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Abstract Despite good recognition of distributions

and spread mechanisms of the three most invasive

trees in Europe (Prunus serotina, Quercus rubra and

Robinia pseudoacacia), their impacts on forest biodi-

versity are unevenly recognized. Most studies cover

only taxonomic alpha diversity, and only a single

study included functional and phylogenetic diversity.

Using a set of 186 study plots in western Poland we

assessed the impacts of these invasive tree species on

the alpha and beta taxonomic, functional and phylo-

genetic diversity of understory vascular plants. Alpha

diversity was higher in R. pseudoacacia forests and

lower in Q. rubra forests compared to mature native

forests. Compared to non-invaded plantations and

forests, alpha diversity was higher in P. sylvestris

plantations invaded by P. serotina, but lower in

invaded nutrient-poor P. sylvestris forests. Alien

species richness was higher and beta diversity was

lower in forests invaded by P. serotina or R.

pseudoacacia than in non-invaded forests. In contrast,

beta diversity was higher in Q. rubra forests than in

native forests. We proved that invaded forests differed

from non-invaded forests in species composition, but

not always with decreased alpha and beta diversity.

Impacts of particular invasive species also depended

on the reference ecosystem properties (here mature

native forests, which did not always have the highest

biodiversity), which is a source of inconsistency in

previous studies, usually referring to single native

ecosystem types.

Keywords Phylogenetic pairwise distance �
Functional richness � Exotic trees � Biodiversity �
Species richness � Biotic homogenization � Eco-

evolutionary naivety

Introduction

Invasive alien species are considered one of the most

important threats to native biodiversity (Richardson

1998; Mack et al. 2000; Vilà et al. 2011). However,

impacts of particular invasive species differ with

invader quantity (Kumschick et al. 2015; Pearse et al.

2019), the ability for habitat transformation (Corenblit

et al. 2014; Aerts et al. 2017; Castro-Dı́ez et al. 2019)
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and recipient community susceptibility to invasion

(Lonsdale 1999; Davis et al. 2000). Therefore, both

ecological success and impacts on native ecosystems

by invasive species are highly context-dependent

(Kumschick et al. 2015; Dyderski and Jagodziński

2019a; Sapsford et al. 2020).

Despite numerous studies on the impacts of inva-

sive alien species, most of them focused on the

taxonomic diversity of invaded ecosystems (Olden

et al. 2018). Even in cases of relatively well-

recognized invasive species in regions with good data

coverage, recognition of various aspects of biodiver-

sity affected by invasive species is uneven. Review of

studies on impacts of the three most frequent invasive

tree species in European woodlands (Wagner et al.

2017): Prunus serotina Ehrh., Quercus rubra L. and

Robinia pseudoacacia L. (Table 1) revealed that

among 71 impacts found, only one considered func-

tional diversity (Chabrerie et al. 2010) and one—

phylogenetic diversity (Piwczyński et al. 2016). We

also found 17 impacts on proportions of specialist and

generalist plant species connected with the filtering of

particular traits. In general, invaded stands hosted

fewer forest specialists (Woziwoda et al. 2014; Staska

et al. 2014; Šibı́ková et al. 2019) and more alien

species (Halarewicz and _Zołnierz 2014; Montecchiari

et al. 2020). However, in specific conditions trends

were different: e.g. in Berlin R. pseudoacacia forests

hosted fewer alien plant species in the understory than

native Betula pendula Roth. forests (Trentanovi et al.

2013), and in riparian forests P. serotina and R.

pseudoacacia supported the presence of forest spe-

cialists, as these invasive trees occurred in less-

disturbed sites within the study area (Terwei et al.

2016). Therefore, knowledge about the impacts of the

most frequent invasive trees in European woodlands

(Wagner et al. 2017) is scarce and requires a unified

assessment regarding multiple types of native

ecosystems.

We aimed to assess the impacts of three invasive

tree species on species composition and taxonomic,

phylogenetic and functional alpha and beta diversity

of understory vascular plant communities, in relation-

ship to the mature native forest ecosystems. We

hypothesized that the invasive tree species studied will

differ in impacts on species diversity and its mecha-

nisms. In detail, we assumed that invasive tree species,

due to habitat modification and increased availability

of nutrients, will not decrease alpha diversity, but will

decrease beta diversity of understory vegetation, by

promoting generalist species. We also assumed that

diversity of forest specialist species will be more

affected by invasive trees than other species.

Materials and methods

Species studied

We studied the effects of three invasive trees: Prunus

serotina, Quercus rubra and Robinia pseudoacacia,

introduced from the eastern part of North America. All

Table 1 Number of studies comparing particular aspects of understory plant diversity between alien- and native-species dominated

forests or along invasive species abundance gradients. Details and references-see Table S1

Biodiversity aspects analyzed P. serotina Q. rubra R. pseudoacacia

Positive No

impact

Negative Positive No

impact

Negative Positive No

impact

Negative

Taxonomic alpha diversity-

Shannon index

0 0 2 0 0 2 1 2 3

Taxonomic alpha diversity-species

richness

0 3 4 0 0 4 2 5 5

Taxonomic beta diversity 0 0 0 0 0 0 1 2 1

Alien species richness 3 1 0 0 1 0 1 2 5

Specialists-generalists (impact on

specialists)

3 0 3 1 0 4 1 0 7

Functional diversity 0 0 1 0 0 0 0 0 0

Phylogenetic alpha diversity 0 0 0 0 0 0 0 0 1
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of them were introduced as ornamental species in the

17th century and then used in forestry and for other

uses (Starfinger et al. 2003; Cierjacks et al. 2013;

Dyderski et al. 2020). Due to the high decomposition

rate of leaf litter, P. serotina was widely used as a soil

improver (Aerts et al. 2017; Horodecki and Jagod-

ziński 2017). P. serotina usually forms a dense shrub

layer, decreasing light availability (Muys et al. 1992;

Halarewicz and _Zołnierz 2014; Jagodziński et al.

2019).Q. rubra is a tall tree, growing faster than native

oaks and producing slowly decomposing leaf litter,

while also decreasing light availability (Dobrylovská

2001; Woziwoda et al. 2019; Dyderski et al. 2020). R.

pseudoacacia is a pioneer, fast-growing tree species,

increasing soil fertility due to its ability to fix nitrogen

(Rice et al. 2004; Cierjacks et al. 2013).

Study design

We used a set of 189 study plots (200 m2 rectangles)

established in Wielkopolski National Park (WNP; W

Poland; 52� 160 N, 16� 480 E; 7584 ha) and described

in detail in previous studies (e.g. Dyderski and

Jagodziński 2018, 2019b). WNP includes various

types of temperate forests, with mean annual temper-

ature of 8.4 �C and mean annual precipitation of

521 mm, for the years 1951–2010. Study plots are

systematically arranged, with nine plots in each of 21

blocks (Fig. 1), designed to assess natural spread of

the invasive tree species studied. In the center of each

study block is a plot within a monoculture of the

invasive species studied (in the case of P. serotina–P.

sylvestris monocultures with understories dominated

by P. serotina). Then, four additional plots were set up

off of the N, S, E and W sides of the central plot, nearly

outside the alien species monoculture, and another set

of four plots, located 30 m away from each of the four

additional plots. Three study plots (due to systematic

design) occurred in non-forest ecosystems and were

excluded from analyses (thus final n = 186).

We classified study plots into nine forest types

(Fig. 2), similarly as in Dyderski and Jagodziński

(2020). This division reflects the phytosociological

variability of invaded and uninvaded vegetation.

Fagus sylvatica dominated forest refers to Deschamp-

sio flexuose-Fagetum Schröder 1938, an acidophilous

beech forest with scarce understory. Quercus petraea-

dominated forest refers to Calamagrostio

arundinaceae-Quercetum petraeae (Hartman 1934)

Scamoni et Pass. 1959 acidophilous oak forest, with

co-dominance of Pinus sylvestris in the overstory.

Quercus-Acer-Tilia forest refers to Galio sylvatici-

Carpinetum (R. Tx. 1937) Obverd. 1957, a fertile Q.

petraea, Acer platanoides, A. pseudoplatanus, and

Tilia cordata dominated forest. Q. rubra dominated

forests refers to former Q. rubra plantations, replacing

natural Q. petraea and Quercus-Acer-Tilia forest

vegetation, while Robinia pseudoacacia dominated

forest refers to former R. pseudoacacia forests

replacing Quercus-Acer-Tilia forests. We divided

Pinus sylvestris forests into two groups: poor (occu-

pying mainly mesic sites of Leucobryo-Pinetum

(Libbert 1933) W. Mat 1962 and Calamagrostio

arundinaceae-Quercetum petraeae), and plantation

(on nutrient-rich soils, which replaced Galio sylvatici-

Carpinetum). In each of them we distinguished a

variant invaded by P. serotina, which spontaneously

colonized both types of forests.

We classified plots with more than 500 ind. ha-1 of

P. serotina[ 1.3 m tall, as invaded. We also distin-

guished Q. rubra or R. pseudoacacia forests, with[
25% (mostly[ 75%) of basal area, which originated

from former plantations.

Data collection

Within each study plot we recorded vascular plant

species and cover using a modified (Barkman et al.

1964), 9-degree Braun-Blanquet scale (r-single indi-

viduals, ? - few individuals\ 1% cover, 1 –\ 5%

cover, 2 m B 5% cover but numerous individuals, 2a–

5–15%, 2b–15–25%, 3–35–50%, 4–50–75%, 5

C 75%) in July of each study year (2015–2018). Then

we averaged them at the study plot level. As study

plots were permanently marked, we assumed no

relocation bias (Verheyen et al. 2018). We also

reduced bias connected with observer effect (Lepš

and Hadincová 1992) by conducting all field observa-

tions by the same author (MKD). Taxonomic nomen-

clature follows GBIF (2019), as suggested by Seebens

et al. (2020) to standardize taxonomy. In total, we

found 262 species.

In each plot we assessed the number of species in

six guilds: archaeophytes (alien species introduced

before 1500, 14 species), neophytes (alien species

introduced after 1500, 36 species), all alien species
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Fig. 1 Schematic arrangement of the study plot blocks (21

blocks, each composed of nine plots). Adapted from Dyderski

and Jagodziński (2019c), for the spatial arrangement of forest

types within block see supplementary material in Dyderski and

Jagodziński (2020)

Fig. 2 Mean (? SE) light availability (DIFN, a fraction of

open skylight availability at 0.5 m height), soil C:N ratio and pH

(in H2O) by forest type (Fagus-Fagus sylvatica dominated

forest, Pinus plantation-Pinus sylvestris forests in fertile sites,

Pinus plantation-PS-P. sylvestris plantation invaded by Prunus
serotina, Pinus poor-P. sylvestris forest in poor sites, Pinus

poor-PS-P. sylvestris forest in poor sites invaded by P. serotina,

Q. petraea-acidophilous Quercus petraea-dominated forest, Q.
rubra-Q. rubra dominated forests, Quercus-Acer-Tilia-Q.
petraea, Acer platanoides, A. pseudoplatanus, Tilia cordata
dominated fertile forest, Robinia-Robinia pseudoacacia domi-

nated forest). For details see Dyderski and Jagodziński (2020)
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(sum of archaeophytes and neophytes, 50 species),

forest species (see below, 62 species), forest edge and

ruderal species (72 species) and ancient forest indica-

tor species (AFIS, 50 species; Table S2). We distin-

guished alien species, with division into

archaeophytes and neophytes according to the national

alien plant species checklist (Tokarska-Guzik et al.

2012). We also distinguished guilds of forest species

(members of Querco-Fagetea Br.-Bl. et Vlieger 1937,

Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 and

Quercetea roboris-petraeae Br.-Bl. in R. Tx et al.

1943 nom. mut. classes) and forest edge and ruderal

species (Artemisietea vulgaris Lohmeyer et al. in R.

Tx. 1950, Epilobietea angustifoli R. Tx. et Preising in

R. Tx. 1950, Stellarietea mediae R. Tx. et al. in R. Tx

1950 and Trifolio-Geranietea Th. Müller 1962

classes) according to phytosociological review

(Ratyńska et al. 2010). We also distinguished AFIS,

as a guild of forest specialists, sensitive to forest

ecosystem transformation (e.g. Peterken 1974; Orc-

zewska 2009; Dyderski et al. 2017). We distinguished

AFIS according to the Dzwonko and Loster (2001)

checklist.

We obtained a phylogenetic tree for species present

in the study plots from the megatree included in the

V.phylo.maker package (Jin and Qian 2019) and we

obtained functional traits (Table 2) from LEDA

(Kleyer et al. 2008), BIEN (Enquist et al. 2016),

BiolFlor (Klotz et al. 2002) and Pladias (Wild et al.

2019) databases, and ecological indicator values from

Ellenberg and Leuschner (2010). Due to incomplete

trait data, we decided to impute missing data rather

than omit them in analyses (see Pyšek et al. 2015) by

random forest-based imputation (Penone et al. 2014),

implemented in the missForest package (Stekhoven

and Bühlmann 2012). We enforced the predictive

power of imputation models by phylogenetic eigen-

vectors (Diniz-Filho et al. 1998), obtained using the

PVR package (Santos 2018). The first 15 phylogenetic

eigenvectors covered 59.4% of the variation in

phylogenetic distances among species. Normalized

root mean squared error of imputed traits was 1.054 for

continuous predictors and the proportion of falsely

classified categorical variables was 0.401.

Calculation of diversity indices

We investigated the effects of alien tree species on

native understory vegetation. We analyzed three

aspects of native species diversity–taxonomic, phylo-

genetic and functional at two levels—alpha (within-

site) and beta (among sites). We quantified taxonomic

alpha diversity using species richness and Shannon’s

diversity index, calculated using the vegan package

(Oksanen et al. 2018). We quantified phylogenetic

diversity using Faith’s phylogenetic diversity (PD; i.e.

the sum of phylogenetic tree branch lengths, repre-

senting all species present in the community) and

mean pairwise phylogenetic distance (MPD) between

species within the community. We calculated them

using the PhyloMeasures package (Tsirogiannis and

Sandel 2016). We quantified functional diversity by

functional richness (FRic), expressing the quantity of

plant functional types present in a community and

functional dispersion (FDis), expressing the size of

community species traits hypervolume within the

functional trait space (Mason et al. 2005; Laliberté and

Legendre 2010; Pla et al. 2011). These two indices

were calculated using the FD package (Laliberté et al.

2014).

We used Jaccard’s dissimilarity index to assess

taxonomic, functional and phylogenetic beta diversity,

as this metric was the most frequently used in previous

studies on biotic homogenization (Olden et al. 2018).

Taxonomic beta diversity was based on a presence-

absence matrix, functional diversity—on the volume

of convex hull intersections in a multidimensional

functional space (extracted from principal coordinates

analysis from species traits of a Gower dissimilarity

matrix) and phylogenetic diversity—on PD; all of

these were calculated using the betapart package

(Baselga et al. 2018). For each beta diversity index we

calculated overall value, nestedness and turnover

(Baselga 2010). This allowed us to explain the

importance of nestedness (presence of core species)

and turnover (species replacement) in shaping dissim-

ilarities among particular forest types.

Data analysis

We analyzed data using R software (v. 3.5.3; R Core

Team 2019). We assessed species composition of

study plots (using square root transformed data) by

detrended correspondence analysis (DCA; Hill and

Gauch 1980), implemented in the vegan package

(Oksanen et al. 2018). We decided to use DCA as a

method dedicated to data across long environmental

gradients (over 3 SD units), due to the gradient
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detrending procedure included in the analysis. We

assessed differences in alpha diversity and richness of

particular species guilds using generalized linear

mixed-effects models (GLMMs), accounting for

dependencies among plots within blocks by the

random intercept. We assumed Gaussian distributions

of Shannon index, PD, MPD, FRic and FDis and

Poisson distribution of species richness. In cases of

differences between beta-diversity indices we used

linear models. We assessed the impacts of forest type

on response variables by ANOVA. Although models

could reveal differences among forest types with

p-values\ 0.05, via Tukey’s posteriori tests we

applied a single-step adjustment of p-values, to

account for multiple hypothesis testing. Single-step

adjustment decreases the probability of committing

Type I error (i.e. rejection of the true null hypothesis),

and also accounts for correlations among variables

tested (Bretz et al. 2011). We ensured a lack of

problems with zero-inflation and overdispersion of

models using tests provided by the DHARMa package

(Hartig 2020).

Results

Understory vegetation species composition

Composition of understory vascular plant species

revealed the main gradient along DCA1 axis, from the

least fertile P. sylvestris forests to P. sylvestris

plantations, Q. petraea, Q. rubra and F. sylvatica

forests to the most fertile Quercus-Acer-Tilia and R.

pseudoacacia forests (Fig. 3). Invaded forest types

were separated from non-invaded along DCA2 axis

(mixed-model ANOVA, numerator df = 1, denomi-

nator df = 169.07, F = 12.872, p = 0.0004). Points

representing invaded forest types occurred in the

upper part of the ordination space. Most of the AFIS

Table 2 Traits used in the study, their ranges, variation coefficient (CV) and completeness

Numeric traits min max mean CV [%] Completeness [%]

EIV-Light (EIV-L) 1 9 6.1 26.3 96.6

EIV-Moisture (EIV-M) 2 10 5.1 27.6 81.7

EIV-Soil reaction (EIV-SR) 2 9 6.1 27.9 63.0

EIV-Nutrients (EIV-N) 1 9 5.2 40.9 83.6

EIV-Temperature (EIV-T) 2 8 5.6 13.2 67.9

Flowering beginning [months] 1 9 5.2 24.8 97.7

Flowering duration [months] 1 12 3.2 47.9 97.7

Specific leaf area (SLA) [cm2 g-1] 49.8 899.1 252.1 45.7 93.5

Lead dry mass content (LDMC) [mg g-1] 0.16 509.53 236.39 31.4 85.1

Seed mass (SM) [mg] 0.00 13,737.62 201.13 673.3 93.9

Maximum height (H) [m] 0.03 54.86 6.54 190.9 97.3

Categorical

traits

Number of

classes

Classes and their frequency Completeness

[%]

Life form 8 Chamaephytes (3.1%), Geophytes (7.6%), Hemicryptophytes (49.6%),

Hydrophytes (0.4%), Lianas (5.0%), Phanerophytes (25.2%), Therophytes (9.2%)

100.0

Life strategy 7 C (45.9%), CR (10.2%), CS (16.3%), CSR (22.0%), R (3.3%), S (1.6%), SR(0.8%) 93.9

Pollination

mode-insect

2 yes (71.9%), no (28.1%) 95.0

Pollination

mode-selfing

2 yes (54.2%), no (45.8%) 95.0

Pollination

mode-wind

2 yes (30.9%), no (69.1%) 95.0
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scores occurred in the lower part of the DCA space,

while most of the alien species were in the upper part.

We found the highest number of AFIS and forest

species in Quercus-Acer-Tilia and R. pseudoacacia

forests while the lowest—in F. sylvatica forests

(Table 3, Fig. 4). Non-invaded poor P. sylvestris

forests hosted 24.8% more forest species than P.

serotina invaded forests (despite lack of significance

revealed by posteriori tests). We also found lower

AFIS and forest species numbers in Q. rubra than Q.

petraea forests. We found the highest number of edge

and ruderal species in R. pseudoacacia forests, 29.8%

more than in Quercus-Acer-Tilia (despite lack of

significance revealed by posteriori tests). The lowest

number was in F. sylvatica and Q. rubra forests. We

found the most alien species, both archaeophytes and

Fig. 3 Detrended Correspondence Analysis of understory

species composition on the study plots (n = 186). Italicized

labels represent species scores and are abbreviations of species

names (e.g. Vaccmyrt = Vaccinium myrtillus), red label indi-

cates alien species, green label-ancient forest indicator species.

Only species with cover sum within the whole dataset[ 20%

were plotted (57 of 262). Forest types: Fagus-Fagus sylvatica
dominated forest, Pinus plantation-Pinus sylvestris forests in

fertile sites, Pinus plantation-PS-P. sylvestris plantation invaded

by Prunus serotina, Pinus poor-P. sylvestris forest in poor sites,

Pinus poor-PS-P. sylvestris forest in poor sites invaded by P.
serotina, Q. petraea-acidophilous Quercus petraea-dominated

forest, Q. rubra-Q. rubra dominated forests, Quercus-Acer-
Tilia-Q. petraea, Acer platanoides, A. pseudoplatanus, Tilia
cordata dominated fertile forest, Robinia-Robinia pseudoacacia
dominated forest

Table 3 Analysis of variance for ancient forest indicator species (AFIS), forest, edge and ruderal, alien, archaeophyte and neophyte

species number in forest types studied, estimated using Poisson GLMMs

Response Variable df Sum of Squares Mean Square F Pr([ F) Block random effects SD

AFIS Forest type 8 443.9000 55.4900 5.7650 \ 0.0001 0.253

Forest species Forest type 8 919.6000 114.9500 9.9310 \ 0.0001 0.255

Edge and ruderal species Forest type 8 1226.0000 153.2900 7.1650 \ 0.0001 0.331

Alien species Forest type 8 265.7000 33.2200 5.6840 \ 0.0001 0.269

Neophytes Forest type 8 154.3000 19.2800 5.6540 \ 0.0001 0.241

Archaeophytes Forest type 8 38.0500 4.7560 4.1520 0.0001 0.512

123

Impacts of invasive trees on alpha and beta diversity of temperate forest understories 241



neophytes, in P. serotina invaded P. sylvestris forests.

Despite the lack of differences revealed by posteriori

tests, P. serotina invaded P. sylvestris plantations had

75.8% more archaeophytes and 25.8% more neo-

phytes than non-invaded plantations. Similarly, R.

pseudoacacia forests had 78.6% more archaeophytes

and 15.1% more neophytes than Quercus-Acer-Tilia

forests.

Understory vegetation alpha diversity

We found the highest species richness in R. pseudoa-

cacia and non-invaded poor P. sylvestris forests and P.

serotina invaded P. sylvestris plantations, while the

lowest—in F. sylvatica and Q. rubra forests (Fig. 5,

Table 4). Q. rubra forests had almost twice lower

number of species than Q. petraea and Quercus-Acer-

Tilia forests, while P. serotina invaded P. sylvestris

plantations had one-fourth more species than non-

invaded. We also found statistically insignificant

(p[ 0.05) but biologically relevant differences:

Quercus-Acer-Tilia forests had 15% fewer species

than R. pseudoacacia forests, while non-invaded poor

P. sylvestris forests had 13% more species than

invaded. We found the highest phylogenetic diversity

in R. pseudoacacia forests and P. serotina invaded P.

sylvestris forests, and the lowest—in Q. rubra and F.

sylvatica forests. We found higher phylogenetic

diversity in Q. petraea than Q. rubra forests and P.

serotina invaded than non-invaded P. sylvestris

forests. We also found a statistically insignificant

(p[ 0.05) but biologically relevant difference in

phylogenetic diversity, which was 27% higher in R.

pseudoacacia than Quercus-Acer-Tilia forests. We

Fig. 4 Mean (? SE) number of ancient forest indicator species

(AFIS), forest, edge and ruderal, alien, archaeophyte and

neophyte species in forest types studied (Fagus-Fagus sylvatica
dominated forest, Pinus plantation-Pinus sylvestris forests in

fertile sites, Pinus plantation-PS-P. sylvestris plantation invaded

by Prunus serotina, Pinus poor-P. sylvestris forest in poor sites,

Pinus poor-PS-P. sylvestris forest in poor sites invaded by P.

serotina, Q. petraea-acidophilous Quercus petraea-dominated

forest, Q. rubra-Q. rubra dominated forests, Quercus-Acer-
Tilia-Q. petraea, Acer platanoides, A. pseudoplatanus, Tilia
cordata dominated fertile forest, Robinia-Robinia pseudoacacia
dominated forest), estimated using Poisson GLMMs. Letters

denote variants that are not different at p = 0.05, according to

Tukey posteriori tests. For model details see Table 3
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revealed similar trends in functional richness, while

differences between invaded and non-invaded forest

types were higher. We did not find biologically

relevant differences between invaded and non-invaded

forests in species diversity, as well as mean pairwise

distance and functional dispersion.

Fig. 5 Mean (? SE) values of alpha diversity indices in forest

types studied (Fagus-Fagus sylvatica dominated forest, Pinus
plantation-Pinus sylvestris forests in fertile sites, Pinus planta-

tion-PS-P. sylvestris plantation invaded by Prunus serotina,

Pinus poor-P. sylvestris forest in poor sites, Pinus poor-PS-P.
sylvestris forest in poor sites invaded by P. serotina, Q. petraea-

acidophilous Quercus petraea-dominated forest, Q. rubra-Q.

rubra dominated forests, Quercus-Acer-Tilia-Q. petraea, Acer
platanoides, A. pseudoplatanus, Tilia cordata dominated fertile

forest, Robinia-Robinia pseudoacacia dominated forest). Let-

ters denote variants which are not different at p = 0.05,

according to Tukey posteriori tests (n.s.-lack of differences

between any pair of variants for a particular variable). For model

details see Table 4
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Understory vegetation beta diversity

We found the highest taxonomic and phylogenetic

beta-diversity in F. sylvatica forests and the lowest—

in P. serotina invaded P. sylvestris plantations and R.

pseudoacacia forests (Fig. 6, Table 5). For functional

beta diversity we found the highest values in F.

sylvatica and Q. rubra forests, and the lowest—in P.

serotina invaded P. sylvestris plantations. Q. rubra

forests had higher functional and phylogenetic beta

diversity than Q. petraea forests due to higher

nestedness, while we did not find such a pattern in

taxonomic beta diversity. R. pseudoacacia forests had

lower taxonomic and phylogenetic beta diversity, but

similar functional beta diversity as Quercus-Acer-

Tilia forests. Here differences resulted from higher

taxonomic and phylogenetic turnover, with the same

level of nestedness. P. serotina invaded poor P.

sylvestris forests had lower functional beta diversity

than non-invaded poor P. sylvestris forests, due to

lower nestedness. We did not confirm differences for

taxonomic and phylogenetic beta diversity. In con-

trast, invaded P. sylvestris plantations had lower

taxonomic, functional and phylogenetic beta diversity

than non-invaded P. sylvestris plantations. In all cases

non-invaded P. sylvestris plantations had higher

nestedness than invaded ones.

Discussion

Impacts are mediated by influences of invasive

trees on resource availability

Impacts of the invasive tree species studied differed

among species and habitats. We found the lowest

reduction of alpha diversity and specialists in Q. rubra

forests, while we found no reduction in R. pseudoa-

cacia forests, compared to mature native forests. In

poor P. sylvestris forests, P. serotina invasion

decreased alpha diversity, while in P. sylvestris

plantations we did not find such a pattern. This may

suggest that impacts of invasive trees on understory

alpha diversity are more severe where resources are

more limiting—such as light in Q. rubra forests and

soil nutrients in poor P. sylvestris forests. This

explains the high consistency among studies revealing

negative effects of Q. rubra on understory vegetation

(Marozas et al. 2009; Woziwoda et al. 2014; Gentili

et al. 2019) and some results revealing no impacts

(Verheyen et al. 2007; Chabrerie et al. 2010; Gentili

et al. 2019) of P. serotina. Moreover, studies reported

that P. serotina decreased understory plant diversity

on less fertile sites resembling poor P. sylvestris

forests from this study (Godefroid et al. 2005;

Halarewicz and _Zołnierz 2014). Halarewicz (2012)

also found a lower effect size of P. serotina impacts on

species richness in fertile than in poor P. sylvestris

forests. Therefore, the reference ecosystem influences

Table 4 Analysis of variance for alpha diversity indices among forest types studied, assessed using linear mixed-effects models

(with study plot block as a random intercept)

Response Variable df Sum of Squares Mean Square F Pr([F) Block random effects

SD

Species richness Forest

type

8 160.3678 20.0460 20.046 \ 0.0001 0.265

Shannon diversity index Forest

type

8 8.2356 1.0294 5.720 \ 0.0001 0.146

Faith’s phylogenetic

diversity

Forest

type

8 17,473,654.8014 2,184,206.8502 10.821 \ 0.0001 286.098

Mean pairwise distance Forest

type

8 184,069.1143 23,008.6393 3.327 0.0014 62.986

Functional dispersion Forest

type

8 0.0086 0.0011 1.978 0.0525 0.008

Functional richness Forest

type

8 0.0003 0.0000 6.703 \ 0.0001 0.002
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the effect of P. serotina invasion on alpha diversity

metrics. In contrast, R. pseudoacacia impacts were not

due to decreased light availability, but rather due to

nitrogen fixation and increased soil nitrogen avail-

ability (Rice et al. 2004), resulting in increasing alpha

diversity or no impacts, similar to other studies (Sitzia

et al. 2012; Hejda et al. 2017; Gentili et al. 2019).

However, still other studies revealed decreases of

species diversity by R. pseudoacacia, in comparison

with Betula pendula urban forests (Kowarik et al.

2019), Q. cerris and Q. pubescens thermophilous

forests (Lazzaro et al. 2018) or shrublands on aban-

doned fields in China (Kou et al. 2016). Therefore,

although our results suggested increased alpha diver-

sity in R. pseudoacacia forests, it can only be

compared with mature native temperate forests in

Europe, as comparisons with other reference ecosys-

tems (see above) are in contrast.

Eco-evolutionary novelty does not increase

impacts of invasive trees

Since Darwin’s (1859) observations, numerous theo-

ries in invasion ecology assumed that success or

impacts of invasive species depend on the phyloge-

netic or functional similarity of alien and native

species (Ricciardi and Atkinson 2004; Enders et al.

2020). Earlier studies revealed higher impacts of alien

species less similar to native species (Ricciardi and

Atkinson 2004), but impacts of alien species also

depend on species quantity in the ecosystems (Kum-

schick et al. 2015). Alien tree species are more

Fig. 6 Mean (? SE) turnover, nestedness and overall beta

diversity in forest types studied (Fagus-Fagus sylvatica
dominated forest, Pinus plantation-Pinus sylvestris forests in

fertile sites, Pinus plantation-PS-P. sylvestris plantation invaded

by Prunus serotina, Pinus poor-P. sylvestris forest in poor sites,

Pinus poor-PS-P. sylvestris forest in poor sites invaded by P.
serotina, Q. petraea-acidophilous Quercus petraea-dominated

forest, Q. rubra-Q. rubra dominated forests, Quercus-Acer-
Tilia-Q. petraea, Acer platanoides, A. pseudoplatanus, Tilia
cordata dominated fertile forest, Robinia-Robinia pseudoacacia
dominated forest). Letters denote variants that are not different

at p = 0.05, according to Tukey posteriori tests. For model

details see Table 5
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abundant in sites occupied by functionally similar

species (Sande et al. 2020). Therefore, both of these

contradictory findings could be valid. We expected R.

pseudoacacia to cause the highest decrease of alpha

diversity, compared to mature native forests. In

temperate European forests this species is more

phylogenetically distinct (no native congenerics, in

contrast to P. serotina and Q. rubra). Its functional

distinction is lower—there are functionally similar

shrub species (e.g. nitrogen-fixing legume Cytisus

scoparius) and tree species which also fix nitrogen

(e.g. Alnus glutinosa). Reference to mature forest

ecosystems here does not allow conclusions about the

effects of R. pseudoacacia in early-successional

stages, where it can be more functionally and phylo-

genetically similar to native species. We also expected

the lowest impact of Q. rubra, which is both phylo-

genetically and functionally similar to native species

(Q. petraea and F. sylvatica). Although biodiversity

metrics of Q. rubra understory were similar to F.

sylvatica forests, their composition was more similar

to Q. petraea and P. sylvestris forests. However, it

differed from Quercus-Acer-Tilia forests, similarly as

in Central Poland (Woziwoda et al. 2014) and

Lithuania (Marozas et al. 2009). In the case of P.

serotina we could predict low impacts according to the

presence of both phylogenetically related (P. padus, P.

avium) and functionally similar (e.g. Sorbus aucu-

paria, Frangula alnus) species. However, we found a

decrease of alpha diversity in P. serotina invaded

forests only in poor P. sylvestris forests, where P.

serotina congenerics do not occur and functionally

similar species are sparsely distributed. In contrast, P.

sylvestris plantations are usually colonized by numer-

ous shrubs, including P. avium and S. aucuparia,

forming dense shrub layers (Zerbe and Wirth 2006).

This only partially supports the theory of eco-evolu-

tionary naivety (Ricciardi and Atkinson 2004; Enders

et al. 2020). Our results rather showed that influences

of alien tree species on biodiversity are mediated by

their abundance (Kumschick et al. 2015), which is

positively correlated with functional similarity to

native species (Sande et al. 2020).

Table 5 Analysis of variance for beta diversity indices among forest types studied

Response Variable df Sum of squares Mean square F Pr([ F)

Taxonomic nestedness Forest type 8 3.301 0.413 29.836 \ 0.0001

Residuals 5083 70.305 0.014

Taxonomic turnover Forest type 8 3.068 0.384 19.241 \ 0.0001

Residuals 5083 101.318 0.020

Taxonomic overall Forest type 8 1.104 0.138 13.740 \ 0.0001

Residuals 5083 51.042 0.010

Functional nestedness Forest type 8 12.229 1.529 34.938 \ 0.0001

Residuals 5083 222.397 0.044

Functional turnover Forest type 8 2.435 0.304 16.483 \ 0.0001

Residuals 5083 93.878 0.018

Functional overall Forest type 8 16.343 2.043 86.742 \ 0.0001

Residuals 5083 119.712 0.024

Phylogenetic nestedness Forest type 8 2.841 0.355 29.095 \ 0.0001

Residuals 5083 62.040 0.012

Phylogenetic turnover Forest type 8 6.075 0.759 38.912 \ 0.0001

Residuals 5083 99.201 0.020

Phylogenetic overall Forest type 8 4.065 0.508 41.606 \ 0.0001

Residuals 5083 62.073 0.012
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More alien species in invaded forests—invasional

meltdown or biotic acceptance?

We found higher numbers of alien species in R.

pseudoacacia and P. serotina invaded P. sylvestris

forests than in non-invaded and Q. rubra forests.

These findings are in line with previous studies,

revealing higher or the same alien species richness

(e.g. Von Holle et al. 2013; Halarewicz and _Zołnierz

2014; Slabejová et al. 2019). The one exception was a

study comparing R. pseuodoacacia forests with Betula

pendula forests in Berlin (Trentanovi et al. 2013).

Some variation in the number of alien species may

result from the spread of natural regeneration of the

invasive tree species studied, which successfully

colonized adjacent forests (Dyderski and Jagodziński

2018). Also, among herbaceous species, one of the

most widespread is the neophyte Impatiens parviflora,

occurring in various types of ecosystems across

Central Europe (Chmura 2004; Chmura and Sierka

2007; Godefroid and Koedam 2010). These two

phenomena blur the effects of alien species facilitation

of secondary invasions, known as invasional melt-

down (Simberloff and Von Holle 1999; Simberloff

2006). Higher alien species richness, compared to

mature native forests, may be connected with habitat

modification—increased nutrient availability by P.

serotina (Aerts et al. 2017) and R. pseudoacacia (Rice

et al. 2004), due to high decomposition rate of their

leaf litter (Horodecki and Jagodziński 2017). More-

over, P. sylvestris plantations are more invasible

(Zerbe and Wirth 2006), due to soil acidification

(Augusto et al. 2002) and higher light availability,

connected with low leaf area per unit of basal area

(Dyderski and Jagodziński 2019b). Forest types with

high alien species richness were also rich in native

species, supporting the biotic acceptance theory

(Stohlgren et al. 1999, 2006; Dyderski et al. 2015),

and also connected with resource availability.

Biotic homogenization—invasive trees decreased

beta diversity

We found that R. pseudoacacia decreased taxonomic

and phylogenetic beta diversity, compared to mature

native forests. Previous studies showed an increase

(Kou et al. 2016), decrease (Šibı́ková et al. 2019) and

no impacts (Sitzia et al. 2012; Trentanovi et al. 2013)

of R. pseudoacacia on taxonomic beta diversity. Our

study is in line with findings from Southern Europe

(Šibı́ková et al. 2019), which also compared R.

pseudoacacia forests with Quercus-Acer-Tilia forests.

Other studies compared effects of R. pseudoacacia on

other reference ecosystems—e.g. early-successional

post-agricultural forests (Sitzia et al. 2012; Kou et al.

2016) or urban forests (Trentanovi et al. 2013). In P.

sylvestris plantations we confirmed lower taxonomic,

functional and phylogenetic beta diversity in P.

serotina invaded forests. In contrast, in poor P.

sylvestris forests we found only lower functional beta

diversity in invaded than non-invaded forests. Both

taxonomic and phylogenetic beta diversity were more

driven by species turnover than nestedness. This

suggests that the main driver of beta-diversity was

the ability to host random elements of species

composition rather than the presence of core elements

of understory vegetation (Baselga 2010). This may be

connected with vegetation continuity (Holeksa and

Woźniak 2005; Austin 2013) and suggests low

impacts of invasive tree species on individualistic

understory plant species responses. However, func-

tional beta diversity was more driven by nestedness

than the turnover in all forest types, except P. serotina

invaded P. sylvestris plantations. This indicates that

particular forest types host a core of functionally

similar understory species, which are different in

terms of taxonomic affiliation and evolutionary his-

tory. This suggests functional filtering of understory

plant species, connected with resource availability.

In contrast to other invasive tree species studied, we

found higher values of all beta-diversity metrics in Q.

rubra forests. High beta diversity of Q. rubra forests is

connected with high turnover and lack of constant

species, similar to F. sylvatica forests. These two types

are located in the middle part of the ordination space

and characterized by low to medium soil fertility and

low light availability. These two filters reduce the

number of species and their abundance, therefore most

of the species are transient from adjacent forests. Thus,

low alpha diversity and high species turnover lead to

high beta diversity, but low conservation values.

Conclusions

Our study demonstrated how the three invasive tree

species most widespread in European forests affected
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alpha and beta diversity of understory vegetation, in

comparison to mature native forests. Due to using

mature native forests as reference ecosystems, our

conclusions cannot inform impacts in other types of

ecosystems invaded by the tree species studied, e.g.

shrublands or early-successional forests. We provided

the first assessment of all three facets of diversity

(taxonomic, functional and phylogenetic) for the

species studied, broadening the understanding of

invasive tree impacts on plant diversity. We proved

that invaded forests differ from non-invaded forests in

species composition, but did not always have

decreased alpha and beta diversity. Influence on

understory vegetation diversity depended on a partic-

ular invasive species ability for habitat transforma-

tion—we found the highest decrease of alpha diversity

in Q. rubra forests, with low levels of soil nutrients

and light availability, while we found increases or no

effects in nutrient-rich R. pseudoacacia forests. This

also explains the different patterns of P. serotina

impacts in nutrient-poor and rich P. sylvestris forests.

Both P. serotina and R. pseudoacacia decreased beta

diversity, compared to mature native forests. Due to

the high importance of species turnover in shaping

taxonomic and phylogenetic beta diversity and the

high importance of nestedness in shaping functional

beta diversity, these invasive species probably limited

the number of random species shaping the regional

pool. In contrast, Q. rubra forests had higher beta

diversity than mature native forests, due to low alpha

diversity and high turnover of species, connected with

low resource levels.

Impacts of particular invasive species depended on

the reference ecosystem properties, which is a source

of inconsistency in previous studies, which usually

referred to single native ecosystem types. In our case,

we referred to the mature native forest ecosystems,

which have naturally low alpha-diversity in compar-

ison to early-successional stages. However, these

forests contain rare and specialized species, the

decline of which contributes to regional and global

biodiversity reduction. In terms of global effects on

biodiversity, this impact can be a more important

effect of the alien tree species studied than decreases

of alpha-diversity metrics.
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Lepš J, Hadincová V (1992) How reliable are our vegetation

analyses? J Veg Sci 3:119–124. https://doi.org/10.2307/

3236006

Lonsdale WM (1999) Global patterns of plant invasions and the

concept of invasibility. Ecology 80:1522–1536

Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M,

Bazzaz FA (2000) Biotic invasions: causes, epidemiology,

global consequences, and control. Ecol Appl 10:689–710

123

250 M. K. Dyderski, A. M. Jagodziński
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