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regard to cryptogenic species because these islands 
have been anthropogenically connected since before 
recorded history. Here, we use population genetic and 
phylogeographic tools in an attempt to determine the 
origin of Eleutherodactylus johnstonei, a frog spe-
cies with a potentially widespread introduced range 
and whose native range within the Lesser Antilles 
is unknown. Based on elevated estimates of genetic 
diversity and within-island geographic structure not 
present elsewhere in the range, we identify Mont-
serrat as the native island of E. johnstonei. We also 
document two major clades within E. johnstonei, 
only one of which is the primary source of introduced 
populations throughout the Americas. Our results 

Abstract Cryptogenic species are those whose 
native and introduced ranges are unknown. The extent 
and long history of human migration rendered numer-
ous species cryptogenic. Incomplete knowledge 
regarding the origin and native habitat of a species 
poses problems for conservation management and 
may confound ecological and evolutionary studies. 
The Lesser Antilles pose a particular challenge with 
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demonstrate the utility of genetic tools for resolving 
cryptogenic species problems and highlight E. john-
stonei as a potential system for understanding differ-
ences in invasive potential among sister lineages.

Keywords Caribbean · Anura · Biogeography · 
Invasive species · Conservation genetics · 
Cryptogenic species · Oceanic islands

Introduction

Anthropogenic activity has generated novel com-
munities globally through the transport of species 
outside of their native ranges (Vitousek et al. 1996). 
Such exotics sometimes spread rapidly following 
their initial introduction and have the potential to dis-
rupt existing ecological networks, thereby posing crit-
ical challenges for natural ecosystems (Sanders et al. 
2003; Ehrenfeld 2010). Unfortunately, the largely 
undocumented and widespread nature of human-
mediated colonization events means that introduc-
tions may remain unrecognized, especially those that 
occurred earlier in recorded human history or in pre-
history (Carlton 1996; Saltonstall 2002). This has led 
to cryptogenic species, those for which clear evidence 
of being either introduced or native to a given locality 
is lacking (Carlton 1996). Inconsistent or inaccurate 
classification of species as either introduced or native 
complicates not only conservation decision-making 
but also studies of biogeographic patterns and com-
munity ecology.

In the absence of definitive historical data, phylo-
geographic and population genetic analyses can pro-
vide useful tools for differentiating native and intro-
duced ranges (Saltonstall 2002; Stefaniak et al. 2012; 
Cristescu 2015). Because of founder effects, invasive 

populations generally exhibit lower genetic variation, 
exhibit significantly negative Tajima’s D due to recent 
population expansion, have more recent divergence 
dates, and are less likely to be genetically structured 
compared to populations in their native range (Tsutsui 
et al. 2000; Sakai et al. 2001; Puillandre et al. 2008; 
but see Kolbe et  al. 2004). Yet, assertions about the 
native or introduced status of local populations, par-
ticularly those lacking historical records or in poorly 
studied regions, are often not rigorously tested (Carl-
ton 1996). The Lesser Antilles pose a particular chal-
lenge for accurately assessing species distributions 
because of its the network of anthropogenically-inter-
connected insular systems in close geographic prox-
imity with human influence that predates recorded 
history and a complicated colonial history (Wing 
1989; Olson and López 2008; Camargo et  al. 2009; 
Giovas 2019; Napolitano et  al. 2019; Nägele et  al. 
2020).

The greater Caribbean was colonized by humans 
in successive waves dating back to approximately 8.5 
Ka (Napolitano et al. 2019; Nägele et al. 2020). Dis-
persal and trade routes between islands led to a his-
tory of extensive anthropogenic connectivity in the 
region that continues to the present day. These issues 
are particularly acute in the Lesser Antilles, a chain 
of oceanic islands in the southeastern Caribbean. 
Although several introductions are known (Nellis 
and Everard 1983; Denham 1987; Kaiser 1992, 1997; 
Cooper and Lindsay 2008), the complex history of 
the region has led to a large number of cryptogenic 
species and species whose provenance is presumed 
without evidence. For example, the native ranges 
of Eleutherodactylus martinicensis (Martinique 
frog; Kaiser 1992), Chelonoidis carbonarius (red-
footed tortoise; Censky 1988), Iguana iguana (green 
iguana; Lazell 1973; Breuil 2013), Procyon racoons 
(Pons et al. 1999; Helgen and Wilson 2003), and Ara 
macaws (Olson and López 2008) are historically dis-
puted. As a consequence, the biogeographic histories 
of many Lesser Antillean taxa are still incompletely 
understood, and conservation resources may be inad-
vertently directed toward non-native species. Here, 
we study the evolutionary history of the Lesser Antil-
lean frog, Eleutherodactylus johnstonei, whose native 
range throughout the Lesser Antilles is inconsistently 
defined in the literature (Kaiser et  al. 1994; Kaiser 
1996, 1997; Powell et al. 2005).
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Eleutherodactylus johnstonei is a small, direct-
developing frog distributed throughout the Carib-
bean and the mainland Americas. Because the spread 
of introduced populations of E. johnstonei within 
the Lesser Antilles was poorly documented, a high 
degree of uncertainty remains over its precise native 
and introduced range apart from the most recent 
introductions. Historical records indicate that E. 
johnstonei is native to the Lesser Antilles, although 
it is unknown which specific island or islands com-
prise its original range (Schwartz 1967; Kaiser et al. 
1994; Kaiser 1996, 1997). Introductions have been 
documented for Jamaica, Bermuda, Trinidad, and the 
Central and South American mainland (Kaiser 1997; 
Kaiser et al. 2002; Ernst et al. 2011). Even the type 
specimens of the species, on Grenada, are known to 
be introduced (Barbour 1914). Still, previous authors 
have disagreed about the status of E. johnstonei on 
several other Lesser Antillean islands, such as Sint 
Eustatius (Powell et  al. 2005), Barbuda (Auffenberg 
1958; Lynch 1966), St. Lucia, and Barbados (Bar-
bour 1914; Kaiser 1997). Kaiser (1997) proposed the 
islands of Montserrat, Nevis, St. Kitts, and St. Lucia 
as the potential native range based on their wide-
spread distribution and high population abundances 
across natural habitats.

Determining the islands where E. johnstonei is 
native or introduced is important for making informed 
management decisions regarding this species and for 
accurately understanding the biogeographic history of 
the region. The introductions of some Eleutherodac-
tylus species have been associated with declines in 
native invertebrate populations and competition with 
native frogs that can disrupt ecosystem processes 
(Hedges 1993; Sin et al. 2008; Choi and Beard 2012). 
Additionally, the cryptogenic status of E. johnsto-
nei complicates identification of any biogeographic 
breaks between terraranan faunas in the Lesser Antil-
les that originated in the Greater Antilles (genus 
Eleutherodactylus) and those that originated in South 
America (genus Pristimantis; Heinicke et  al. 2007). 
We inferred the evolutionary history of E. johnstonei 
throughout most of its extant range using phylogeo-
graphic and population genetic methods. In particu-
lar, we aimed to clarify its putative native range and 
the potential origins of introduced populations. We 
discuss our results in the context of their implications 
for clarifying regional biogeographic breaks, inform-
ing conservation decisions, and understanding the 

ecological history of a region for which cryptogenic 
species pose a substantial challenge.

Materials and methods

Sampling

We sampled 238 E. johnstonei using a combination of 
field collected and museum accessioned tissues. We 
collected either liver or toe clips from 230 E. johnsto-
nei during two periods, 1984–2010 and 2018–2021. 
Tissues were preserved in the field using RNAlater, 
62% ethanol rum, pure ethanol, or by freezing. All 
tissues not initially preserved in RNAlater were later 
transferred to pure ethanol. To supplement our sam-
pling, we included three samples from the California 
Academy of Sciences (San Francisco, California; 
CAS 231182-231185), two from the Yale Peabody 
Museum of Natural History (New Haven, Connecti-
cut; YPM 013073 and 013074), and three from the 
Universidade de São Paulo (São Paulo, Brazil; MTR 
33339-33341). Our sampling covers the majority 
of the putative native and introduced ranges of E. 
johnstonei throughout the Caribbean, except for the 
islands of Barbuda, Marie-Galante, and Anguilla 
(Fig.  1). Although previously introduced to Domi-
nica, populations of E. johnstonei have since been 
extirpated from the island and were therefore not 
included in this study (Daniells et al. 2008). Finally, 
we sequenced one individual each of E. martinicen-
sis, E. barlagnei, and E. pinchoni as outgroups.

We salt extracted whole genomic DNA from 
all tissues. We then sequenced two mitochondrial 
gene fragments, 448  bp of 12S ribosomal RNA 
(12S; Kocher et al. 1989) and 711 bp of cytochrome 
b (Cytb; Moritz et  al. 1992). We used a touchdown 
cycler protocol for both mitochondrial markers with 
conditions that included initial denaturation at 94 °C 
for 2 min, followed by 9 cycles at 94 °C for 45 s, the 
touchdown from 53–45  °C for 30  s (decreasing by 
1 °C / cycle), and 72 °C extension for 1 min, followed 
by 26 cycles of 94 °C for 45 s, a 44 °C annealing step 
for 30 s, and 72 °C extension for 1 min. We purified 
amplicons using ExoSAP-IT (Applied Biosystems), 
performed cycle sequencing on cleaned amplicons 
using our original primers and BigDye v3.1, cleaned 
our final sequencing product using Sephadex G-50, 
and ran the samples on an ABI 3730 automated DNA 
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sequencer (Applied Biosystems). An additional four 
samples from Barbados were previously sequenced 
for a 600-bp fragment of 16S (Genbank: OM914614-
OM914617) using the primers 16L9 and H9 (Weiss 
and Hedges 2007). However, those samples have 
since been exhausted and therefore we could not gen-
erate sequence data for 12S and Cytb.

To assess nuclear diversity, we selected 24 indi-
viduals from throughout the range, for which we 
sequenced six additional loci: 725  bp of calcium 
sensing receptor (Casr), 673 bp of glutamate metabo-
tropic receptor 2 (Grm2), 524  bp of KIAA2013, 
467  bp of mediator complex subunit 13 (Med13), 
538  bp of tyrosinase (Tyr), and 546  bp of vacuolar 
protein sorting protein 18 (Vps18; Supplementary 
Information Table  S1). We amplified Tyr (Bossuyt 
and Milinkovitch 2000) using an initial denaturation 
at 95  °C for 4 min, followed by 35 cycles of 95  °C 
denaturation for 30 s, 60 °C annealing for 45 s, and 

72 °C extension for 1 min, with a final extension of 
72 °C for 10 min. For all other genes, we performed 
a nested-PCR approach following (Shen et al. 2013), 
modified per Bell et  al. (2019). In brief, to reduce 
overall genomic complexity, we performed the first 
PCR using F1 and F2 primers (Supplementary Infor-
mation Table  S1) as follows: initial denaturation at 
94  °C for 4  min, followed by 35 cycles of denatur-
ing at 94 °C for 45 s, annealing at 45 °C for 40 s and 
extension at 72 °C for 2 min, and a final extension of 
72 °C for 10 min. We then performed a second PCR 
reaction using the 1 μL undiluted product from the 
first reaction, F2 and R2 primers, and a 50 °C anneal-
ing temperature. All other reaction conditions were 
identical between PCRs. Nested PCR amplicons were 
sequenced using F2 and R2 primers. As with mito-
chondrial amplicons, we cleaned our nested PCR 
product with ExoSAP-IT followed by cycle sequenc-
ing, cleaning with Sephadex G-50, and sequencing on 
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Fig. 1  Sampling map of E. johnstonei included in this study 
throughout the Lesser Antilles. All Lesser Antillean islands 
are shown as single sampling localities for simplicity. Non-
Lesser Antillean sampling localities are depicted separately in 
right-insets. The left-inset elevation map depicts the island of 
Montserrat, showing within island sampling localities. Within-

island sampling localities for other Lesser Antillean islands are 
available in Supplementary Information (Fig S1; Table S3). All 
site colors correspond to the mitochondrial clades (see Fig. 2). 
Islands with a native congeneric Eleutherodactylus species are 
denoted by an asterisk (*) and a native Pristimantis species by 
double asterisks (**)
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an ABI 3730. We aligned all reads for each individual 
and checked chromatograms by eye in Sequencher. 
Next, we aligned all sequences using the MUSCLE 
algorithm (Edgar 2004) in AliView (Larsson 2014). 
All sequence data were accessioned in Genbank 
(Genbank: OM928065-928414, 943188-943424).

Phylogenetic reconstruction and dating

We estimated a mtDNA phylogeny for E. johnsto-
nei using Bayesian inference as implemented in the 
program BEAST 2 (Bouckaert et  al. 2014). To esti-
mate divergence dates and relationships with closely 
related species, we either generated or compiled from 
Genbank publicly available 12S and Cytb sequence 
data for E. martinicensis (EF493343), E. pinchoni 
(EF493734), E. amplinympha (12S only: EF493732), 
E. barlagnei (EF493735), and E. cooki (EF493539 
and HQ831648). For E. johnstonei, we included one 
representative sequence from each unique haplotype. 
Using PartitionFinder 2 (Lanfear et  al. 2017), we 
determined that the best fitting evolutionary models 
were GTR + Γ for 12S, and K80 + I for Cytb codon 
position 1, HKY + Γ for position 2, and TrN + I for 
position 3. We applied a birth–death tree prior and 
a random local clock with a log normally distrib-
uted common node calibration for the divergence of 
E. martinicensis and E. cooki (16.96 Ma; 11.6-24.4), 
originally estimated using five fossil and geological 
calibrations (Heinicke et  al. 2007). The birth–death 
prior has been shown to be generally robust to 
mixed datasets including both species and popula-
tion level data (Ritchie et al. 2017). We ran a Markov 
Chain Monte Carlo (MCMC) sampling protocol for 
20,000,000 generations and sampled every 1000 gen-
erations, discarding 10% of the sample as burn-in. To 
assess convergence, we visually examined likelihood 
traces and effective sample sizes (ESS) of parameters 
in Tracer v1.6.0 (Rambaut et al. 2014).

We constructed nuclear genes trees for each of our 
sequenced nuDNA loci in BEAST 2. Because individ-
ual gene trees may conflict, we also inferred a concat-
enated gene tree using all six nuclear loci. We deter-
mined that the best fitting evolutionary models were 
GTR + I for Casr and Vps18, HKY for Grm2, K80 for 
Kiaa2013, SYM + I for Tyr, and HKY + I for Med13. 
For each tree, we ran a MCMC for 10,000,000 gener-
ations, applying a coalescent exponential population 

prior, and sampled every 1,000 generations, discard-
ing 10% of samples as burn-in. We assessed conver-
gence as with our mitochondrial phylogenies.

Genetic diversity

To assess mitochondrial genetic diversity, we calculated 
nucleotide diversity (π), haplotype diversity (h), and 
Tajima’s D (Tajima 1989) for each island using pegas 
(Paradis 2010) in R v3.5.1 (R Core Team 2018). We 
determined significant deviations from zero assuming 
rescaled Tajima’s D is beta distributed (Tajima 1989). 
Additionally, we calculated uncorrected (Dxy) and 
net sequence divergence (Da) between major clades. 
Because our primary sampling on Barbados included 
only one individual, we report island-specific mito-
chondrial diversity statistics using previously generated 
16S sequences instead of 12S and cytb (see above). For 
Tajima’s D, only islands with at least four samples were 
included. For nuclear data, we phased each locus using 
PHASE (Stephens et al. 2001) and calculated combined 
genetic diversity indices for each major mitochondrial 
lineage. Finally, we constructed minimum-spanning 
networks for nuclear haplotypes using POPART (Leigh 
and Bryant 2015). We excluded individuals with 
incomplete data for each dataset.

Body size measurements

To test for reported differences in body size across 
islands (Powell et al. 2005), we measured body size as 
snout–urostyle length (SUL) in the field and from pre-
served specimens at the Museum of Vertebrate Zool-
ogy, University of California (Berkeley, California) and 
the National Museum of Natural History, Smithsonian 
Institution (Washington, District of Columbia) from 
the islands of Antigua, Barbuda, Jamaica, Montserrat, 
Nevis, Saba, Saint Kitts, Saint Lucia, Saint Vincent, 
Sint Eustatius, and Sint Maarten. In total, we measured 
98 females and 582 males (Supplementary Informa-
tion Table S2). For each sex, we tested for differences 
between major clades of E. johnstonei using Welch’s 
t-test. Although we report summary statistics for body 
size from Barbuda, those individuals were excluded 
from comparative tests because we lacked genetic data 
from that island.
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Results

Phylogenetic inference and divergence dating

We found strong support for two distinct mitochon-
drial clades of E. johnstonei (Fig.  2). One clade 
comprises the western Lesser Antilles, including the 
islands of Montserrat, Nevis, Saba, Saint Kitts, Sint 
Eustatius, and Sint Maarten. The other clade com-
prises the eastern Lesser Antillean islands of Antigua, 
Guadeloupe, Martinique, Saint Lucia, Saint Vincent, 
Grenada, and Barbados, as well as the introduced 
populations on Jamaica, Curaçao, Trinidad, and the 

mainland. The introduced population of Bermuda 
includes both mitochondrial clades.

We estimated that the basal divergence date for E. 
johnstonei was 1.94 Ma [0.96–2.94 Ma] and that the 
time to most recent common ancestor was 0.15  Ma 
[0.04–0.28  Ma] for the eastern clade and 0.51  Ma 
[0.24–0.81  Ma] for the western Lesser Antillean 
clade. Within the western clade, the Montserratian 
populations are split between the northern and south-
ern regions of the island, roughly divided by the Cen-
tre Hills. Additionally, all individuals from Nevis, 
Saba, Saint Kitts, Sint Eustatius, and Sint Maarten are 
nested within the Montserrat clade, and haplotypes 

Central Montserrat,
NW Lesser Antilles, 
& Bermuda

Northern
Montserrat

Southern
Montserrat

SE Lesser Antilles,
Jamaica, Bermuda, 
& Mainland

E. martinicensis
E. amplinympha

E. barlagnei
E. pinchoni
E. cooki

0 Ma51015

Miocene (MI) PL PE

20

Fig. 2  Mitochondrial (12S, cytb) BEAST time tree for E. 
johnstonei and closely related species sampled in this study. 
Major clades are colored and correspond to sampling localities 
in Fig. 1. Each haplotype is represented by a single sequence; 
for ease of viewing, individual haplotypes are not labelled. 

Node bars depict 95% intervals of divergence time estimate, 
time scales are divided by geological epoch, and nodes with 
posterior probabilities greater than 0.9 are marked with black 
circles and those greater than 0.8 with grey circles
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from these islands occur on the central-western coast 
of Montserrat. However, only the northern Mont-
serrat clade is strongly supported (posterior prob-
ability = 0.998). We did not find support for any geo-
graphic structure within the eastern clade. Support for 
mitochondrial clades was mixed across nuclear loci 
(Fig. 3). Nevertheless, our concatenated nuclear tree 
supported the reciprocal monophyly of the western 
and eastern clades (Fig. 3). Unlike our mitochondrial 
phylogeny, we did not find support for geographic 
nuclear structure within the western clade.

We also found significant support for the over-
all monophyly of E. johnstonei. We did not find 
support for the previous phylogenetic hypothesis 
that E. johnstonei is sister to the clade consisting 
of E. amplinympha and E. martinicensis (Hedges 
et  al. 2008). The latter is another species with an 
ambiguous native range (Kaiser 1992). We esti-
mated the mitochondrial divergence time between 
all Lesser Antillean Eleutherodactylus as 10.84  Ma 
[6.09–15.97  Ma]. Finally, we estimated the diver-
gence time between E. pinchoni and E. barlagnei as 
1.96 Ma [0.97–3.06 Ma].

Genetic diversity

We found low mitochondrial nucleotide (π) and hap-
lotype diversity (h) throughout most islands ( π = 
0.001, h = 0.496; Table  1). Only Montserrat exhib-
ited both elevated nucleotide and haplotype diversity 
(π = 0.006, h = 0.958). Mitochondrial genetic diver-
sity was greater in the western Lesser Antillean clade 
(π = 0.015, h = 0.764) compared to the eastern clade 
(π = 0.001, h = 0.513). Between the two major mito-
chondrial clades, uncorrected sequence divergence 
(Dxy) was 0.040, and net sequence divergence (Da) 
was 0.038. Per island Tajima’s D ranged from -7.57 
to 1.235. We found that Tajima’s D was significantly 
less than zero for Antigua, Barbados, Bermuda, Gre-
nada, Martinique, Montserrat, St. Kitts, St. Lucia, and 
St. Maarten. No islands had Tajima’s D significantly 
greater than zero for mitochondrial DNA.

Body size

We found no significant difference in female 
body size between mitochondrial clades 
(t = 0.474, df = 36.89, p = 0.638; western clade: 
mean = 28.6  mm, range = 21.5–35.6  mm; eastern 

clade: mean = 28.2  mm, range = 21.5–34.1  mm; 
Fig.  4; Supplementary Materials Table  S2). West-
ern Lesser Antillean clade males were signifi-
cantly smaller on average than eastern clade males 
(t = 12.09, df = 535.82, p < 0.001), although the two 
groups did not differ in maximum SUL (western 
clade: mean = 19.1 mm, range = 12.2–26.0 mm; east-
ern clade: mean = 21.6 mm, range = 15.3–26.4 mm).

Discussion

Resolving the cryptogenic species problem

Our data strongly support Montserrat as the native 
island of E. johnstonei. Montserrat is both the most 
genetically diverse population and the only island that 
exhibits within-island geographic structure. Indeed, 
Montserrat and Bermuda were the only islands that 
exhibited elevated mitochondrial nucleotide diversity 
(Table 1). However, the Bermuda population, which 
consists of individuals from both the western and 
eastern mitochondrial clades, did not show elevated 
haplotype diversity and is of known introduced ori-
gin (Pope 1917; Kaiser 1997). Additionally, molecu-
lar clock dating estimated that the time of most recent 
common ancestor of Montserrat E. johnstonei was 
0.24–0.81  Ma, far exceeding the earliest estimated 
human colonization of the Lesser Antilles (Napoli-
tano et  al. 2019; Nägele et  al. 2020). Our inference 
that E. johnstonei is native to Montserrat is further 
supported by their widespread distribution and high 
abundances in natural habitats on the island (Kaiser 
1997). Among the islands historically suggested as 
a potential native range for E. johnstonei (i.e., Mont-
serrat, Nevis, St. Eustatius, St. Kitts, and St. Lucia), 
because they lack another native Eleutherodactylus 
species and records of introduction (Kaiser 1997), 
Montserrat is the only island for which our genetic 
data also strongly support endemism.

All E. johnstonei from the other western Lesser 
Antillean islands of St. Kitts, Nevis, Saba, St. Eus-
tatius, and St. Maarten were nested within the Mont-
serrat clade. Historically, whether these individuals 
definitively represent anthropogenic introductions 
or recent natural dispersal events has been unclear. 
Members of the western clade have established 
known and viable introduced populations, such as 
that on Bermuda (Pope 1917). Populations from St. 
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Kitts, Nevis, Saba, St. Eustatius, and St. Maarten also 
lack genetic diversity or structure that would be indic-
ative of long-term endemism. For example, on both 
Saba and St. Eustatius, all individuals were geneti-
cally identical for the genes we sequenced, strongly 
supporting the introduction hypothesis. Additionally, 
the central Montserrat-western Lesser Antilles clade 
appears to correspond to the area around the former 
city of Portsmouth, the island’s major harbor prior to 
the 1995 Soufrière Hills eruption that destroyed the 
city, and thus a likely source of stowaway frogs. Con-
sequently, we suggest that E. johnstonei was intro-
duced to St. Kitts, Nevis, Saba, St. Eustatius, and St. 
Maarten from Montserrat.

Although our data support Montserrat as the native 
island of E. johnstonei, the widespread eastern clade 
does not appear to derive from Montserratian popu-
lations. Rather, the eastern clade was reciprocally 
monophyletic with the western Lesser Antillean clade 
in both our mitochondrial and multi-locus nuclear 
phylogenies (Figs. 2, 3). Mitochondrial diversity was 
uniformly low across all sampled eastern islands, 
Tajima’s D was often significantly less than zero, and 
no eastern islands exhibited within-island population 
structure. Thus, our data support the hypothesis that 
E. johnstonei was introduced to all sampled islands 
within the clade, and it does not appear that any 
island we sampled is the native range of the eastern 
clade. However, we caution that our inference of the 
introduced status of E. johnstonei on St. Lucia, histor-
ically considered as likely to be native (Kaiser 1997), 
is based on geographically limited sampling. Never-
theless, we propose that the eastern clade of E. john-
stonei is likely native to one of the unsampled islands 
in this study: Anguilla, Barbuda, or Marie-Galante. 
Frogs on Anguilla are largely restricted to local 
gardens and are not found in native habitats (Kai-
ser 1997). The species only appears in records from 
Marie-Galante after 1970 and is similarly restricted to 
degraded habitats (Kaiser 1997). Thus, it is unlikely 

that the species existed on either of these islands prior 
to human settlement. Alternatively, fossil evidence 
confirms the precolonial presence of E. johnstonei on 
Barbuda (Auffenberg 1958). Whether this represents 
an anthropogenic introduction is unclear, although it 
does support the presence of the species on Barbuda 
prior to European settlement. Further sampling from 
these islands is needed to determine the source of the 
eastern clade of E. johnstonei.

Regional biogeography

Improved inferences on the status of E. johnstonei 
throughout its extant range advances our understand-
ing of the biogeographic history of the region. A 
refined view of endemism in E. johnstonei demon-
strates that members of the genus Eleutherodactylus 
are native to the northern Lesser Antilles along a con-
tinuous group of islands from Montserrat to Marti-
nique. The modern Lesser Antilles consists primarily 
of Miocene or younger volcanoes (Briden et al. 1979; 
Bouysse 1984; Maury et al. 1990; Roobol and Smith 
2004). However, the northern Lesser Antilles as far 
south as Montserrat may have constituted an emergent 
landmass in the late Eocene, followed by a period of 
submergence in the Oligocene and Miocene, and re-
emerged during the Miocene and Pliocene (Philippon 
et al. 2020). Correspondingly, we estimated the crown 
group of Lesser Antillean Eleutherodactylus diverged 
6.09–15.97 Ma. Estimated in situ diversification time 
between E. pinchoni and E. barlagnei on Guadeloupe 
(0.97–3.06 Ma) is substantially younger than the age 
of the island itself. Compared with co-distributed 
herpetofauna, the divergence time of all Lesser Antil-
lean Eleutherodactylus is similar to those estimated 
for Pholidoscelis pleii group ground lizards (~ 5 Ma; 
Tucker et  al. 2017) and Sphaerodactylus fantasticus 
complex least gecko (5.4–6.6 Ma; Thorpe et al. 2008) 
but younger than estimated times for bimaculatus 
series anoles (16.8–27.8 Ma; Thorpe et al. 2018).

The inference that E. johnstonei is probably 
introduced on St. Lucia, albeit based on geographi-
cally limited sampling, suggests that the island does 
not have an extant native species of Eleutherodac-
tylus. St. Lucia sits at the boundary between islands 
inhabited by native Eleutherodactylus that colo-
nized from the Greater Antilles and islands inhab-
ited by native Pristimantis that colonized from 
South America (Heinicke et  al. 2007). Previously, 

Fig. 3  Minimum-spanning networks and nuclear gene trees 
of six nuclear loci (Casr, Grm2, Kiaa2013, Med13, Tyr, and 
Vps18), as well as concatenated nuclear tree of six loci. Each 
hash denotes a single polymorphism for haplotype networks. 
For trees, nodes with greater than 0.8 posterior probability are 
denoted by black circles. All colors correspond to major mito-
chondrial lineages (see Fig.  2). Labeled western and eastern 
clades on our concatenated nuclear tree correspond with major 
mitochondrial clades

◂



2716 M. L. Yuan et al.

1 3
Vol:. (1234567890)

the biogeographic break between Eleutherodac-
tylus and Pristimantis in the Lesser Antilles was 
unclear due to the unresolved native distribution 
of E. johnstonei. Assuming a stepping-stone model 

of colonization, it is possible that neither genus of 
terraranan frogs had successfully dispersed to the 
island before E. johnstonei was introduced. The 
transitions between Greater Antillean and South 
American derived faunas in the Lesser Antilles 
appear to vary across taxonomic groups (Crews 
and Esposito 2020). For example, Anolis lizards 
(Thorpe et  al. 2018) and selenopid spiders (Crews 
et al. 2010) are divided by the Martinique Passage, 
whereas South American Thecadactylus geckos 
span the entirety of the Lesser Antilles (Bergmann 
and Russell 2007). The division between Eleuthero-
dactylus and Pristimantis by the Saint Lucia Chan-
nel is also present in teiine lizards (Tucker et  al. 
2017) and bananaquit birds (Seutin et  al. 1994). 
The highly variable biogeographic breaks across the 
Lesser Antilles is likely a consequence of random, 
over-water dispersal being the mechanism respon-
sible for colonization of the region (Hedges 2006; 
Crews and Esposito 2020; Ali and Hedges, 2021).

Table 1  Mitochondrial diversity summary statistics for each 
sampled island and the mainland (Venezuela). Historical and 
inferred endemism status based on our results are reported in 
addition to sample size (N), number of sampling localities, 
nucleotide diversity (π), haplotype diversity (h), Tajima’s D, 

and significance values for D assuming a beta distribution after 
rescaling. Historical status based on literature review and clas-
sification by local authorities: introduced – recorded introduc-
tion, disputed – contradictory assessments, unknown – lack of 
assessment or presumed native

1 Data from Barbados based on 16S sequences
Significant p-values for Tajima’s D are bolded

Island Historical status Inferred status N Localities π h D p− value

Antigua Unknown Introduced 5 2 0.0013 0.900 − 7.571  < 0.001
Barbados1 Disputed Introduced 4 4 0.0014 0.833 − 9.403  < 0.001
Bermuda Introduced Introduced 15 3 0.0085 0.600 − 4.441  < 0.001
Curacao Introduced Introduced 2 1 0.0011 1.000 NA NA
Grenada Introduced Introduced 8 9 0.0011 0.536 − 5.458  < 0.001
Guadeloupe Introduced Introduced 9 3 0.0009 0.500 1.235 0.259
Jamaica Introduced Introduced 10 2 0.0008 0.689 0.932 0.394
Mainland Introduced Introduced 3 1 0.0006 0.667 NA NA
Martinique Disputed Introduced 23 6 0.0005 0.357 − 4.078  < 0.001
Montserrat Unknown Native 40 7 0.0060 0.958 − 3.717  < 0.001
Nevis Unknown Introduced 7 3 0.0005 0.288 − 1.237 0.241
Saba Unknown Introduced 14 6 0 0 NA NA
St. Eustatius Disputed Introduced 20 4 0 0 NA NA
St. Kitts Unknown Introduced 45 7 0.0006 0.572 − 3.695  < 0.001
St. Lucia Unknown Introduced 7 3 0.0005 0.286 − 5.858  < 0.001
St. Martin Disputed Introduced 17 3 0.0004 0.331 − 1.843 0.042
St. Vincent Disputed Introduced 9 2 0.0005 0.417 − 0.583 0.632
Trinidad Introduced Introduced 3 1 0 0 NA NA

***
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Conservation implications

The Lesser Antilles represent an important biologi-
cal hotspot due to the high number of island endemics 
in the region (Smith et al. 2005; Hedges et al. 2019). 
Extensive anthropogenic activity has facilitated dis-
persal of introduced species throughout these islands 
dating back to prehistory (Wing 1989; Kaiser 1992, 
1997; Olson and López 2008). However, historical 
biodiversity records in the region are poor, making it 
difficult to ascertain the native ranges of several spe-
cies (Lazell 1973; Censky 1988; Kaiser 1992; Olson 
and López 2008; Breuil 2013). This not only com-
plicates conservation and management efforts in the 
region but also our understanding of biogeographic 
history and community assembly. Our results sup-
porting Montserrat as the native island of one of two 
E. johnstonei primary lineages demonstrates the util-
ity of basic genetic analyses for resolving issues of 
disputed endemism.

On its native island, E. johnstonei is abundant 
(personal observation) but likely experienced his-
torical population declines due to active volcanism 
similar to those observed in co-distributed vertebrates 
(Hilton et al. 2003; Dalsgaard et al. 2007; Muñoz and 
Hewlett 2011). Our data indicate that the southern 
Montserrat clade represented a substantial portion of 
genetic diversity within E. johnstonei. Unfortunately, 
the 1995 Soufriere Hills eruption that destroyed the 
southern two-thirds of the island (spanning both the 
Southern and Central clades of E. johnstonei) likely 
led to a loss of this diversity. All individuals from 
Soufriere in our study were collected prior to the 
eruption, and no known individuals have been col-
lected since. Despite what were certainly dramatic 
population declines, if not local extinctions, some 
portion of these evolutionary lineages may remain 
extant in the Centre Hills complex and forest frag-
ments in southern Montserrat. Surveys for the co-
distributed Plymouth anole, Anolis lividus, in 2010 
failed to find any individuals in the area affected by 
the eruption (Muñoz and Hewlett 2011). However, A. 
lividus did recolonize the region by 2018 (Jung et al., 
unpublished data) and thus E. johnstonei may simi-
larly have since recolonized the region. Future moni-
toring of population recovery or recolonization will 
improve our understanding of evolutionary responses 
to volcanism (Carson et  al. 1990; Juan et  al. 2000; 
Marske et al. 2007).

Our results also suggest that the eastern clade of 
E. johnstonei is an adept colonizer of anthropogeni-
cally disturbed habitats (Kaiser 1997; Rödder 2010). 
In particular, our results indicate that the species 
is likely not native to the Lesser Antillean islands 
of Antigua, Guadeloupe, Martinique, St. Lucia, St. 
Vincent, Grenada, and Barbados. Beyond the Lesser 
Antilles, the eastern clade is also the source of intro-
ductions to Bermuda, Curacao, Trinidad, Jamaica, 
and the South American mainland, where it contin-
ues to spread (Kaiser et al. 2002; Ortega et al. 2005; 
Rödder 2010; but see Ernst et  al. 2011). The west-
ern clade is restricted to Bermuda and the Lesser 
Antillean islands immediately west of Montserrat 
that otherwise lack native amphibians, whereas the 
eastern clade has established populations on islands 
with native terraranan species and, in some cases, is 
associated with their declines (Hedges 1993; Kai-
ser 1997). However, E. johnstonei failed to estab-
lish a viable population on Dominica where two 
other congeners are present: E. martinicensis and E. 
amplinympha (Daniells et  al. 2008). The respective 
distributions of the two clades of E. johnstonei sug-
gest a greater ability to compete with congeners by 
the eastern clade. Additionally, males of the eastern 
clade are larger on average, which may result from 
increased fitness in introduced populations (Fig.  4). 
Suggestions indicate that invasive propensity may be 
related to genetic factors or greater plasticity (Rich-
ards et  al. 2006; Dlugosch et  al. 2015). Thus, com-
parisons between the two clades of E. johnstonei may 
shed light on the factors leading to invasion poten-
tial, particularly using the mixed-origin population 
of Bermuda. Eleutherodactylus johnstonei is also 
a carrier of Batrachochytrium dendrobatidis (Hud-
son et  al. 2019), a fungal pathogen associated with 
global amphibian population declines (Rosenblum 
et  al. 2010). The potential ability of introduced spe-
cies to spread novel diseases poses additional risks to 
susceptible native species (Lymbery et al. 2014; Vil-
cinskas 2015). Therefore, the secondary spread of E. 
johnstonei from existing eastern clade populations is 
likely of concern.

There is some evidence that these two clades 
may represent distinct species. Our divergence esti-
mate between E. johnstonei clades is similar to that 
between the two sympatric species E. barlagnei and 
E. pinchoni. Additionally, we found reciprocal mono-
phyly in our concatenated nuclear tree. Although 
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females did not differ in body size, males of the 
eastern clade were on average larger than those of 
the western clade (Fig. 4). The sequence divergence 
between the two clades (3.8–4%) is twice the amount 
(~ 2%) found to separate interspecific from intraspe-
cific divergences in vertebrates (Johns and Avise 
1998). However, the mating calls of the two clades 
are superficially similar and may not present a prezy-
gotic barrier to mating (Kaiser 1992). We recom-
mend further research prior to any taxonomic action. 
In particular, the mixed population on Bermuda pre-
sents an opportunity to examine if the two clades are 
interbreeding.

Conclusion

Resolving the cryptogenic species problem not only 
improves conservation efforts but also our under-
standing of community ecology and biogeographic 
history. We demonstrated the utility of population 
genetic and phylogeographic inference for resolving 
ambiguous endemism in E. johnstonei by showing 
that the species is native to the island of Montserrat, 
where it exhibits elevated genetic diversity and geo-
graphic structure around the island’s volcanic ranges. 
By refining the range of E. johnstonei, we clarified a 
biogeographic break between Eleutherodactylus and 
Pristimantis at St. Lucia and that Eleutherodactylus 
frogs initially colonized the northern Lesser Antilles 
around the geologic emergence of their native islands. 
We also inferred two major clades representing west-
ern and eastern E. johnstonei, although we could not 
identify the source population of the eastern clade. 
Still, our findings suggest that the eastern clade is 
primarily responsible for widespread introductions 
and has established itself in communities with native 
competitors, whereas the western clade has not. 
Therefore, we highlight the utility of the system for 
understanding differential invasive potential among 
closely related lineages.
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