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Abstract A diverse and abundant fouling commu-

nity dominated by Lessepsian non-indigenous species

was identified on a 13.5-m-long steel buoy stranded on

the Israeli coast but originating from Port Said, at the

Mediterranean entrance of the Suez Canal, Egypt. The

molluscan community was sampled quantitatively by

scraping. Three quarters of the individuals and more

than half of the species were non-indigenous. Among

the latter, a mytilid bivalve, Gregariella cf. ehren-

bergi, was first recorded in the Mediterranean Sea on

the basis of these samples, suggesting that the full

consideration of all potential vectors can contribute to

non-indigenous species detection. Large floating

objects in coastal waters, such as buoys, are particu-

larly suitable for colonization by Lessepsian species

because hard substrates, and artificial ones in partic-

ular, are highly susceptible to the establishment of

non-indigenous species. Moreover, their size and

persistence enable the development of abundant and

mature fouling communities that can disseminate

propagules as eggs and larvae over long distances

and for extended periods if detached. This report

highlights the potential for large rafting debris as a

vector of the spread of non-indigenous biota within the

Mediterranean Sea.

Keywords Anthropogenic debris � Rafting � Non-
indigenous species � Introduction vectors � Fouling �
Mediterranean Sea

Introduction

Floating marine litter is increasingly becoming an

important vector of introduction and spread of non-

indigenous species (NIS) (Kiessling et al. 2015). It

may double or even triple the dispersal of marine

organisms due to its high persistence (Barnes 2002)

and open new introduction pathways (Hoeksema et al.

2012, 2015; Holmes et al. 2015; Carlton et al. 2017).

The larger and longer-lasting floating objects have a

greater potential as vectors for biological invasions

because they likely host a more diverse fouling

community and may traverse longer distances due to

lower degradation and sinkage rates (Thiel and Gutow

2005; Goldstein et al. 2014). A major example is the

dispersal of western Pacific species on rafting objects

after the tsunami generated by the 2011 East Japan
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earthquake: 289 Japanese coastal species crossed the

northern Pacific Ocean reaching the shores of North

America and Hawai’i (Carlton et al. 2017). Some

objects were as large as docks or fishing vessels, and

able to carry tens of species per object.

In theMediterranean Sea, the role of marine litter as

a primary or secondary vector of species introductions

has largely been neglected (Katsanevakis and Crocetta

2014); in the major recent assessments of pathways

and vectors in Europe, it has been either lumped with

others or not considered (Zenetos et al. 2012;

Katsanevakis et al. 2013; Nunes et al. 2014; Galil

et al. 2014). To improve our understanding of the role

of marine litter as a vector of NIS dispersal, it is

necessary to quantify the contribution of litter on their

regional spread, determine which litter items are the

main carriers, and identify the major donor and

recipient areas (Rech et al. 2016).

One of the high-risk donor areas is certainly the

Levantine Basin, the easternmost part of the Mediter-

ranean Sea. The opening of the Suez Canal in 1869

triggered the Lessepsian invasion (Por 1978), and the

recent Canal enlargement may turn out to have

triggered the onset of a new wave of introductions

(Galil et al. 2015, 2017). Any floating object in this

region may be prone to the colonization by Lessepsian

species and consequently may contribute to their

transportation to other sectors of the basin.

Thus, the stranding of a 13.5-m-long steel buoy in

Israel that was traced to originate from Port Said,

Egypt, at the Mediterranean entrance to the Suez

Canal, permitted the first examination of the role of

large rafting debris in the Lessepsian invasion. During

its ca 280-km-long journey, the buoy transported a

diverse and abundant invertebrate assemblage domi-

nated by NIS. To our knowledge, this is the first report

of large rafting objects as vectors for Lessepsian

invaders and our finding clearly demonstrates their

potential in facilitating the secondary spread of

Lessepsian NIS.

Materials and methods

In 2014, a 13.5-m-long steel buoy, originally moored

at the entrance of the Suez Canal in Port Said, Egypt,

got detached and stranded near Shefayim, Israel, from

where it was subsequently transported to a dumping

site in the close-by Herzliya Marina (Captain M.

Solomon and A. Tzindr, pers. comm.). On 28

September 2016, we scraped the fouling community

on the buoy from 0.1 m2 quadrats approximately

every meter along a depth transect from the water line

to its lowermost end (at originally 5.5 m depth) and, in

addition, a quadrat in the interior of the buoy at ca

5.5 m depth (coded consecutively from Q1, water

level, to Q7, in the interior). Q5 lacked fouling

organisms and was omitted from consideration; the

exterior of the buoy looked abraded, suggesting

possible damage during transport with consequent

loss of fouling organisms. Due to the long period

elapsed between stranding and sampling, soft-bodied

organisms were no longer present and thus we focused

our research onmollusks, whose shells were abundant,

and mostly still retained the dried tissues. The samples

were sieved on 0.5 mm and 4 mm mesh and the

retained mollusks identified to species. The samples

will be deposited in the Natural History Museum

Vienna and a voucher collection in the Steinhardt

Museum of Natural History, Tel Aviv University.

We computed metrics and drew charts with the

statistical programming environment R (R Develop-

ment Core Team 2008). We created the final graphical

output with the program Inkscape.

Results

We identified 11 indigenous and 10 non-indigenous

mollusk species (414 and 1294 individuals, respec-

tively). Bivalves dominated the sampled molluscan

community. Among the NIS, we foundGregariella cf.

ehrenbergi (Issel, 1869), a species not previously

recorded from the Mediterranean Sea (Steger et al.

2018). On the ground at the Herzliya Marina, next to

the buoy, we found specimens of the non-indigenous

intertidal gastropod Cellana rota (Gmelin, 1791).

Fouling gastropods in most cases adhere with their

foot and thus fall off once dead. In addition, we found

few specimens of the crabs Eriphia verrucosa

(Forskål, 1775) and the non-indigenous Sphaerozius

nitidus Stimpson, 1858. The latter was reported from

Port Said in a study on brachyuran crabs associated

with marine fouling in Mediterranean Egyptian har-
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bors (Ibrahim and Ramadan 2016). Their presence

suggests that the buoy arrived in the marina with still

living fouling organisms. However, at the time of

sampling, the original gastropod assemblage may

have been partly lost and therefore be under-repre-

sented in our samples, potentially leading to an

underestimation of NIS diversity and abundance for

this taxonomic group. The buoy was also covered by

many individuals of the non-indigenous Balanus

trigonus (Darwin, 1854) and some specimens of

Perforatus perforatus (Bruguière, 1789) as well as the

non-indigenous Amphibalanus reticulatus (Utinomi,

1967).

In all quadrats, NIS were more diverse and

abundant than native species, with the highest NIS

diversity in Q2 (- 1 m) and the greatest NIS abun-

dance in Q1 (water line) (Fig. 1). The most abundant

NIS were Brachidontes pharaonis (P. Fischer, 1870)

and Malleus regula (Forsskål in Niebuhr, 1775) with

746 and 297 individuals, respectively (Table 1).

Modiolus cf. barbatus and Striarca lactea (Linnaeus,

1758) were the most abundant native species with 241

and 62 individuals, respectively (Table 1). It is worth

mentioning that the identity of the mytilid bivalve

Modiolus cf. barbatus (Linnaeus, 1758) is uncertain: a

similar species is known from the Red Sea (Oliver

1992) but the taxonomic knowledge of the genus in the

Indo-Pacific province is too poor for a definite

identification, especially at the sub-adult stage of most

of our specimens. Because of its abundance, however,

if this species would prove to be a Red Sea Modiolus,

most metrics of non-indigenous species diversity and

abundance would increase considerably. Dendostrea

cf. folium (Linnaeus, 1758) is also tentatively identi-

fied due to the poor taxonomic knowledge of the group

(Crocetta et al. 2015), but it is clearly not a native

species. In most quadrats, natives were more abundant

in the smaller (0.5–4 mm) than in the larger shell size

fraction ([ 4 mm) (Table 2). The one exception was

Q2, a particularly poor sample with only 13 individ-

uals. Overall, species richness did not differ between

the size fractions.

Discussion

The rich sessile fouling community on the buoy was at

an advanced successional stage, as the presence of

adult specimens of the bivalves Brachidontes phar-

aonis in Q1 and Malleus regula in Q7 suggests

(Astudillo et al. 2009). Some specimens of Pinctada

imbricata radiata are more than 10 cm long and thus

more than 6 years old (Narayanan and Michael 1968).

Their size, as well as the large size of some specimens

of Chama pacifica and Malleus regula, suggest that

this community developed while the buoy was still

moored at Port Said.

We also detected a new NIS on the buoy, the

mytilid Gregariella cf. ehrenbergi. This species has a

complex taxonomic status and cryptic habitat (Steger

et al. 2018) which may cause significant time lags in

first detection (Crooks 2005; Albano et al. 2018).

Therefore, we cannot determine whether this is truly a

recent arrival, but our study demonstrates that the full

consideration of all potential vectors can contribute to

NIS detection.

Steel buoys are particularly suitable for the colo-

nization by sessile and motile NIS because hard

substrates are highly susceptible to their establishment

and, once detached from their mooring, are likely to

serve as raft for their fouling community (Miller 1968;

Kerckhof and Cattrijsse 2001; Wasson et al. 2005;

Lim et al. 2009; Nawrot et al. 2015; Simpson et al.

2016). Moreover, artificial substrates facilitate NIS

establishment (Bulleri and Airoldi 2005; Glasby et al.

2007; Bulleri and Chapman 2010) because of weaker

competitive interactions, as predicted by the biotic

resistance hypothesis (Elton 1958), or because of

reduced mortality due to predation, as predicted by the

enemy release hypothesis (Keane and Crawley 2002)

and experimentally tested (Dumont et al. 2011;

Rogers et al. 2016). Indeed, 75% of the individuals

on the buoy were identified as NIS. The NIS

dominance was even more prominent in the larger

size fraction ([ 4 mm), likely a consequence of the

larger average size of the Red Sea species pool

(Nawrot et al. 2017).

Marine litter, in general, has rarely been discussed

as a vector of primary or secondary NIS introduction

in the Mediterranean Sea and, to the best of our

knowledge, this is the first report of Lessepsian NIS

transported on a detached buoy. The Mediterranean

Sea hosts a great number of large floating objects such

as navigational buoys, components of aquaculture

plants and harbor pontoons, where rich fouling

communities can develop (Kerckhof and Cattrijsse
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2001; Lim et al. 2009; Rech et al. 2018). If such large

objects get detached, they may serve as a vector of NIS

spread during rafting because under suitable conditions

mature individuals may release eggs and larvae en

route (Lockwood et al. 2005, 2009; Simberloff 2009).

Therefore, we propose that large rafting objects should

be fully considered as vectors of biological invasions

in the Mediterranean Sea.

Fig. 1 Position of the sampled quadrats on the buoy and share

of native versus non-indigenous species (NIS) abundance and

richness (in %). Photos were shot with the buoy laying

horizontally. The location of Q1 represents the original water

line. Q5 was located between Q4 and Q6 but did not contain

mollusks and is therefore omitted. Q7 is situated in the interior

of the buoy. Abundance and species richness of NIS (in red)

were higher than of native species (in blue) at all depths
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Table 1 Species abundance in each quadrat (Q5 did not contain any mollusks)

Class Family Genus Status Q1 Q2 Q3 Q4 Q6 Q7

Gastropoda Cerithiopsidae Cerithiopsis tenthrenois (Melvill, 1896) NIS 0 0 0 0 0 2

Gastropoda Rissoidae Crisilla semistriata (Montagu, 1808) Native 0 0 0 0 0 1

Bivalvia Arcidae Arca noae (Linnaeus, 1758) Native 3 0 0 0 1 0

Bivalvia Noetiidae Striarca lactea (Linnaeus, 1758) Native 2 2 5 1 29 23

Bivalvia Mytilidae Gregariella cf. ehrenbergi (Issel, 1869) NIS 12 0 6 2 45 18

Bivalvia Mytilidae Musculus subpictus (Cantraine, 1835) Native 0 0 0 0 0 2

Bivalvia Mytilidae Musculus costulatus (Risso, 1826) Native 1 0 0 0 0 0

Bivalvia Mytilidae Lithophaga lithophaga (Linnaeus, 1758) Native 0 0 1 0 0 4

Bivalvia Mytilidae Modiolus cf. barbatus (Linnaeus, 1758) Native 83 0 49 7 23 79

Bivalvia Mytilidae Arcuatula senhousia (Benson, 1842) NIS 1 0 0 0 0 0

Bivalvia Mytilidae Brachidontes pharaonis (P. Fischer, 1870) NIS 708 4 15 1 8 10

Bivalvia Mytilidae Septifer cumingii (Récluz, 1848) NIS 37 2 4 3 20 15

Bivalvia Mytilidae Mytilaster cf. minimus (Poli, 1795) Native 2 0 0 0 1 0

Bivalvia Pteriidae Pinctada imbricata radiata (Leach, 1814) NIS 3 0 0 0 2 5

Bivalvia Ostreidae Ostrea edulis (Linnaeus, 1758) Native 27 0 7 1 13 1

Bivalvia Ostreidae Dendostrea cf. folium (Linnaeus, 1758) NIS 5 4 28 1 1 7

Bivalvia Malleidae Malleus regula (Forsskål in Niebuhr, 1775) NIS 58 1 70 2 66 100

Bivalvia Chamidae Chama pacifica (Broderip, 1835) NIS 3 0 6 1 5 10

Bivalvia Myidae Sphenia binghami (Turton, 1822) Native 7 0 4 0 16 15

Bivalvia Gastrochaenidae Cucurbitula cymbium (Spengler, 1783) NIS 0 0 0 0 2 1

Bivalvia Gastrochaenidae Rocellaria dubia (Pennant, 1777) Native 0 0 0 0 3 1

The most abundant non-indigenous species (NIS) and native species in each quadrat are marked in bold

Table 2 Abundance and

species richness of non-

indigenous species (NIS)

and native species in the

two size fractions

The larger size fraction

([ 4 mm) generally shows

a greater diversity and

abundance of non-

indigenous species than the

smaller one (0.5–4 mm).

Q5 did not contain any

mollusks and was therefore

omitted

Quadrat Mesh size Abundance Species richness

NIS Native NIS Native

Q1 0.5–4 mm 201 (73%) 75 (27%) 6 (50%) 6 (50%)

[ 4 mm 624 (93%) 49 (7%) 7 (58%) 5 (42%)

Q2 0.5–4 mm 3 (100%) 0 (0%) 1 (100%) 0 (0%)

[ 4 mm 8 (80%) 2 (20%) 4 (80%) 1 (20%)

Q3 0.5–4 mm 29 (37%) 50 (63%) 5 (56%) 4 (44%)

[ 4 mm 98 (87%) 15 (13%) 4 (57%) 3 (43%)

Q4 0.5–4 mm 4 (36%) 7 (64%) 3 (75%) 1 (25%)

[ 4 mm 6 (75%) 2 (25%) 4 (67%) 2 (33%)

Q6 0.5–4 mm 81 (57%) 62 (43%) 7 (54%) 6 (46%)

[ 4 mm 67 (74%) 23 (26%) 24 (86%) 4 (14%)

Q7 0.5–4 mm 75 (38%) 124 (62%) 8 (53%) 7 (47%)

[ 4 mm 93 (98%) 2 (2%) 5 (71%) 2 (29%)
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