grasses in the 
Mojave Desert could be a result of interannual vari-
ability, biogeographical differences within the region, 
or differing study designs. The causes of these differ-
ences create challenges in mapping the distribution of 
invasive annual grasses, a priority for invasive species 
management and research (Foxcroft et al. 2017; She-
ley & Smith 2012; USDA 2017).

To accomplish the important task of mapping inva-
sive plant distribution, remote sensing can expand 
the spatial and temporal scale of monitoring invasive 
annual grasses and identify the most productive and 
dense areas of invasion that are of greatest manage-
ment concern (O’Neill et al. 2021). Mapping invasive 
annuals over multiple years with remote sensing can 
help identify hot spots, or areas of persistent invasive 
populations, an important task for annual grasses in 
dryland ecosystems with high interannual variability 
(Bishop et al. 2019). Hot spots are statistically signifi-
cant clusters of frequently detected invasives and can 
be distinct from areas of initial invasive establishment 
as well as from the interannual variability due to dif-
fering climatic conditions (O’Neill et  al. 2021; Ord 

and Getis 1995). Large landscape-level maps help 
prioritize conservation goals but can be difficult to 
create depending on both spatial and temporal scales 
and sensor availability. Tools like small uncrewed 
aerial vehicles (sUAVs) are useful to map invasive 
species on a small preserve scale (Bishop and  Errigo 
2023), but lack the depth in time and space to apply 
to large landscape level management objectives com-
mon with agencies such as the US Bureau of Land 
Management. Therefore, the use of satellite imagery 
is important for identifying persistent and productive 
hot spots across larger spatial and temporal scales. 
These maps can then be useful for revealing where 
ecosystems have potentially been most negatively 
affected by invasion, allowing for understanding of 
the environmental factors that correlate with inva-
sion success. (Lyons et  al. 2020; O’Donnell et  al. 
2012; Wan et al. 2016). Historically, identification of 
invasion hot spots aids management, public outreach 
in biodiversity conservation, anthropogenic change 
mitigation, and can be used to prioritize where man-
agement treatments occur (Cowling et al. 2003; Gan-
zhorn et al. 2001).

To understand patterns of invasive grass distribu-
tion across the Mojave Desert ecoregion, we devel-
oped three aims. First, we aimed to identify the most 
persistent and productive populations within the 
Mojave Desert over 12  years using Landsat satellite 
imagery and spatial analysis to identify invasion hot 
spots. Our second aim was to learn which biophysical 
and anthropogenic variables are most important for 
predicting the spatial distribution of invasive annual 
grass hot spots in the Mojave Desert. Finally, we set 
out to identify the most invaded subregions of the 
Mojave Desert ecoregion, which we defined as sub-
regions with the greatest proportion of the total area 
occupied by persistently detected populations. We 
hypothesized that hot spots will be primarily distrib-
uted in the basin and ranges in the Western Mojave 
Desert where a combination of early fall rains and 
lowering temperatures in the fall and winter cause 
potential germination events and on the extreme 
western edges where the climate is transitionary to a 
wetter Mediterranean climate (Hereford et al. 2006). 
We also hypothesized that due to the seasonality of 
annual grass germination and growth, fall and winter 
precipitation will be important predictive variables, 
and due to their ability to withstand to disturbance, 
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proximity to human infrastructure would also be an 
important predictive variable.

Methods

Study area

The Mojave Desert is a geologically and biologically 
unique ecoregion in the southwest United States due 
to a mixture of climatic and topographic extremes. 
It spans over 12 million hectares and four different 
states, California, Nevada, Arizona, and Utah. The 
Mojave Desert contains 16 subregions that are each 
characterized by unique geological and climate condi-
tions (Omernik & Griffith 2014; Tagestad et al. 2016). 
The region is one of the hottest and driest ecoregions 
in the US and is characterized by north–south-ori-
ented basins and ranges, creating significant eleva-
tional gradients. The highest peak in the Mojave is 
Mt. Charleston in Nevada at 3632  m, while Death 
Valley reaches 86 m below sea level, the lowest point 
in North America. Death Valley has recorded the hot-
test surface temperature on earth at 56.7 °C and only 
averages 50  mm of precipitation annually (El Fadli 
et  al. 2013), while Mt. Charleston has an average 
January temperature of − 7.1 °C with nearly 600 mm 
of precipitation annually. The Mojave Desert hosts a 
diverse suite of ecotypes and plant communities. The 
middle elevations of the Mojave Desert ranges and 
footslopes are primarily inhabited by creosote bush 
(Larrea tridentata (DC.) Coville) and white bursage 
(Ambrosia dumosa (A. Gray) Payne) scrub and black-
brush (Coleogyne ramosissima Torr.) shrubland with 
iconic Joshua tree (Yucca brevifolia Engelm.) com-
munities scattered throughout much of the desert (St. 
Clair and Hoines 2018). Higher elevations throughout 
the Mojave ranges include piñon-juniper communi-
ties and big sagebrush (Artemisia tridentata Nutt.), 
especially in the northern areas. The lowest eleva-
tions of the Mojave basins are dominated by saltbush 
scrubland (Atriplex spp.). Perennial grasslands cover 
small areas throughout the eastern Mojave Desert 
basins (McAuliffe 2016).

In addition to varied environmental conditions, the 
Mojave Desert is home to a variety of land uses and 
population densities, and is managed by many differ-
ent land management agencies. The largest city in the 

Mojave Desert is the Las Vegas metropolitan area, 
NV, with over 2 million people. Other notable cities 
in the Mojave Desert are St. George, UT, in the north-
east, and Victorville, Lancaster, and Palmdale, CA, 
in the southwest. Additionally, the Mojave Desert is 
a short drive from Los Angeles and Phoenix, bring-
ing large numbers of human visitors that also contrib-
ute to land use disturbance through recreational use. 
Over 1.3 million ha of the Mojave Desert is occupied 
by U.S. Department of Defense installations used 
for military training and testing, with 85% of the 
desert managed by federal agencies in some capacity. 
Renewable energy is a growing sector in the Mojave 
Desert, with solar and wind facilities being added 
every year (Hernandez et al. 2015). The region is also 
home to Joshua Tree and Death Valley National Parks 
as well as the Mojave National Preserve, compris-
ing more than 3.4 million ha combined. While much 
of the Mojave Desert is absent of large permanent 
human settlements, roads traverse the entire region. 
There are more than 125,000 km of roads and a his-
tory of unregulated and extensive recreation off-high-
way vehicle use (OHVs), particularly in the 1970s 
and 1980s (U.S. Census Bureau 2015; Woodhouse 
2019).

Detection of early season annuals

To identify persistently productive populations of 
invasive annual grasses we first classified Landsat 
imagery using Detection of Early Season Invasives 
(DESI) methods (Kokaly 2010a), then performed 
Getis-Ord Gi* Hot Spot Analysis (Ord and Getis 
1995) following the methods of Bishop et al. (2019). 
Cloud-masked Landsat 5, Landsat 7, and Landsat 8 
surface reflectance data were processed from 2009 to 
2020 in Google Earth Engine (Gorelick et al. 2017) to 
generate a 12-year time series of invasive grass occur-
rence (Landsat 5: 2011–2012, Landsat 7: 2012–2013, 
and Landsat 8: 2013–2020). We removed 2012 due to 
issues with the scan line corrector on Landsat 7. The 
DESI workflow is based on the observation that inva-
sive annuals can quickly exploit available soil mois-
ture and therefore green up earlier than most native 
perennial plants, and that locations with early-season 
pulses of greenness can be identified by comparing 
spring imagery to late-summer imagery when winter 
annuals have senesced (Beatley 1974; DeFalco et al. 
2007; Kokaly 2010b). Using an early season period of 
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January–May and a mid-summer period of June–July, 
we calculated differential NDVI values (dNDVI) with 
the following equation:

To avoid dependence on a single scene for each 
season, we calculated the NDVI for every cloudless 
scene available during the early season window was 
calculated and selected the maximum NDVI value for 
each pixel across the study region. Next, we calcu-
lated the median NDVI value of mid-summer scenes 
to create a median pixel NDVI composite for dNDVI 
calculations. This allowed us to classify an entire 
ecoregion while accounting for regional differences 
in the timing of peak greenness across environmental 
gradients. We used the dNDVI values to classify pix-
els by likelihood of invasive annual occurrence using 
threshold values as determined by testing dNDVI 
thresholds against field data measuring percent inva-
sives cover values to attain the highest overall clas-
sification accuracy and kappa statistic.

For threshold testing and accuracy assessment 
(n = 274), we used field data collected from 2012 to 
2020 from the Bureau of Land Management Assess-
ment, Inventory, and Monitoring terrestrial monitor-
ing plots (Toevs et al. 2011); National Park Service’s 
Inventory and Monitoring program for the Mojave 
Desert Network (Hupp et al. 2020); and two projects 
implemented by the United States Geological Survey 
(Duniway et al. 2012; Duniway and Palmquist 2020). 
These studies all used the line-point intercept method 
(LPI) to collect plant foliar cover and we calculated 
percent cover from LPI data using the terradactyl R 
package (McCord et al. 2022). We used field data col-
lected between January 1 and April 15 to capture the 
peak greenness period for the target invasive species 
(Bromus rubens, B. tectorum, B. madritensis, Bras-
sica tournefortii, Erodium cicutarium, Schismus ara-
bicus, and Schismus barbatus). Target species were 
identified by including invasive species frequently 
found in our plots and determining they could be 
accurately identified as a group using our methods to 
ensure maximization of our kappa statistic. Accord-
ing to the field data, B. rubens, B. tectorum, and both 
Schismus species were the most common, and inva-
sives represented 52% of the total annual herbaceous 
cover, so our discussion is focused primarily on those 

dNDVI = Maximum NDVIearly - season

−Median NDVImid - summer

four target invasive species. We tested invasive annual 
cover thresholds between 1 and 15% and dNDVI 
thresholds between 0.005 and 0.150 and selected the 
combination of percent cover and dNDVI thresholds 
that maximized the Kappa statistic. Ultimately, the 
thresholds for high probability pixels were ≥ 14% 
rooted cover, with dNDVI ≥ 0.115 (Kappa = 0.418; 
overall accuracy = 90.9%). In high probability pixels, 
invasives made up 55.6% of the total annual herba-
ceous cover. For low probability pixels, the thresh-
olds were invasives ≥ 1% cover, with dNDVI ≥ 0.030 
(Kappa = 0.336; overall accuracy = 70.4%). In low 
probability threshold pixels, invasives represented 
52.4% of the total annual herbaceous cover (see sup-
plementary material Figure S1). Following the cat-
egorical classification scheme outlined in Table  1, 
pixel values were rescaled for each classified year in 
the time series (Bishop et  al. 2019; Kokaly 2010b). 
We then aggregated the classified rasters, and 
summed individual pixel values across 11  years, so 
that the values ranged from 0 (no detection in any 
years) to 22 (high probability pixel all 11 years).

Using the GAP/LANDFIRE 2011 National Terres-
trial Ecosystem data (U.S. Geological Survey 2016), 
we masked pixels classified as water, human devel-
opment, or agriculture from subsequent analysis to 
avoid errors in hot spot identification. Additionally, 
we masked stitching lines from the initial mosaicked 
Landsat scenes through the middle of the raster. We 
then converted the remaining pixels to point features 
and the categorical rescaled values (Table  1) were 
used in a Getis-Ord Gi* Hot Spot Analysis in ESRI’s 
ArcGIS Pro (version 2.9.0, Esri Inc., Redlands, CA, 
USA; ESRI Developer Network 2011; Ord and Getis 
1995). Hot Spot analysis is a spatial statistical tool 
which uses the Getis-Ord Gi* statistic to identify 
areas of significant clustering of high and low values. 
We used an inverse distance weighting rule of 120-m 
or 4 pixels. Additionally, we applied false discovery 
rate (FDR) correction to increase confidence in the 
identified hot spots (Caldas de Castro and Singer 
2006; Ord and Getis 1995; Watson 1985). FDR is a 
method which accounts for the spatial autocorrelation 
common within large geographic datasets, by raising 
the threshold for significant values and ensuring inde-
pendence. We classified values with high z-score and 
p < 0.05 as hot spots, and areas with low z-scores and 
significant p values, p < 0.05, as cold spots, however, 
there were no cold spots in this analysis. Pixels with 
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z-scores near zero and p values > 0.05 were classi-
fied as ephemeral populations. Our ephemeral class is 
defined by pixels where we detected at least one year 
of invasion with no spatial clustering of similar val-
ues me during our study period meaning some pixels 
are a low temporal threshold (1 year), and a low DESI 
threshold (lower uncertainty/abundance threshold). 
Conversely, the ephemeral class also contains pixels 
that frequently exceeded the high threshold during 
our study period but did not have any statistically sig-
nificant clustering. The raw aggregated DESI values 
(1–22, mentioned above) represent the range within 
the ephemeral class, with pixels with a value of 1 
indicating low abundance probability and lower fre-
quency, meanwhile, ephemeral pixels with a value of 
22 represent high probability of high abundance and 
high frequency but no significant spatial clustering. 
We include the ephemeral class to highlight pixels 
that are neither hot spots or none that have measured 
detection at some point in our study period where 
low abundance of invasive annuals may occur with 
high temporal variation. Our categorical classifica-
tion scheme is similar to (Sheley and Smith 2012), 
which recommends three classes to categorize inva-
sion status are ideal for rangeland invasion mapping 
to prioritize areas for ecologically based management 
strategies (Christensen et  al. 2011). The names of 
the classes are italicized, hot spots, ephemeral, and 
none, to clearly identify our specific statistical class. 
We then converted the results into a 30-m by 30-m 
resolution raster of hot spot occurrence. We tabulated 
and summarized the results of the hot spot analysis 

by the EPA level IV Mojave subregions (Keys 1981; 
Omernik and Griffith 2014). The DESI annual pre-
diction and the hot spot rasters are available from the 
USGS ScienceBase-Catalog (Villarreal et al. 2023).

Correlational analysis

We resampled elevation data from the USGS 1 arc-
second digital elevation model and generated slope 
and aspect (Keys 1981; U.S. Geological Survey 
2017). We used the aspect data to calculate northness 
(

cos

(

aspect ×
�

180

))

 and eastness 
(

sin

(

aspect ×
�

180

))

 and flat areas were included as 
zero values for both indices. We downloaded the soil 
nitrogen, percent clay, percent sand, soil organic car-
bon, electrical conductivity (EC), and bulk density 
data layers from Ramcharan et  al. (2017) at point 
depths of 0, 5, 15, and 30 cm; values for these varia-
bles were calculated to 30 cm depth using a trapezoi-
dal approximation for a definite integral. Data on 
coarse fragments down to 5  cm depth was down-
loaded from soil grids at 250-m resolution (Hengl 
et al. 2017). In the absence of measured or modeled 
soil hydraulic property data, we used a pedotransfer 
function (Saxton & Rawls 2006), to calculate percent 
soil moisture at permanent wilting point (PWP) 
incorporating percent sand, percent clay, and soil 
organic matter content (SOC * 1.72). We used PWP 
because of its relevance in water-limited systems and 
its incorporation of variables that were available at 

Table 1   Classification of DESI Imagery with rescaled values for hot spot analysis

DESI pixel value 
(Kokaly 2010a)

Description Rescaled value 
(Bishop et al. 
2019)

0 Masked from analysis 0
1 Low dNDVI threshold was not exceeded, and none of the eight surrounding pixels exceeded a 

threshold
0

2 Above the low probability threshold, but only one of eight surrounding pixels exceeded the low 
threshold

0

3 Exceeded high probability threshold, but only one of eight surrounding pixels exceeded the low 
threshold

1

4 Exceeded the low threshold, and more than one of eight surrounding pixels exceeded the low 
threshold

1

5 Exceeded the high dNDVI threshold, and more than one of eight surrounding pixels exceeded 
the low threshold

2
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the scale of our analysis. High PWP values corre-
spond to soils dominated by fine pores (clays and clay 
loams), and low values correspond to soils with 
mostly large pores (sands). We downloaded PRISM 
seasonal precipitation totals and average seasonal 
temperature data and averaged the layers over the 
study years to create a raster of average seasonal cli-
mate conditions from 2009 to 2020 (Daly et al. 2002). 
Anthropogenic (human-related, i.e. roads) variables 
including surface management agency and grazing 
allotments were extracted as polygon layers from 
BLM’s surface management agency dataset, and U.S. 
Geological Survey’s Protected Area Database (PAD-
US) conservation status layer was used for conserva-
tion status (U.S. Geological Survey 2020). As a proxy 
for human infrastructure, we used U.S. Census 
Bureau level 3 TIGER datasets to compile all roads 
within the Mojave Desert (U.S. Census Bureau 2015). 
We extracted the Euclidean distance to the nearest 
road for each pixel, using a point to line rule with the 
centroid of each pixel. The variables here are meant 
to represent the conditions related to invasive annual 
persistence, rather than effects of persistence, neces-
sitating the notable exclusion of fire from the analy-
sis. All of the covariates included were resampled 
using cubic convolution to match the 30-m × 30-m 
pixels of the hot spot map. To avoid bias in the rank-
ing of variable importance due to potential collinear-
ity, we removed correlated variables (Pearson correla-
tion coefficient, r >|0.7|). We removed seasonal 
temperature variables because of high collinearity 
with elevation; spring and summer precipitation were 
also highly correlated with fall precipitation, so we 
kept fall because the relationship annual plants tradi-
tionally have with fall precipitation. PWP is highly 
correlated with clay and sand content, so we chose to 
include it as a proxy for both. All of the geographic 
data processing was competed using ESRI’s ArcGIS 
Pro 2.9 (version 2.9.0, Esri Inc., Redlands, CA, USA; 
ESRI Developer Network 2011).

To characterize which variables are the most 
important in distinguishing between invasion classes, 
the Random Forest classification algorithm was used 
to classify sample points based on predictive vari-
ables, and predictive variables were ranked according 
to their permutation importance (Breiman 2001). To 
ensure spatial independence, we used a GIS to sample 
320,000 points in the study area using equalized strat-
ified random sampling by invasion class (hot spot, 

ephemeral, none), where an equal number of random 
samples from each class were recorded. Each data 
point contained all previously mentioned predictive 
variables. For simplicity and to keep the focus on the 
characterization of hot spots, we sampled ephemeral 
populations as a single class rather than as a gradient. 
We repeated this process ten times to ensure the sam-
ple points were representative of the entire system. Of 
the sampled points, 80% were used for training data, 
and 20% were set aside as test samples. The R pack-
age ‘randomForest’ was used to implement the model 
(Breiman 2001; Liaw and Wiener 2002) Random 
Forest is an ensemble machine learning method that 
creates a ‘forest’ of decision trees for classification. 
We used permutation importance or mean decrease 
accuracy as the variable importance mode, and 500 
trees were made for each forest. Permutation impor-
tance randomly permutes the algorithm to exclude a 
particular variable and the output importance is an 
index of how much the predictive accuracy of the 
model decreases when the variable is excluded. We 
used the caret package (Kuhn 2015), and the previ-
ously allotted test dataset to create a confusion matrix 
and calculate a value for McNemar’s test for identify-
ing the reliability of our confusion matrix. We aver-
aged the confusion matrices, McNemar’s tests, and 
variable importance over ten iterations using the ten 
sample sets. We calculated standard error for each of 
the variable importance estimates to ensure an accu-
rate understanding of relative importance. Finally, to 
understand the differences between hot spot group 
means, a Wilcoxon-rank sum test was performed on 
999,999 sample data points (Hollander et  al. 2013). 
We created kernel density plots using ggplot2 to iden-
tify the distribution of values for important predic-
tive variables by hot spot response group (Wickham 
2016). To better understand how these results may 
vary among highly invaded subregions of the Mojave 
Desert, we repeated the process within the six Level 
IV subregions where the highest percentage of hot 
spots were identified. For each of these six subre-
gions, the same random forest protocol was repeated 
but only with one sample set of 125,000 points.

Results

The DESI classification revealed that 93.8% of ana-
lyzed pixels had values of at least 1, indicating at least 
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one year of detection of annuals at a low confidence 
threshold. Only 6.2% percent of analyzed pixels had 
no detectable populations of invasive annuals over 
the study period. The hot spot analysis revealed that 
hot spot, ephemeral, no invasive (none) pixels rep-
resented 5.4, 88.4, and 6.2% of the Mojave Desert 
area, respectively (Fig. 1). Although nearly the entire 
ecoregion detected ephemeral populations of invasive 
annuals, hot spots were primarily found in the east-
ern and western boundaries of the Mojave. The hot 
spots and pixels with no invasive annuals (none) were 
highly clustered into subregions rather than dispersed 
throughout the entire ecoregion.

Characterizing by subregion revealed that sub-
regions with the highest percent of hot spot cover-
age were found in Western Mojave Basins, Eastern 
Mojave Mountain Woodland and Shrubland, West-
ern Mojave Low Ranges and Arid Footslopes, East-
ern Mojave Basins, and Eastern Mojave Low Ranges 
and Footslopes (Fig.  2; see supplementary material 
Table  S1 for full summary). Meanwhile, the areas 
with the fewest hot spots and greatest percentage of 
no invasives (none) were Mojave Sand Dunes, Mes-
quite Flat/Badwater Basin, Death Valley/Mojave cen-
tral trough, Amargosa Desert, and the Mojave Playas 
(Fig. 2).

Fig. 1   Map of invasive annual grass occurrence in the Mojave 
Desert, outlined and defined by EPA level III ecoregion from 
2009 to 2020 (Omernik and Griffith 2014). Ephemeral pix-
els are represented on a continuous scale derived from the 
raw DESI aggregation values (1–22), to show the variation 

of detection frequency and invasive abundance probability 
within the class. Masked pixels include satellite stitching errors 
and areas classified as roads, water, agriculture, or developed 
land. Hot spots represent the most persistently productive and 
detectable populations over the study period
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Variable importance

The mean kappa statistic across ten random forests 
was 0.80, and McNemar’s test was significant at 
p < 0.0001. The average overall accuracy of the mod-
els was 0.86, and hot spots were accurately identi-
fied 95.9% of the time, represented in the confusion 
matrix (Table 2).

Topographic, soil, and climate variables were all 
among the top-ranked variables (Fig.  3). Specifi-
cally, the top six ranked variables from the Random 

Forest analysis were soil moisture at permanent wilt-
ing point (PWP), bulk density, northness, eastness, 
winter precipitation, and elevation. The bottom four 
ranked variables were all anthropogenic: distance to 
road, management agency, conservation status, and 
grazing allotment.

Due to the large sample size, the Wilcoxon-rank 
sum test indicated that the mean of all numerical vari-
ables was statistically significant between response 
groups. Therefore, rather than statistical significance, 
the practical significance of means was considered. 

Fig. 2   Hot spots summarized by EPA level IV ecoregions (Omernik and Griffith 2014), ranked by percent area covered by hot spots 



3848	 T. C. Smith et al.

1 3
Vol:. (1234567890)

We found the means of the PWP parameter to differ 
between hot spots (7.5%), ephemeral pixels (7.7%), 
and pixels with no invasive annuals detected (none) 
(9.3%). Hot spots and ephemeral populations were 
more common in soils with a larger pore size (sand-
ier) than pixels classified as none. While overall, 
the dominant soil texture in the Mojave Desert is 
sandy loam, hot spots had a narrow PWP distribu-
tion compared to pixels classified as none, which 

were wider and skewed right (Fig. 4a). Average bulk 
density in hot spots was 1398.6 kg m−3, while it was 
1395.3 kg m−3 in ephemeral pixels, and 1369 kg m−3 
in none pixels, suggesting that low-bulk density soils 
support fewer invasive annuals. Hot spots were asso-
ciated with northern facing slopes (0.06), while areas 
with no invasives were likely to be found on southern 
facing slopes (− 0.13; Fig. 4b). Hot spots had the most 
winter precipitation, with an average of 89.7  mm, 

Table 2   Accuracy of the Random Forest model trained from 
80% of 320,000 sampled pixels with selected correlated vari-
ables used for prediction represented as a confusion matrix 

aggregated over ten iterations with separate sample data-
sets. Bold values indicate the number of pixels accurately iden-
tified for each class

Accuracy measured through model prediction of test data derived from the remaining 20% of the overall 320,000 point sample size

Reference

Ephemeral Hot spot None Accuracy

Ephemeral 159,078 10,656 22,957 0.83
Prediction Hot spot 25,015 202,745 640 0.89

None 23,893 124 165,317 0.87
Accuracy 0.77 0.95 0.88 0.86

Fig. 3   Random Forest variable importance, ranked by contri-
bution of accuracy to the model and grouped by variable type. 
Standard error bars were calculated from ten random forest tri-

als. PWP and EC refer to percent weight at wilting point and 
electrical conductivity, respectively
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while ephemeral was next highest with 67.6 mm, and 
areas with no detected invasion (none) had an average 
of only 53.0  mm of winter precipitation. The over-
all distribution of winter precipitation in the Mojave 
Desert was multimodal, and hot spots had the high-
est winter precipitation of the three classes (Fig. 4c). 
The average elevation of hot spots was only slightly 
higher than ephemeral areas, with averages of 974.3 
and 947.7 m, respectively, while areas with no inva-
sives detected over the 12-year span were lower in 
elevation, averaging 733.9 m (Fig. 4d). It is important 
to note that both the ephemeral and none classes had 
flatter distributions than hot spots, and hot spots con-
sistently had very narrow distributions in these top-
ranked variables (Fig. 4).

The subregional random forest predictions for the 
six subregions had a mean kappa statistic of 0.81 and 
McNemar’s test was significant at p < 0.0001. The 
mean overall accuracy of these models was 0.88 and 
hot spots were accurately identified 94.59% of the 
time. However, there were some differences in vari-
able importance between subregions and the entire 
Mojave Desert, including that distance to roads was a 
top variable in multiple regions, and coarse fragments 

and slope data were frequently more useful in the 
subregional models than in the full Mojave Desert 
(see supplementary material Figs. S2 and S3). In the 
regions where coarse fragments were ranked as top 
variables, hot spots preferred substrate with fewer 
coarse fragments relative to other classes and overall 
distributions of the subregions, except in arid valleys 
and canyonlands, where hot spots were found in areas 
with more coarse fragments. In subregions where 
slope was a top variable, hot spots trended toward 
areas of a moderate slope relative to the overall dis-
tribution of each respective subregion. Finally, in the 
western Mojave low ranges and arid footslopes, elec-
trical conductivity (EC) was a top variable and hot 
spots were most commonly found in areas of lower 
EC (supplementary material Figs. S4–S9).

Discussion

Our work leveraged the distinct phenological attrib-
utes of invasive annual grasses to identify spatially 
clustered groups of pixels with persistent and long-
term detection of early season invasive annuals 

Fig. 4   Kernel density plots of four top-ranked variables. Grouped kernel density plots separated by hot spot response group (a–d), 
and partial dependence plots illustrating the likelihood of hot spot classification along variable gradients (e–h)
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(2009–2020; hot spots) and the variables associ-
ated with their distribution (Bishop et  al. 2019). In 
this study, hot spots of early season invasive annual 
grasses in the Mojave Desert over 12 years were suc-
cessfully identified and found to be primarily on the 
eastern and western margins of the Mojave Desert 
ecoregion. Coverage of hot spots was found to vary 
across subregions, with Western Mojave Basins 
containing far more hot spots proportionally than 
any other subregion. The wide distribution of the 
ephemeral class indicates nearly all subregions of 
the Mojave Desert support some level of occasional 
annual grass invasion with no significant spatial clus-
tering. At the Mojave Desert ecoregional scale, we 
found that biophysical variables, rather than anthro-
pogenic variables, were better predictors of hot spot 
distribution, but all variables included contributed 
positively to the accuracy of the model. The spatial 
distribution of our hot spots largely overlapped with 
the distribution of previous invasive annual detection 
and suitability modeling in the Mojave Desert (Dahal 
et  al. 2022; Klinger et  al. 2019; Underwood et  al. 
2019). Our full ecoregional insights largely agree 
with the biophysical controls of invasion investigated 
by prior plot or landscape scale studies, while subre-
gional analysis yielded results supported by the litera-
ture, such as increased importance of anthropogenic 
variables at subregional or smaller spatial extents 
(Abella et al. 2012; Brooks & Berry 2006). Our work 
adds important management-relevant knowledge of 
long-term patterns of persistence on a Mojave Desert 
ecoregional scale, capturing large biophysical and 
anthropogenic gradients. Information on persistent 
populations of invasive annuals is useful for prioritiz-
ing management on areas that are most likely to cause 
ecological issues in the future. The wide-ranging 
prevalence of ephemeral grass distributions compared 
with hot spots demonstrates the usefulness of aggre-
gating over time to identify hot spots, which are likely 
high-priority areas for invasive species management.

The temporal and spatial resolution of our remote 
sensing approach was ideal for identifying invasive 
populations at a scale fine enough to detect variation 
due to biophysical variables yet large enough spatial 
resolution not to overwhelm computational power 
during analysis (Kennedy et  al. 2014). Our tempo-
ral aggregation and hot spot analysis help to reduce 
uncertainty, because invasive annuals commonly form 

dense patches that germinate every year, meanwhile 
the growth and germination requirements for native 
plants are often much more stringent resulting in less 
consistent productivity (Beatley 1974; Brooks 1999b, 
2003). The byproduct of temporal aggregation is the 
broad ephemeral class, which in addition to includ-
ing “superbloom” years in the Mojave Desert, also 
includes pixels of a lower dNDVI detection thresh-
old and therefore higher variation in invasive cover 
abundance and uncertainty. While we are confident 
in our detection of invasives, it is possible that native 
annuals coincident with the phenology of invasives 
are included in our detection in the ephemeral class 
in particular and therefore it is important to not over-
estimate the dominance of invasives in the ephem-
eral category. However, the broad ephemeral class 
provides important context for the identified persis-
tent hot spots, and understanding propagule dynam-
ics, and is evidence of the need to conduct multi-year 
assessments to identify focus areas to account for 
interannual variability and to avoid detection error. 
As with any remote detection method, it is important 
to practice caution with application, and any hot spots 
should be field validated before management deci-
sions are made.

Even with the varied physiological tolerances 
within the Mojave Desert of the four target invasive 
species we studied, the treatment of these species as 
a coherent functional group is supported by the nar-
row set of conditions under which they form hot spots 
as well as the similar effects they have on ecosystems 
(Bykova & Sage 2012; Hufft and Zelikova, 2016; Wu 
& Jain 1978). The similar effects of invasive annuals 
on ecosystems are likely due to shared characteris-
tics such as possessing a shallow fibrous root system, 
germination cohorts following precipitation pulse 
events throughout the fall and winter, the ability to 
photosynthesize at low temperatures, rapid growth, 
early seed set, and high seed production. While these 
common physiological traits confer advantages that 
allow opportunistic invasion in favorable conditions, 
they also impose limits on their environmental toler-
ances (Armstrong & Huenneke 1992; Griffith et  al. 
2014). Therefore, despite detecting multiple species 
within the invasive annual grass functional group, the 
group’s shared physiological characteristics lead us to 
infer hot spots mapped here are within a narrow bio-
physical envelope where invasive annual grasses can 
maintain persistence on the landscape.
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Predictors of invasive hot spots

The narrow frequency distributions for hot spots in 
the top-ranked variables (Fig.  4), indicate that hot 
spots exist in a specific set of soil, topographic, and 
climatic conditions, which is supportive of research 
finding soil texture, and topographic variables to be 
important determinants of annual plant cover in the 
Mojave on a plot scale (Duniway and Palmquist 2020; 
Munson et  al. 2015). Hot spots favored coarse-tex-
tured sandy loam soils with relatively low PWP, and 
higher average bulk density than the other classes. 
However, the texture related conditions commonly 
found with hot spots in our study contradict a prior 
assessment from the Lower Grand Canyon subre-
gion in the eastern Mojave Desert (Grand Canyon-
Parashant National Monument) that indicated Bromus 
rubens was found mostly in finer soil textures (Duni-
way and Palmquist 2020). These discrepancies are 
likely the result of differences in spatial and temporal 
scale as well as the specific geographic location of the 
referenced study. Closer examination of the Lower 
Grand Canyon subregion indicates hot spots in this 
area prefer finer soils (PWP = 9.7%) relative to other 
classes in the area as well as hot spots in the rest of 
the Mojave Desert. In the eastern part of the Mojave, 
where fall and summer monsoonal precipitation con-
tribute significantly to the total annual precipitation, 
retention of summer and fall precipitation in finer-tex-
tured soils would be more important for overwinter-
ing annuals (Tagestad et  al. 2016). Invasive annuals 
show relatively wet wilting points (− 1  MPa), sig-
nificantly wetter than Mojave native plants and even 
wetter than average agricultural plants (Germino et al. 
2015; Link et al. 1990). As such, hot spots appear to 
occur in areas with relatively high precipitation dur-
ing fall and winter, and soils have relatively few fine 
pores in the top 30 cm that retain water below wilting 
point of these species (< − 1.5 MPa, PWP used here). 
These low PWP soils are typically sandy allowing 
the fibrous root systems to quickly and easily extract 
water during germination and early growth following 
rain events (DeFalco et  al. 2003). Another possible 
mechanistic explanation for our result on the ecore-
gion scale is that hot spots are found in areas where 
invasive grasses are less likely to experience evapora-
tive water loss such as in sandier soils and north-fac-
ing aspects. Greater downward infiltration of sandy 
soils limits evaporative loss more than finer soils 

in arid systems, and support higher productivity in 
water-limited, high evaporative demand systems like 
the Mojave Desert (Noy-Meir 1973; Sala et al. 1988). 
Additionally, northern-facing slopes have lower solar 
radiation and therefore, lower evaporative loss than 
southern counterparts, which are likely important for 
invasive annuals with no waxy cuticle like many other 
desert plants (Yeats & Rose 2013). Similarly, hot 
spots were also more likely to be found on western 
facing slopes, perhaps a function of rain shadow with 
moist weather systems approaching from the coast as 
well as eastern slopes being exposed to hot and dry 
continental Santa Ana winds.

Seasonal precipitation and elevation were both 
among the most useful variables, reflecting the physi-
ological limits of invasive annual grasses. Research 
suggests that pulses in precipitation are important for 
germination and growth in invasive annual grasses in 
the Mojave Desert (Horn et al. 2017). Our early sea-
son NDVI measurements are likely related to winter 
survivability and growth, providing a mechanism 
as to why areas with mean winter precipitation of 
90 mm or greater are likely to be hot spots. Timing 
of precipitation is especially important considering 
that invasive annual grasses lack the ability for deep 
soil–water extraction (Ryel et al. 2008). Some of the 
areas with the highest precipitation of the Mojave 
Desert are also at high elevation, but hot spots were 
common at middle elevations (~ 1000 m). In this case, 
elevation is partly a proxy for temperature, as in our 
initial variable selection process, we found elevation 
and temperature to be highly correlated in the Mojave 
Desert. Thus, the cool winter and spring temperatures 
at high elevations likely decrease photosynthetic rates 
while the high temperatures and soil conditions found 
in low elevations likely make seed survival and water 
extraction difficult for annual grasses (Bykova and 
Sage 2012). Furthermore, the upper elevation cold 
limitations of hot spots is evidence of the potential for 
hot spots to spread to higher elevations as the climate 
warms (Bradley et  al. 2016). Furthermore, previous 
observations suggest that run-off onto alluvial fans 
and toeslopes common at middle elevations in the 
eastern Mojave could be contributing to the surpris-
ing amount of hot spots in the area. Further plot-scale 
research would allow for more specific mechanistic 
understanding of patterns observed here.

Our results notably found anthropogenic variables 
to be comparatively less predictive across the entire 
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Mojave Desert, but frequently predictive of hot spots 
on a smaller subregional scale. Humans can act as 
a vector for spread and distribution of invasive spe-
cies which has been connected with energy devel-
opment, unpaved road density, OHVs, and proxim-
ity to cattle water sources (Brooks and Berry 2006; 
Duniway and Palmquist 2020; Salo 2005; Villarreal 
et al. 2019). For the entire Mojave Desert ecoregion 
on average, hot spots were found closer to roads than 
the ephemeral and none classes, and areas with high 
levels of conservation protection were somewhat 
less likely to contain hot spots. However, the lack of 
high predictive ranking of anthropogenic variables 
across the entire Mojave Desert likely is indicative 
of broad scale naturalization of invasive annuals 
in the entire ecoregion and their potential to invade 
even undisturbed areas (Beatley 1966; Belnap et  al. 
2006; Bowers et  al. 2006). Our analysis focused on 
the continued persistence of invasive annual grass 
populations, rather than initial spread and establish-
ment, which can be distinct from persistent hot spots 
(O’Neill et al. 2021). Therefore, humans undoubtedly 
play a role in the establishment of these non-native 
species, but perhaps one that is not detectable when 
examining persistence over a 12-year period within 
an entire ecoregion after the initial introduction and 
establishment in the late nineteenth and early twen-
tieth centuries. It is likely that we missed a temporal 
window when human expansion and development 
drove the initial spread of propagules throughout the 
twentieth century and they are now self-sustaining 
populations (Beatley 1966; Bowers et al. 2006; Salo 
2005). Finally, variation in the importance of anthro-
pogenic variables between spatial and temporal scales 
accentuate the need to have multiple studies across 
gradients of temporal and spatial scales in addition 
to robust data on human use and presence on the 
landscape.

Historic land-use and fire history, along with other 
legacy variables, likely have had a lasting impact 
on the distribution of invasive plant hot spots in the 
Mojave Desert. However, the anthropogenic spatial 
data used here primarily represents current land use 
and management and do not capture such historical 
activities. Throughout the last two centuries, human 
activities such as ranching, cultivated crops, wide-
spread clearing, and groundwater pumping have 
taken place throughout the Mojave Desert, with some 
areas of high intensity in the Western Mojave Basins, 

where much of the hot spots have been recorded (Car-
rico and Norris 1978; Norris 1982). Plot scale experi-
ments have indicated that invasive annual grasses 
thrive in areas of increased disturbances and have the 
potential to quickly invade areas cleared for agricul-
ture that have been subsequently abandoned (Brooks 
et  al. 2006; Marushia and Allen 2011; Williamson 
et  al. 2020). Previous studies on these invasion pro-
cesses have been primarily focused on local scales, 
but understanding the initial sites of introduction and 
disturbance on a regional scale can also yield impor-
tant information to how these grasses might spread 
and how their range might have expanded over time. 
Therefore, while our analysis characterizes the role 
that soil, climatic, topographic variables, and cur-
rent land-use and management play in the continued 
productivity of invasive annual grasses, we cannot 
assume that these are independent of fire history and 
historical land uses. Investigating the roles of fire, 
abandoned farmland, and historical livestock grazing 
in the establishment of invasive annuals throughout 
the Mojave remains an important topic and direction 
for future studies.

Subregional assessments

The Mojave Desert is a biogeographically diverse 
ecoregion, and we found that some subregions had 
nearly 10% or more of their total area in hot spots 
while other subregions were completely lacking hot 
spots. This subregional variability highlights the 
importance of biophysical factors at this scale and 
provides some insight into which plant and animal 
communities are most affected by annual grass inva-
sions. Western Mojave Basins (13.0% hot spot cover), 
Eastern Mojave Mountain Woodland and Shrubland 
(7.6% hot spot cover), and Western Mojave Low 
Ranges and Arid Footslopes (7.0% hot spot cover) 
are the most persistently invaded subregions within 
the Mojave Desert. All three of these subregions are 
characterized by mixed shrub and woodlands, includ-
ing Joshua trees and mixed pinyon-juniper woodlands 
(Omernik and Griffith 2014). These heavily invaded 
subregions are all characterized by relatively high 
rainfall, and stable substrate (Mack et al. 2000). These 
are also regions where historical agricultural land-
use has been intensive, which may also contribute to 
the prevalence of hot spots in the region. The subre-
gions with the lowest fraction of hot spots detected 
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were Mojave Sand Dunes (0% hot spot cover), Mes-
quite Flat/Badwater Basin (0% hot spot cover), and 
Death Valley (0% hot spot cover). In contrast to the 
most persistently invaded subregions, all three of 
these subregions are in the central Mojave and are 
low-elevation areas, with biota adapted to hotter and 
drier conditions than the rest of the Mojave Desert. 
The Mojave Sand Dunes do not provide a stable sub-
strate for annual grasses to persistently establish, and 
most dune species are native low-growing herbaceous 
perennials (Pavlik 1985). Mesquite Flat, Badwater 
Basin, and Death Valley are host to some of the most 
extreme climatic and soil conditions in North Amer-
ica, therefore hot spots are unlikely to form in these 
more extreme habitats, despite available space.

While largely similar to the full ecoregional results, 
the random forest models from the most invaded sub-
regions yielded insights into the unique characteris-
tics of invasion in Mojave subregions and additionally 
illustrated the importance of spatial scale within inva-
sion ecology. In eastern subregions (Eastern Mojave 
Mountain Woodland and Shrubland, Eastern Mojave 
Basins, Eastern Mojave Low Ranges and Arid Foot-
slopes, Arid Valleys and Canyonlands), fall precipi-
tation was frequently ranked as a top variable, with 
hot spots preferring areas with high fall precipitation 
averages as well as areas where average PWP is simi-
lar but is slightly higher than average (8.3%) com-
pared to the entire Mojave Desert. This reinforces our 
assumption that retention of early rainfall is particu-
larly important in subregions where summer and fall 
monsoonal rains contribute to a large portion of the 
total annual precipitation. The importance of topo-
graphic variables in mountains and footslopes is sup-
ported by work suggesting that herbaceous plants are 
especially sensitive to topography due to the impor-
tance of water retention in mountainous areas subject 
to run-off, even under favorable climatic conditions 
(Munson et al. 2015). Coarse fragments were consist-
ently highly ranked in most subregional models with 
hot spots in subregions preferring soils with fewer 
coarse fragments. This is likely due to the reduced 
water-holding capacity of surface soils with large 
amounts of coarse fragments limiting the productivity 
invasive annuals and hot spots being less commonly 
detected. However, coarse fragment importance and 
trends with hot spots was inconsistent among ecore-
gions (not in the top variables for Eastern Mojave 
Woodland and Mountain Shrubland and the opposite 

trend in Arid Valleys and Canyonlands).  This con-
trasting importance or association of coarse frag-
ments between subregions has been observed in field-
based studies (Duniway and Palmquist 2020) and is 
potentially due to interactions of soil ecohydrologic 
properties, aridity, and plant community interactions 
(Munson et al. 2015).

The difference in scale of the subregional models 
resulted in proximity to human infrastructure being 
ranked consistently higher than in the models of the 
entire Mojave Desert (Brooks and Berry 2006; Vil-
larreal et al. 2019). It was ranked particularly high in 
the Eastern Mojave Mountain Woodlands and Shrub-
lands and Arid Valleys and Canyonlands. Both subre-
gions are situated near two of the largest cities in the 
Mojave Desert (Las Vegas, Nevada and St. George, 
Utah), and a primary use of these areas is for recrea-
tion. Furthermore, previous agricultural land-use in 
these subregions may have been less intensive than in 
the Western Mojave, suggesting modern population 
growth is influencing the spread of invasive popula-
tions. It would be interesting to have a more in-depth 
analysis on the effects of varying land-use legacies 
on invasion (Carrico and Norris 1978; Lovich and 
Bainbridge 1999), however, currently a lack of com-
prehensive and spatially explicit data for the Mojave 
Desert prevents meaningful conclusions on their rela-
tionships with hot spots, even at the subregional level.

Conclusions

Non-native annual grass invasions contribute to the 
environmental change in the American Southwest as 
climate change and the human footprint may expand 
favorable conditions for invasion. Here we have iden-
tified the most productive and persistent populations 
of invasive annual grasses in the Mojave Desert, 
revealing that invasive grass persistence and produc-
tivity at the entire Mojave Desert ecoregion scale is 
primarily predicted by soil, topographic, and climatic 
factors. This understanding is useful for modeling 
future distributional changes caused by the chang-
ing climate as invasion fronts for these species may 
move into different ecoregions such as the Great 
Basin (Bradley et al. 2016). Efforts for understanding 
future distribution of invasive annuals could utilize 
this dataset for time–space clustering and trend detec-
tion to identify areas where invasives may be grow-
ing in frequency and area. The ecoregional analysis 
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allows us to discern ecological patterns such as the 
importance of rainfall in driving patterns of invasion, 
or the areas that are unsuitable for most herbaceous 
invaders such as Death Valley. Furthermore, the 
inclusion of our ephemeral class identifies potential 
areas where invasives can occur that can be examined 
as to whether they could become persistently produc-
tive enough to be classified as hot spots. Identified 
hot spot populations are important to help narrow 
down management targets, and invasion dynamics 
and prevent possible catastrophes related to increased 
risk of fire and chance of altering plant community 
structure in the ecoregion. While hot spots of annual 
grass invasions represent an increased risk, they also 
present a significant opportunity for targeted manage-
ment and active restoration.
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