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Abstract  The use of long-term datasets is crucial in 
ecology because it provides a comprehensive under-
standing of natural fluctuations, changes in ecosys-
tems over extended periods of time, and robust com-
parisons across geographical scales. This information 
is critical in detecting and analysing trends and pat-
terns in species populations, community dynam-
ics, and ecosystem functioning, which in turn helps 
in predicting future changes and impacts of human 

activities. Additionally, long-term data sets allow for 
the evaluation of the effectiveness of conservation 
efforts and management strategies, enabling scientists 
and decision makers to make evidence-based deci-
sions for biodiversity conservation. Although the use 
of long-term data is recognized as highly important in 
several scientific disciplines, its usage remains under-
valued regarding questions in invasion science. Here, 
we used four regional subsets (i.e. England, Hungary, 
Denmark and the Dutch-German-Luxembourg) of 
a recently collated long-term time series database to 
investigate the abundance and dynamics of occurring 
non-native species over space and time in Europe. 
While we found differences in the numbers of non-
native species across the studied regions (Dutch-Ger-
man-Luxembourg region = 37; England = 17, Hun-
gary = 34; Denmark = 3), non-native species detection 
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rates were continuous over time. Our results further 
show that long-term monitoring efforts at large spa-
tial scales can substantially increase the accuracy and 
rate at which non-native species are detected. This 
information can inform management endeavours 
dealing with non-native species, underlining the need 
for invasion scientists and authorities-stakeholders to 
make more effort in collecting, analysing and making 
available long-term datasets at broader geographic 
ranges.

Keywords  Biological invasion · Monitoring 
efforts · Ecology · Time series · Non-native species

Introduction

Globalisation has led to an accompanying increase 
in propagule and colonisation pressure (Briski et  al. 
2012) and, thereby, to an increase in the number of 
established non-native species reaching unprece-
dented levels (Seebens et al. 2017; Daly et al. 2023). 
In particular, while the European continent has been 
a historical epicentre for species translocations and 
introductions worldwide (Pyšek et  al. 2008), it has 
experienced a substantial increase in the number of 

non-native and invasive species in recent decades 
(Seebens et  al. 2017, 2021). This notable trend is a 
growing concern due to the harmful consequences 
they pose to biodiversity and human well-being. 
These include, but are not limited to, the impairment 
of crops and infrastructure (Laverty et al. 2015), and 
biotic and functional homogenisation (Olden et  al. 
2004). Also, the lack of understanding of which non-
native species will ultimately become invasive limits 
our ability to undertake preventive and control meas-
ures (Jarić et al. 2019; Pyšek et al. 2020). Therefore, 
it is vital to understand the invasion process, provid-
ing insights into the dynamics of ecosystem func-
tioning, the response of native species to the invader, 
and the impact of human activities on the environ-
ment (Arim et al. 2006). At local and regional scales, 
increasing rates of introduction have been associated 
with a loss of ecosystem resilience and the facilita-
tion of subsequent non-native species (Haubrock 
et al. 2021; Le Hen et al. 2023). As the different driv-
ers of invasions are context dependent and can act 
synergistically, more integrative monitoring efforts 
are needed to improve management investments from 
being focused solely on the few invasive species that 
are better known and considered to be problematic 
(Watkins et  al. 2021). Despite the well-known risk 
that biological invasions pose worldwide, only a few 
countries have fulfilled the requirements to achieve 
the “Aichi Target number 9” of the Convention on 
Biological Diversity’s (CBD) relating to biologi-
cal invasions (McGeoch et al. 2016), underlining the 
need for future improvements. In this sense, historical 
data can be an important source to understand how 
variations in the introduction of non-native species 
and their establishment in ecosystems occur, and the 
possible implications (Clavero & Villero 2014).

Long-term biomonitoring data are immeasurably 
valuable to ecological sciences, as they can provide a 
fine-scale record of changes in the composition and 
abundance of species and thus, community composi-
tions over time (Haubrock et  al. 2023a, b; Haubrock 
and Soto 2023; Fig.  1). The information within long-
term biomonitoring data could be used to understand 
the dynamics of non-native species introductions and 
to track their spread across a range of spatio-temporal 
scales, modulated by the biological resistance of native 
species and the availability of local resources, but also, 
possibly, to gain a better understanding of the influence 
of environmental conditions on their success or failure 
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(Guareschi et  al. 2021). This could help to develop 
strategies to prevent their introduction, control their 
spread, or eradicate established populations. Yet, the 
ability of long-term biomonitoring to assess introduc-
tion dynamics and potentially introduction rates has 
not been tested (but see Haubrock et  al. 2022; Soto 
et al. 2023). Long-term biomonitoring data, therefore, 
present enormous potential, e.g. covering large areas 
across Europe, but also a major challenge because they 
have not been tested to the extent of benefits they may 
provide to invasion biologists.

Hence, we used long-term biomonitoring data 
collected across four European regions—Denmark, 
Hungary, England, and the Dutch-German-Luxem-
bourg region—to evaluate their capability to assess 
non-native species introductions in regard to regional 
differences in temporal dynamics and introduction 
rates. We hypothesised that (i) introduction rates of 

non-native species have been consistent over time, 
not reflecting any distinguishable temporal patterns. 
We consequently hypothesised that (ii) long-term 
biomonitoring data can be indicative of non-native 
species introductions at large scale, albeit being taxo-
nomically limited, whereas (iii) regional differences 
will be prominent, but depend on sampling effort. 
Therefore, the information can be used to identify 
trends and patterns in the spread of introduced spe-
cies and to develop effective strategies for their man-
agement and control. Ultimately, our goal is to bet-
ter understand the dynamics of introduced non-native 
species in ecosystems and promote international 
cooperation to develop more effective approaches for 
mitigating their potentially harmful effects.

Fig. 1   Two possible scenarios of non-native species presence 
(i.e., abundance or occurrence) over time (right axis) follow-
ing an external change (i.e. climatic, anthropogenic distur-
bance, etc.) and how long-term biomonitoring can capture it. 
In scenario 1, an external change could lead to a decrease in 
non-native species presence, and in scenario 2 the changes 

can result in increases. External changes can also vary, alter-
ing ecosystem naturalness (left axis) from pristine to highly 
impacted through time. The long term biomonitoring is 
assumed to capture these changes in community composition 
and ecosystem alterations
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Methods

To investigate the rate of non-native species introduc-
tion and their occurrence in long-term biomonitor-
ing data, we utilised a recently collated database of 
aquatic macroinvertebrate abundances (Haase et  al., 
in review, Haubrock et al. 2022; Fig. 2) and consid-
ered four regional clusters located within Europe, 
with sufficiently large spatial coverage over Denmark, 
Hungary, England, and the Dutch-German-Luxem-
bourg regions (henceforth referred to as DGL). These 
time series contained abundance data of macroinver-
tebrate groups identified at the species level, exclu-
sively collected from streams and rivers and covered 
a minimum of eight, not necessarily consecutive 
sampling years. Each time series was surveyed at the 

same geographic location throughout the sampling 
period (Table  1). Comparable sampling techniques 
and protocols [e.g. RIVPACS (in England) or DIN 
38410 (in Germany)] were used across the sampling 
sites within each region and were uniform across each 
site’s sampling period.

Identification of non‑native species

Non-native species were identified and verified by 
consulting the Centre for Agriculture and Bioscience 
International (CABI 2023); Google Scholar (https://​
schol​ar.​google.​com/), the Global Biodiversity Infor-
mation Facility (GBIF; https://​www.​gbif.​org/), and 
the Global non-native Species First Record Database 
(sTWIST; Seebens et  al. 2017). A species was only 

Fig. 2   Location of time series from Denmark (n = 174, purple), Hungary (n = 84, blue), England (n = 296, orange), and Dutch-Ger-
man-Luxembourg region (n = 178, green) containing non-native species

https://scholar.google.com/
https://scholar.google.com/
https://www.gbif.org/
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considered as non-native when confirmed by three of 
the four sources.

Unique species occurrences over time

To investigate the temporal occurrence of unique spe-
cies, we plotted the Empirical Cumulative Distribu-
tion Functions (ECDF) for both non-native and native 
species over time within each region (Fig.  4). The 
ECDF is a step function that increases by 1/n for each 
additional species occurrence, where n is the total 
number of non-native or native species identified in a 
given region.

We considered a Weibull probability distribution 
p(t) of unique species occurrences over time t, given 
by

where t is measured in years after the first species was 
recorded in a given region. λ > 0 is a scale parameter 
for the probability distribution, and k > 0 is a shape 
parameter that indicates whether the rate of unique 
species occurrences decreases (k < 1), is constant 
(k = 1) or increases (k > 1) over time. The mean time 
to new species detection (mean; E(t) ) and variance 
var(t) is given by

where Γ is the Gamma function defined by 
Γ(a) = ∫ ∞

0
z
a−1

e
−zdz.

We fitted the cumulative probability distribution 
function P(t) (CDF) for the Weibull distribution given 
by
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�
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]

(3)P(t) = 1 − e
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to the ECDF empirical data points. The non-linear 
regression curve fitting tool fitnlm from Matlab was 
used for the distribution fitting, and the strength of the 
fitting was quantified by the coefficient of determina-
tion (R2) and the root mean square error (RMSE). We 
reported the estimated model parameters k and λ for 
non-native and native species, across each region. 
In the context of multiple species occurrences, the 
CDF can be used to determine the time to saturation 
in recorded species. Also, the number of non-native 
species per region was compared with the number 
of non-native species identified in the four regions 
according to the Global non-native Species First 
Record Database (Seebens et al. 2017).

Evaluating the usefulness of long term data for 
invasion dynamics

To gather insights into regional differences in the 
presence of non-native species, we investigated the 
the full number of non-native species records (i), the 
number of time series with at least one non-native 
record and, (ii) the average relative abundance of 
non-native species (iii), across time. For this, we only 
used the respective response variable (i-iii) as a func-
tion of time and the number of time series per year to 
account for temporally varying data availability. As a 
means of evaluation, the slopes of (i-iii) for each of 
the four regions as well as their respective 95% con-
fidence intervals were compared using linear mixed-
effect models using the lmer function of the nlme R 
package (Pinheiro et al. 2013).

To determine whether sample size (i.e. number of 
time series over time) was sufficient to describe the 
presence of non-native species in the four regions, 
the cumulative number of identified non-native and 
native taxa were plotted separately against the cumu-
lative number of time series investigated per year 

Table 1   Description of the study time-series, by region, number of time series, the range sampling duration, the average duration of 
time series, and the average of annual samplings

Region No. of times 
series (n)

Range of sampling 
duration

Average duration of time series 
in years (mean ± SD)

Average number of annual samplings 
in time series in years (mean ± SD)

Denmark 174 1992–2019 20.71 ± 3.60 22.65 ± 3.42
Hungary 84 2005–2019 11.13 ± 1.38 11.08 ± 1.57
England 296 1994–2019 14.37 ± 4.16 11.81 ± 2.84
DGL 178 1968–2019 23.95 ± 9.53 14.41 ± 5.90
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(Haubrock et  al. 2023). For this, we used the spe-
caccum function of the vegan R package (Oksanen 
et  al. 2013), randomising each time series ten times 
(Ferry & Cailliet 1996; Ferry et  al. 1997). Cumula-
tive curves were considered to be asymptotic if ten 
previous values of the total number of prey taxa were 
within ± 0.5 of the range of the asymptotic number of 
taxa, indicating the minimum monitored time series 
years required to describe the diversity of non-native 
and native taxa (Huveneers et al. 2007).

Results

All 732 time series analysed from all four regions 
contained records of non-native species (Fig.  3). 
The number of native species in Denmark (n = 517), 
Hungary (n = 508), England (n = 511) and the DGL 
(n = 716) outweighed non-native species in each 
region (n = 3 in Denmark; 34 in Hungary; 17 in Eng-
land; 37 in the DGL; Supplement 1) in a ratio between 
172:1 in Denmark and 15:1 in Hungary. The species 

records within our time series showed that the over-
lap of non-native species present (%) was higher than 
for native species for DGL, Hungary, DGL+Hungary, 
and DGL+Hungary+England, (Fig. 3).

Unique species occurrences over time

The ECDF plots highlight that in each region, all 
non-native species reported over time were identified 
more rapidly than native species were collected over 
the same period. While not accounting for the possi-
bility of not having found or correctly identified all 
non-native and native species, it shows that the effec-
tive observations of non-native and native species 
initiated at the same point in time, occurring in short 
tandem repeats (Fig. 4). Also, the ECDF plots show 
that with consistent sampling efforts non-native spe-
cies are identified in approximately the same propor-
tion over time as native species (Fig. 4e–h).

We found that the rate of unique species occur-
rences decreased over time (k < 1) in Hungary and 
England for both non-native and native species, and 

Fig. 3   Venn-diagram 
showing the relative overlap 
of non-native (a) and native 
species (b) across Denmark, 
Hungary, England, and the 
Dutch-German-Luxem-
bourg region (DGL) accord-
ing to the available long-
term data

Table 2   Estimated distribution parameter values �, k from fit-
ting the CDF (Eq. 3) to the empirical proportion of non-native 
and native species occurrences across different regions. The fit-

ting is quantified by the coefficient of determination (R2) and 
the root mean squared error (RMSE). The mean and variance 
of time to detection was computed using Eq. (2)

Region Group � k R2 RMSE Mean Variance

Denmark Non-natives 7.78 3.68 0.52 0.33 7.02 4.50
Natives 5.57 0.72 0.86 0.08 6.90 96.46

Hungary Non-natives 1.86 0.68 0.12 0.19 2.40 13.03
Natives 3.30 0.86 0.90 0.08 3.56 17.21

England Non-natives 10.45 0.93 0.91 0.10 10.79 133.76
Natives 9.70 0.97 0.97 0.04 9.83 102.68

DGL Non-natives 24.03 1.37 0.96 0.06 21.99 265.50
Natives 31.82 2.05 0.97 0.05 28.19 207.64
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in Denmark only for native species: in all other cases, 
this rate increased (k > 1). The mean time to detec-
tion was shortest for non-native species in Hungary, 
and longest for native species in the DGL region 
(Table 2).

Among the four investigated regions, no tempo-
ral pattern in the occurrence of non-natives could be 
identified as these non-native species were identified 

sporadically. Solely in Hungary, the majority of spe-
cies (n = 15) were already present in 2005, in the first 
years of monitoring campaigns (Supplement 2). New 
native species were identified periodically in bursts, 
possibly reflecting the inclusion of new time series. 
Comparing non-native species within the time series 
from the four investigated regions and freshwater 
macroinvertebrates reported in sTWIST (Seebens 

Fig. 4   Empirical Cumulative Distribution Functions (ECDF; 
blue step functions) for the proportion of non-native and 
native species from Denmark (a, b), Hungary (c, d), England 
(e, f), and Dutch-German-Luxembourg region (DGL) (g, h). 
The Cumulative Distribution Function (CDF) given in Eq. (1) 

(black solid curves) were fitted against the proportion of spe-
cies occurrences over time, with the reported R2 and RMSE 
values that quantify the fitting given in Table 2. The red shaded 
areas represent 95% confidence regions for the range of pre-
dicted CDF values

Fig. 5   Slopes (± 95% CI) of the relationships between the 
number of non-native species records (a), the number of 
invaded time series (b), and the average relative abundance of 
non-native species (c) and time for Denmark, Hungary, Eng-

land, and the Dutch-German-Luxembourg region (DGL). Posi-
tive trajectories are displayed in blue, negative trajectories in 
red. Slopes with asterisk were significantly different from zero 
(p < 0.05)
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Fig. 6   Saturation curves 
indicating the years it takes 
until the completeness of 
species inventories (A) is 
reached, showing all native 
(left side; with the number 
of species indicated in 
the bottom right) and all 
non-native species (right; 
with the number of species 
indicated in the bottom 
right) detected in Denmark 
(a), Hungary (b), England 
(c), and the Dutch-Ger-
man-Luxembourg region 
(d) based on the available 
long-term data
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et al. 2017), we found considerable inconsistencies in 
the number of non-native species reported in our data 
compared with sTWIST. This was especially evident 
in England, where sTWIST reported 1.8-times more 
non-native freshwater macroinvertebrate species than 
reported in the available time series, followed by the 
DGL- region (1.7:1). In Denmark, our time series 
reported 3 non-native freshwater macroinvertebrate 
species versus 5 reported in sTWIST, while for Hun-
gary, our time series reported 8-times higher numbers 
of non-native freshwater macroinvertebrate species 
than reported in sTWIST (Supplement 3).

Evaluating the usefulness of long‑term data for 
invasion dynamics

Model assumptions were met in all cases, except for 
the number of invaded time series in the DGL and 
changes in the relative abundance of alien species 
identified in Hungary. Our models hence indicated 
that over time, the number of non-native species 
recorded in long-term data from the four investigated 
regions was growing, albeit significantly increas-
ing only in England and the DGL (Fig.  5a; Supple-
ment 4). The number of invaded time series, however, 
increased significantly in Denmark and the DGL, 
while decreased significantly in Hungary (Fig.  5b; 
Supplement 5). The average relative abundance of 
non-native species remained constant over time 
across all four regions (Fig. 5c; Supplement 6). Spe-
cies accumulation curves further revealed that non-
native species observations saturated significantly 
earlier than observations for native species, reach-
ing their asymptote after 3.5 to 41.7 monitoring 
years compared to 720.2 to 1010.9 monitoring years 
(Fig. 6; Supplement 7).

Discussion

Recognition of the importance of using long-term 
data for a more in depth understanding of impacts 
(e.g. costs and magnitude) is not new (Blossey 
1999; Gill et  al. 2021; Le Hen et  al. 2023). How-
ever, demands have not been aligned with realistic 
efforts in using wider datasets to allow more effective 
resource allocation in combating introductions and 
mitigating negative outcomes from non-native spe-
cies. In this study, we investigated the occurrences of 

non-native and native species within long-term data 
from four European regions with particularly high 
spatio-temporal coverage of time series. We found 
staggering differences not only between non-native 
and native species, but also across regions. We fur-
ther demonstrated that new non-native species occur-
rences were rare but continuous over time, detached 
from temporal patterns in native species occurrences. 
Continuous monitoring efforts recording occurrences 
of non-native species over time, likely represent only 
a subset of the non-native species established in the 
respective region, suggesting that time series provide 
a powerful tool for the detection and effective man-
agement and control of invasive populations.

Unique species occurrences over time

Empirical Cumulative Distribution Functions 
(ECDF) plots are a useful tool to highlight features 
of an investigated dataset. Compared with a histo-
gram or density plot, they have the advantage of 
visualising each observation directly, meaning that 
there are no binning or smoothing parameters that 
need to be adjusted (Magurran 2013; Gatti 2014; 
Langrené & Warin 2021). The ECDF plots indicated 
that with prolonged sampling effort, non-native spe-
cies are identified at the same pace as native species 
(Fig. 3c, d). This suggests that despite the known lag 
time in identifying and reporting of non-native spe-
cies (McGeoch et  al. 2012), established monitoring 
efforts will be able to identify all non-native species 
within studies sites, possibly also new arrivals. How-
ever, it should be noted that detecting non-native spe-
cies with similar characteristics to native species can 
often be difficult, often prolonging the lag time. Inter-
estingly, ECDF plots also revealed a decrease in first 
identifications of new native species, whereas first 
non-native species occurrences remained constant, 
indicating that more non-native species will pos-
sibly appear over time. In practical applications, the 
mean time can be used to make predictions about the 
expected rate of species detection in a population over 
time. It can help to guide conservation efforts aimed 
at preserving biodiversity by providing estimates 
of the time remaining before a certain proportion or 
number of species are lost.

However, ECDF plots have to be taken with care if 
saturation in terms of species identifications has not 
been reached. Here, non-native species identifications 
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were continuous over the period—likely in the pro-
cess of saturating—potentially reaching saturation 
in the future. The comparison with sTWIST further 
indicated that, albeit a considerable disparity in terms 
of total species recorded emphasised by the exam-
ple of Hungary (1 non-native species in sTWIST 
vs 34 in our long term data), many more non-native 
species are likely to be identified in the respective 
regions. Yet, it should be noted that recent analyses 
based on sTWIST present established species cumu-
latively, ignoring that not all species reported even-
tually established, thereby ignoring the possibility of 
non-native species disappearing again post establish-
ment, and possibly inadequately representing the true 
regional presence of non-native species nowadays 
(Seebens et al. 2018, 2021). In our dataset, non-native 
species occurred over multiple years and, therefore, 
were considered as established, although some likely 
failed to establish and to form populations that cre-
ated new propagules (Briski et  al. 2012). This dis-
crepancy originated from the underlying assumption 
made by the sTWIST database, recording first records 
and assuming non-native species to remain in the 
country as established.

Evaluating the usefulness of long‑term data

Globally, occurrence records of new non-native spe-
cies are growing (Seebens et al. 2017). The resulting 
data are usually compiled and consequently extracted 
again from large databases such as GBIF. The uncer-
tainty associated with the occurrence data from these 
databases can lead to misrepresentations of current 
distributions of non-native species and do not pro-
vide data on their permanence in the environment. 
Hence, the ecology of invasions still lacks specific 
long-term monitoring to detect species compared 
with other long-term ecological studies (Sukhotin & 
Berger 2013; Harvey et al. 2020). Local and regional 
biomonitoring is, therefore, an important temporal 
record of both the first records of non-native species 
and the local variation in establishment and dispersal, 
particularly for underrepresented but highly impact-
ful taxa such as invasive vertebrates (Haubrock et al., 
2023; Le Hen et al. 2023). Additionally, gaps in his-
torical monitoring can be detrimental for accurately 
determining the environmental space where species 
can establish populations. As anthropogenic distur-
bances, i.e. landscape and climate changes, cause 

uncertain impacts on biodiversity, tracking long-
term data on species distributions will become more 
important as it will provide information on species 
tolerances and survivorship outside optimal ranges 
(Hellmann et al. 2008). Thus, long-term information 
can avoid false positives (locations where species are 
no longer able to sustain populations) and false nega-
tives (accounting for robust data on distributions of 
rare species, or those with detection issues “sleeper 
populations”; Spear et al. 2021; Bracken et al. 2022). 
In doing so, we will be able to use statistical and 
computational techniques to accurately predict poten-
tial distributions and map areas at risk of invasions.

Here, the applied model found comparable patterns 
in the presence of non-native species across regions, 
even significant increases in England and the DGL. 
Due to the consistent sampling methodology over 
time, obtained trends are more reliable than if based 
on large occurrence databases, as the origin of the 
data and methods used are traceable, as well as the 
temporal variation, allowing analysis of uncertainties 
(Hughes et  al. 2021). The positive patterns found in 
the regions of England and the DGL may be related 
to a greater number of time series, showing that with 
more extensive monitoring networks, the detection of 
new species, both native and non-native, is improved. 
Interestingly, the number of time series with non-
native species increased significantly in the DGL and 
Denmark, in the latter case artificially increased by 
P. antipodarum spreading passively (Haubrock et al. 
2022). This suggests progressing invasions, as these 
regions are also those with time series collected over 
a longer time frame. However, the number of time 
series with non-native species was decreasing in Hun-
gary. While management interventions could be a rea-
son, it is also possible that local conditions resulted 
in non-native species failing to establish or that time 
series were not continuously monitored, underlining 
that monitoring has to be consequent and consistent 
(Haase et  al. 2018). Hungary was also the country 
with the smallest number of time series spanning the 
shortest time interval, but the country with the sec-
ond highest number of non-native species, likely due 
to the arrival of Ponto-Caspian species (Soto et  al. 
2023b).

Increasing introduction rates at regional and local 
scales can indicate that ecosystems are becoming 
less resilient to new introductions based on decreas-
ing ability to support native species, thus being at 
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risk of being functionally overwhelmed (Haubrock 
et al. 2021; Le Hen et al. 2023). On the other hand, 
the ongoing introduction of non-native species may 
also be the result of the loss of biodiversity due to 
the large-scale anthropisation of ecosystems, which 
creates new opportunities for invasions and replace-
ment of ecosystem functions that otherwise have 
become extinct (Lundgren et  al. 2020). This can 
exacerbate biodiversity loss (Bellard et  al. 2022), 
loss of ecosystem functions (Vilà et  al. 2010), and 
ultimately, affect human well-being (Bacher et  al. 
2018). On the other hand, decreasing introduction 
rates can indicate that efforts to prevent, control, 
or eradicate non-native and potential invasive spe-
cies are successfully hindering their spread, disper-
sal is limited due to new (i.e. geographic) barriers, 
or that a form of ‘saturation’ has been reached, i.e. 
enabling additional management possibilities to 
bolster native biodiversity (Watkins et  al. 2021). 
Such management interventions are crucial, yet 
difficult to implement as non-native aquatic mac-
roinvertebrate species are particularly hard to 
detect due to the hidden nature of life underwater. 
In the case of Denmark, due to the number of time 
series on a small area and the widespread species 
P. antipodarum, we found that only a low number 
of monitoring years is needed to identify all non-
natives. In both England and the DGL, which are 
both more species-rich, more monitoring years were 
needed. Thus, our results show that high monitor-
ing effort, i.e. many monitored sites, decreases the 
time needed to identify all non-native species in 
a specific region. High spatial monitoring cover-
age—evenly distributed regionally but also glob-
ally (Hughes et al. 2021)—will result in non-native 
species and their spread more rapidly being identi-
fied. While our analysis only focused on riverine 
ecosystems, we believe that monitored lakes could 
on the one hand result in more non-native species 
being identified within each region, but also lead to 
a decrease in monitoring years required due to more 
sites being monitored over time.

Conclusion

Long-term data across wide geographic scales play a 
critical role in ecology and conservation biology as 

it shows its usefulness in deciphering a realistic pic-
ture of the status and trends of native and non-native 
species accumulation across geographical scales. 
Overall, long-term macroinvertebrate monitoring 
data could become critical in enabling invasion biolo-
gists and authorities-stakeholders to detect invasions 
early and apply rapid responses. Here, we showed a 
consistently increasing trend across macroinverte-
brate groups, which was supported by the observed 
increase in new records and number of invaded time 
series. Of particular interest is the number of moni-
toring sites needed to collect sufficient monitoring 
years before all non-native species are identified. As 
more introductions are expected worldwide, continu-
ous and widespread monitoring efforts will be needed 
to quantify the effectiveness of management interven-
tions, and to propose priority areas for control and 
mitigation of plausible impacts aiming at the protec-
tion of biodiversity.
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