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Abstract The spread and distribution of exotic

species depends on a number of factors, both anthro-

pogenic and biophysical. The importance of each

factor may vary geographically, making it difficult to

predict where a species will spread. In this paper, we

examine the factors that influence the distribution of

monk parakeets (Myiopsitta monachus), a parrot

native to South America that has become established

in the United States. We use monk parakeet observa-

tions gathered from citizen-science datasets to inform

a series of random forest models that examine the

relative importance of biophysical and anthropogenic

variables in different regions of the United States. We

find that while the distribution of monk parakeets in

the southern US is best explained by biophysical

variables such as January dew point temperature and

forest cover, the distribution of monk parakeets in the

northern US appears to be limited to urban environ-

ments. Our results suggest that monk parakeets are

unlikely to spread outside of urban environments in

the northern United States, as they are not adapted to

the climatic conditions in that region. We extend the

notion of ‘‘substitutable habitats,’’ previously applied

to different habitats in the same landscape, to exotic

species in novel landscapes (e.g., cities). These novel

landscapes provide resources and environmental con-

ditions that, although very different from the species’

native habitat, still enable them to become established.

Our results highlight the importance of understanding

the regionally-specific factors that allow an exotic

species to become established, which is key to

predicting their expansion beyond areas of

introduction.

Keywords Human–environment interaction �
Variable importance � Species establishment �
Habitat suitability modeling � Introduced species �
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Introduction

The distribution of an exotic species is the outcome of

complex interactions between the species’ biology, the

environment into which the species is introduced, and

anthropogenic disturbances that create novel ecolog-

ical opportunities (Thuiller et al. 2006). Because urban

landscapes provide such ecological opportunities and

are often the point of introduction for new species,

many exotic species thrive in cities (McKinney 2006).

Predicting which species will go beyond urban areas

and where they will spread is important for managing

exotic species and preserving biodiversity.
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One factor that is frequently used to explain patterns

of invasion is the suitability of climate or habitat in the

new environment (Blackburn and Duncan 2001; Moyle

and Marchetti 2006; Hulme 2009; Murray et al. 2012).

As Sexton et al. (2009) state, ‘‘species range limits are

essentially the expression of a species’ ecological niche

in space’’. If environmental conditions in an area are

unsuitable for a species, the probability of its establish-

ment at that location is low. However, even in suitable

environmental conditions, a species introduction may

not lead to a viable population due to stochastic die-off

events (Simberloff 2009). Other factors that affect

establishment include natural enemies, competitors,

and resource availability (Shea and Chesson 2002;

Tilman 2004; MacLeod et al. 2009). The temporal and

spatial patterns of propagule pressure are also thought to

play an important role in establishment success (Catford

et al. 2009; Chiron et al. 2009; Simberloff 2009).

Propagule size, or the number of individuals in a release

event, can act to reduce the effect of demographic

stochasticity, while propagule number, or the number of

distinct release events, can reduce the impact of

environmental stochasticity (Simberloff 2009). Greater

propagule pressure also increases the chance of a

successful invasion by increasing genetic diversity and

continually supplementing the population (Colautti

et al. 2006).

Because habitat suitability is thought to be so

important in the establishment and subsequent spread

of an invasive species, modeling habitat suitability for

exotic species is an active and important area of

research (Thuiller et al. 2005). Habitat suitability is

often measured in terms of biophysical variables such

as temperature, precipitation, or vegetation type, in an

attempt to identify areas with climates similar to the

native range (termed ‘‘climate matching’’ (Peterson

2003; Bomford et al. 2009). But defining habitat

suitability may go beyond climate matching, and

biophysical variables alone might not always be

adequate for explaining the spread and distribution

of exotic species. Recent studies have highlighted the

importance of human-related factors as well as

biophysical factors in shaping the distribution of

exotic species (Roura-Pascual et al. 2011; Pyšek et al.

2010). In fact, Roura-Pascual et al. (2011) showed

that, by creating favorable microclimates, human

modification of environments may allow exotic spe-

cies such as the Argentine ant to establish in places

where climatic suitability is low.

Urban areas in particular may present unique

habitat types for exotic species. They contain anthro-

pogenic food sources, which are often abundant and

consistently available (Rebele 1994; Lepczyk et al.

2004). This is compounded by the fact that exotic

species are often adept at utilizing resources which

native species might not (Sol et al. 2012) and are likely

to have high rates of feeding innovation (Møller 2009).

Furthermore, native species tend to be scarce in urban

areas (vanHeezik et al. 2008), reducing biotic resis-

tance (Levine et al. 2004) and creating empty ecolog-

ical niches that can potentially be filled by

opportunistic exotic species (Sol et al. 2012). Urban

areas usually differ climatically and physically from

the surrounding land (Arnfield 2003), creating micro-

climates or habitats that may be more suitable for

some species than less-disturbed outlying areas (Suk-

opp 2004; Song et al. 2012). Finally, propagule

pressure may be more intense in urban areas (Chytrý

et al. 2008). Both the altered environment and

increased propagule pressure may allow exotic species

to persist in a region that might otherwise be

unsuitable.

If persistence of an exotic species in a particular

region is dependent on conditions created by humans,

human-related factors (e.g., housing density) will be

important determinants for predicting presence of that

species. However, those same factors may have

minimal importance in regions that are already highly

suitable for the same species. If human-related factors

are important in some environments and not in others,

this could introduce error into habitat suitability

models or make their output difficult to interpret.

These problems could be magnified if analyses are

conducted over large spatial scales where human and

environmental factors vary greatly. By carving out

different subgroups of a species based on geographic

location and developing habitat suitability models for

each, we can begin to understand what factors are

important under different conditions. This may be key

to predicting and ultimately preventing or limiting the

spread of exotic species.

In this paper, we disentangle the factors that affect

the distribution of an exotic bird, the monk parakeet

(Myiopsitta monachus). Specifically, we examine the

relative importance of biophysical variables and

anthropogenic factors on monk parakeet distribution

across the contiguous United States. We conducted

our analysis for different geographic regions, with the
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expectation that the importance of each factor would

depend on the scale and region of analysis. Specifi-

cally, we predicted that human-related factors would

be more important in northern regions, where monk

parakeets seem to rely on bird feeders in the winter

months (Hyman and Pruett-Jones 1995). Our results

highlight the importance of running species distribu-

tion models at different spatial extents and geographic

locations.

Methods

Focal species

Monk parakeets are medium-sized parrots native to

South America (Spreyer and Bucher 1998). In their

native range, they are considered an agricultural pest

(Lever 2006). Like other members of the parrot

family, they are highly gregarious and often nest

communally. Unlike other members of the parrot

family, they build stick nests and use them year-round

(Spreyer and Bucher 1998). They are common birds in

the pet trade and, as a result of escapes or releases,

have established non-native populations throughout

the United States and the world (Strubbe and Matthy-

sen 2009; Russello et al. 2008; Van Bael and Pruett-

Jones 1996). Their spread has elicited concern about

their potential impact on agricultural crops in their

introduced range (Davis 1974). While they are found

in some climates that are colder than their native

range, it has been suggested that monk parakeets are

reliant on bird feeders in these locations (Hyman and

Pruett-Jones 1995). In this paper, we examine the

factors that influence their distribution in the contig-

uous United States.

Bird observations

We used monk parakeet observations gathered from

citizen-science datasets to inform our model and

contrasted these observations with a set of pseudo-

absence locations. To decrease the probability that

monk parakeet absence points were simply locations

with few observers (i.e., false absences), and to reduce

the effect of sample bias on our results, we used

reported observations of a common and widely-

distributed native species, the American robin (Turdus

migratorius), as pseudo-absence or background

points. By using a common species, we created a

widely-distributed set of background points in loca-

tions where volunteers go birding, excluding from the

model any locations that are too remote or inaccessible

for us to have any knowledge about the birds that are

found there. This set of background points therefore

represents the inherent spatial bias in the monk

parakeet observations reported through the citizen

science datasets. Using this approach ensures that the

environmental conditions associated with the back-

ground points contain the same spatial bias as the

environmental conditions associated with the presence

points (Phillips et al. 2009; Mateo et al. 2010).

Monk parakeet and American robin observations

were obtained from four citizen science programs:

eBird, Project Feederwatch (PWF), Great Backyard

Bird Count (GBBC) and the Christmas Bird Count

(CBC). Each program has a different approach to

collecting bird observations. The National Audubon

Society runs the CBC (http://birds.audubon.org/

christmas-bird-count) from mid-December to early

January each year. Volunteers count every bird seen or

heard in a single day along specific routes within a

‘‘count circle’’ with a 15 mile (24 km) diameter. The

Cornell Laboratory of Ornithology runs PWF and

GBBC. For PWF (http://www.birds.cornell.edu/pfw/),

volunteers pick an area where they will count birds,

such as their backyard; most observation areas are

about the size of two tennis courts. Volunteers count

each bird they see for two consecutive days, counting at

any time of day and for as little time as they want (effort

is recorded). This observation period can occur at any

time during the 21-week period starting on the second

Saturday in November. The GBBC is a four-day event

in February, before spring migration (http://www.

birdsource.org/gbbc). Volunteers count every bird

they observe during 15 min (minimum) at any time

(even multiple times) throughout the 4-day period. The

eBird program is a little different, as it has fewer

restrictions than the other three programs (http://eBird.

org). eBird is a collaboration between the Cornell

Laboratory of Ornithology and the National Audubon

Society. Citizen-scientists are free to report any birds

they see at any time and location. Some volunteers do

traveling counts and report the distance they hiked,

others enter data for stationary counts. Other options

include casual sightings and exhaustive area counts.

All these citizen datasets are biased in terms of

spatial and temporal coverage (Dickinson et al. 2010;

Human influence and exotic species distribution 417
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Yaukey 2010) and they oversample in places where

more people live (Sullivan et al. 2009). Some

programs have more standardized protocols than

others (Yaukey 2010) and all of them are subject to

errors in identification and detectability (Sullivan et al.

2009). However, based on expert lists of birds in an

area potentially faulty sightings are flagged, and

regional experts determine whether they should be

removed from the database (Sullivan et al. 2009). In

general, the information in these datasets tends to be

accurate and reliable (Munson et al. 2010; Bonter and

Cooper 2012).

We used observations from ebird, PWF, GBBC,

and CBC reported between January 2007 and Decem-

ber 2011, and downloaded from http://www.

avianknowledge.net. The observations were geore-

ferenced in ArcGIS10.0 (ESRI 2011). The GIS anal-

yses were conducted in ArcGIS 10.0 and 9.3. We

divided the contiguous United States into 10 9 10 km

grid cells (Albers Equal Area Conic Projection) and

retained all grid cells with either monk parakeet or

American robin observations for analysis. The grid

was created in Hawth’s Analysis Tools v3.27 (Beyer

2004). Any grid cell containing a monk parakeet

observation, whether or not it also contained an

American robin observation, was considered a monk

parakeet ‘‘presence’’ point. Grid cells with only

American robin observations were considered monk

parakeet ‘‘absence’’ points, i.e., pseudo-absences.

Predictor variables

Our choice of predictor variables was guided by a

literature search and knowledge of monk parakeet

physiology, diet, and native range bioclimatic charac-

teristics. In their native range, monk parakeets are

known to inhabit open woodlands and scrublands and

are also crop pests (Lever 2006). Distance to cities of

100,000 and 500,000 inhabitants, distance to high-

ways, human population density, slope of terrain,

number of frost days, temperature, precipitation, and

mean normalized difference vegetation index (NDVI),

have all been found to be important to monk parakeet

presence in Europe (Muñoz and Real 2006; Strubbe

and Matthysen 2009). In Barcelona, Spain, monk

parakeets tend to avoid areas that are heavily forested

(Sol et al. 1997) and in Chicago, IL (USA), distance to

railways was an important predictor of monk parakeet

nest locations (Minor et al. 2012). Finally, as monk

parakeets are known to visit bird feeders, and house-

hold income has been related to the provision of bird

feeders (Fuller et al. 2008), this might be a relevant

variable explaining their distribution. Therefore, we

measured the following variables for all grid cells with

American robin or monk parakeet presences: number

of frost days; January dew point temperature; precip-

itation; NDVI; slope; percent of land covered by

forest, scrub, and crops; housing density; household

income; and distance to the nearest railway, interstate

highway, town with 100,000 inhabitants, and town

with 500,000 inhabitants (Table 1).

The environmental variables were derived from a

number of different sources (Table 1). We used zonal

statistics in ArcGIS 9.3 to determine the mean value of

each variable for each 10 9 10 km grid cell used in

the model. For linear features (i.e., roads and railways)

and points (i.e., towns), we first used the Euclidean

distance tool in ArcGIS to calculate the distance from

1,000 9 1,000 m grid cells to the nearest feature of

interest. We then used zonal statistics to average these

distances for each 10 9 10 km grid cell. Housing

density and median household income were derived

from polygons (US Census block groups and census

tracts, respectively) and then summarized at the level

of each 10 9 10 km grid cell using the ‘‘polygon in

polygon analysis’’ in Hawth’s Analysis Tools (Beyer

2004).

Dormann et al. (2012) suggest that strongly corre-

lated variables (q C 0.7) be removed from subsequent

modeling, so we excluded winter NDVI and mean

January temperature from our analysis. All remaining

variables had correlation coefficients less than 0.7 and

were subsequently used as predictor variables in our

species distribution models.

Species distribution modeling

We modeled species distribution of monk parakeets

using random forests (Breiman 2001). Random forests

are an ensemble learning method that aggregates

multiple classification and regression trees (CART

models) into a single, more accurate, predictive

model. Trees are created from bootstrap samples of

the data, and a random subset of the predictor variables

are used to split each node of the tree. Variable

importance is determined by estimating how much

prediction error increases when data for each variable

are permuted. Random forests are considered an
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improvement over single classification trees due to

their high classification accuracy and their ability to

handle large numbers of predictor variables, find a

signal in noisy data, and identify variable importance

(Cutler et al. 2007). Species distribution models were

developed using randomForest version 4.6–6 in R

(Liaw and Wiener 2002).

Because we were particularly interested in testing

the importance of different predictor variables in

different geographic regions, we analyzed three dif-

ferent datasets. The first dataset contained all monk

parakeet and American robin occurrences in the

contiguous United States. We then split the dataset

geographically, along 36� N latitude, into two separate

datasets. We selected 36� N latitude as our dividing

line because few monk parakeets were reported in the

mid-latitudes of the conterminous US (Fig. 1). The

southern region included grid cells with a center

latitude B36� N and the remainder of the grid cells

were assigned to the northern region. To test for

sensitivity of our results to this value, we varied the

latitude at which the break occurred from 35� to

37� N. This did not substantially alter the number of

monk parakeets in each subset but did affect the

pseudo-absence points included in each region.

For each dataset, we ran randomForest with 5,000

trees generated for each model. Growing many trees

has been shown to help improve the stability of

variable importance measures (Liaw and Wiener

2002; Strobl et al. 2007). The model parameter mtry

was set at 8, which means that 8 of our 14 variables

were randomly sampled as candidates to enter the

model at each split in the trees being built. Because

monk parakeet prevalence is low, i.e., there are many

fewer presence points compared to pseudo-absence

points, we constrained the bootstrapped sample used

to build each tree so that randomForest used an equal

number of presence and pseudo-absence points each

time. This process helped ensure that the presence and

pseudo-absence points were given equal weight in the

final model and thus that the model predicts monk

parakeet presence with higher classification accuracy

(Freeman et al. 2012). Furthermore, following the

sampling approach of Wilsey et al. (2012), we

randomly generated 500 datasets and built models

for each using different random seeds each time. By

repeating the analysis with different seeds, we were

able to test the stability of the permutation-based

variable importance measures (Strobl et al. 2007). For

each model run, our full sample consisted of 449 monk

parakeet presence locations and an equal number of

randomly selected pseudo-absences. The North and

South subgroups had 112 and 337 presence points,

respectively, and an equal number of pseudo-absences

for each model run (Table 1).

Approximately one-third of all data points were

withheld from building trees and were independently

run through the tree and classified. These points are

referred to as the test set or ‘‘out of bag’’ sample. After

building the 5,000 trees, each data point gets assigned

to a class (presence or absence of monk parakeets in our

case) based on whether that point was classified most

often as a presence or an absence point when it was run

through the tree as part of the test set. This majority

vote becomes the ‘‘out of bag’’ (OOB) prediction for

each observation. The OOB error estimate is then

calculated by comparing the proportion of times that

the majority vote is not equal to its true classification

(Maindonald and Braun 2010). Another measure of

model performance is Cohen’s kappa, which measures

the proportion of correct predictions after accounting

for chance effects (Manel et al. 2001). Kappa values

from 0.6 to 0.8 indicate substantial model performance

(Landis and Koch 1977 in Manel et al. 2001). Since we

completed 500 randomForest runs, we report the

average, minimum and maximum of both the OOB

error estimates and kappa statistics (Table 2). The

mean OOB error estimate and kappa statistic were used

to judge the quality of the models.

Finally, the difference in mean values between the

presence and pseudo-absence points for each predictor

variable was tested using a bootstrap test with 10,000

resamples. All analyses were performed using the R

statistical package version 2.15.0 (R Development

Core Team, 2012).

Results

There were 29,420 grid cells with American robin

observations (and no monk parakeet observations),

and 449 grid cells with monk parakeet observations

(Fig. 1). The majority of monk parakeets can be found

in Florida, Texas, New York, Illinois and Louisiana.

Few monk parakeets occurred between the latitudes of

35�–37� N. By contrast American robins occurred in

every state, although fewer were reported in more arid

regions of the United States (Fig. 1).
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Species distribution modeling

For the full dataset, mean January dew point temper-

ature and housing density were most important in

determining presence of monk parakeets (Fig. 2c), with

mean variable importance values of 0.12 and 0.06,

respectively. For the northern dataset, distance to cities

with more than 100,000 inhabitants and housing density

were the most important variables (Fig. 2a), with mean

variable importance values of 0.08 for both. For the

southern dataset, mean January dew point temperature

(mean variable importance = 0.15) was by far the most

important variable used to differentiate between pres-

ence and pseudo-absence points (Fig. 2b). In general,

human-related factors (distance to towns, interstates,

and railways, household income, and housing density)

were the most important factors that influenced monk

parakeet distribution for the northern monk parakeets

(mean importance value = 0.05), while the biophysi-

cal variables were less important (mean importance

value = 0.01). Conversely, biophysical variables were

more important than human-related factors (mean

importance values = 0.05 and 0.02, respectively) for

the southern subgroup.

Bootstrap tests were used to evaluate differences in the

mean of the predictor variables between presence and

pseudo-absence locations (Table 1). In the south, the

mean dew point temperature in January was significantly

higher (p\0.001) for presence points �x = 8.1 ±

0.5 �C, 95 % CI) compared to pseudo-absences (�x =

-0.3 ± 0.1 �C, 95 % CI). However, in the north, the

mean January dew point temperature was not signif-

icantly different (p = 0.38) between presences (�x =

-7.7 ± 0.3 �C, 95 % CI) and pseudo-absences (�x =

-8.1 ± 0.1 �C, 95 % CI). In the north, monk parakeet

presences are significantly closer (p \ 0.001) to cities

of more than 500,000 inhabitants (�x = 62.6 ±

10.8 km, 95 % CI) than pseudo-absences (�x = 297.3

± 2.2 km, 95 % CI) but in the south they are

significantly farther away (�x = 286.2 ± 21.0 km

(95 % CI, p \ 0.001) than pseudo-absences (�x =

206.4 ± 2.8 km, 95 % CI). In both the north and the

south, monk parakeets were found in areas closer to

railways, interstates, and cities of more than 100,000

inhabitants, and in areas with significantly more

precipitation, less summer vegetation (NDVI), less

forest, less scrub, less crop and pasture, higher housing

density, and higher household income (Table 1).

Fig. 1 Monk parakeet presence points (black dots, n = 449) and American robin presences (dark grey shading) as reported through

several citizen science datasets
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All the models performed well, with mean kappa

values above 0.8 (Table 2), although the model of the

southern United States performed slightly worse than

the other two models. The mean overall OOB error

rates for the full U.S., northern and southern datasets

were 7.2, 8.1 and 9.6 %, respectively (Table 2). The

average misclassification rates for pseudo-absences

were always larger than for presences. This means that

American robin grid cells were more likely to be

misclassified as monk parakeet grid cells than the

other way around. The error rate and variable impor-

tance did not change substantially when we varied the

break between northern and southern subgroups (not

shown).

Discussion

We found that a different set of variables explained the

distribution of monk parakeets in the southern and

northern United States (Fig. 2). Since monk parakeets

were introduced through the pet trade, it is reasonable

to expect that their spread would initiate from the most

populated cities. Indeed, ‘distance to cities of more

than 500,000 inhabitants’ and ‘housing density’ are

important variables for both geographic regions.

However, the southern birds have expanded beyond

highly urbanized areas, as demonstrated by the fact

that monk parakeet observations are significantly

further away from cities of more than 500,000

inhabitants than pseudo-absences. The variables that

best explain the distribution of the southern subgroup

are biophysical (e.g., temperature and forest cover;

Fig. 2b) rather than human-related. The southern birds

are found in areas that are farther from large cities but

warmer; i.e., they are found in areas that are more

similar to their native range. On the other hand,

distribution of the northern monk parakeets is best

explained by the anthropogenic variables (Fig. 2a),

and mean January dew point temperature does not

differ significantly between presence and pseudo-

absence points (Table 1); i.e., the parakeets are

restricted to living near cities. Had we only conducted

our analyses at the scale of the contiguous United

States (Fig. 2c), we would have overlooked these

trends and misunderstood the factors most important

to predicting monk parakeet spread.

There are two possible explanations for our finding

that anthropogenic factors best explain the distribution

of northern birds while biophysical factors best

explain the distribution of southern birds. First, monk

parakeets might have been introduced later in the

northern United States and thus have not had enough

time to spread beyond cities. However, we could not

find any evidence that monk parakeets had different

introduction dates in the north and south. Indeed, the

Audubon Society’s Christmas Bird Count data suggest

that the birds were first sighted in both southern states

(e.g., Arizona, Florida, Louisiana, Texas) and northern

states (e.g., Connecticut, Illinois, Massachusetts, New

Jersey) between 1970 and 1980. This was confirmed

by Lever (2006), who reports that monk parakeets

were seen in northern states (Connecticut, New Jersey,

Pennsylvania, and Massachusetts) in the late 1960s or

early 1970s and in southern states (Florida, Alabama,

and Texas) in the 1980s. We therefore reject this as a

probable explanation for the importance of different

explanatory variables in the two geographic regions.

A second, more likely explanation is that monk

parakeets might be experiencing different pressures in

different parts of the United States. According to the

range map in Forshaw (2010), much of the species’

native range occurs in subtropical climates of South

America. While small parts of their range extend

below 40�S into the lower-elevation parts of Argen-

tina, the climate is still relatively mild in this region

(e.g., mean minimum temperature from 1961 to 1990

in Bariloche for the coldest month (July) is -1 �C,

Table 2 Model performance metrics

Dataset Misclassification rate of

pseudo-absences (%)

Misclassification rate

of presence points (%)

Total error (%) Kappa

ALL 8 (4.9–11.4) 6.5 (4.7–8.7) 7.2 (5.3–9.5) 0.86 (0.82–0.90)

NORTH 8.2 (2.7–14.3) 7.9 (3.6–12.5) 8.1 (4.5–12.1) 0.84 (0.75–0.91)

SOUTH 10.2 (5.9–13.9) 9 (6.5–11.6) 9.6 (6.7–12.5) 0.81 (0.76–0.87)

Mean, minimum, and maximum misclassification rates for pseudo-absence points, presence points, all points (total error rate), and

kappa statistic
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World Meteorological Organization). Bariloche is

outside the monk parakeets’ native range, in the

foothills of the Andes Mountains, but is the city closest

to the southern edge of their range for which we could

find reliable climate information; winters are most

likely colder in Bariloche than within their range.

Therefore, it is surprising that populations have

become established in cities in the northern United

States (e.g., Chicago and Boston), where mean

minimum January temperatures from 1961 to 1990

are -11 �C and -6 �C, respectively (World Meteo-

rological Organization). It is possible that the urban

heat island effect (Oke 1973) is enough to dampen the

temperature variations in northern cities compared to

the rural surrounding areas, making the climate more

suitable for monk parakeets. Furthermore, cities offer

unique and sometimes highly abundant food

resources, which some species can effectively exploit.

Monk parakeets have a varied diet (South and Pruett-

Jones 2000) and are known to frequent bird feeders. In

Barcelona, the presence of monk parakeets is posi-

tively associated with the percentage of people over

65 years old (Rodrı́guez-Pastor et al. 2012), a group

who may be most likely to feed birds. In colder

climates, such as Chicago, birdfeeders may play an

especially important role in winter. Studies of the

Chicago monk parakeet population show that their diet

in winter consists almost exclusively of seed from

birdfeeders (South and Pruett-Jones 2000), suggesting

that they rely on that resource for survival in colder

climates.

It appears that the unique conditions in cities may

act as ‘‘substitutable habitats’’ (Morellet et al. 2011;

Dunning et al. 1992) for the monk parakeets, allowing

them to persist in a region that might otherwise be

unsuitable. Here, we extend the idea of substitutable

Fig. 2 Variable importance measures with standard deviation error bars from random forest models
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habitats, previously applied to a species obtaining

interchangeable resources from different habitats in

the same landscape (e.g., deer using hedgerows when

the availability of woodland habitat decreases; Morel-

let et al. 2011), to exotic species using novel landscapes

(e.g., cities). These novel landscapes provide resources

and environmental conditions that, although very

different from the species’ native habitat, allow the

exotic species to become established. For monk

parakeets, these resources can include the food that

humans provide voluntarily or involuntarily in cities

but also novel nesting substrates available in urban

environments. If these factors are indeed at play, we

expect that monk parakeets will not expand beyond

metropolitan areas in the northern United States, even

though they may continue to spread and perhaps

become pests in the south if they settle into agricultural

areas. This has already occurred in Europe where monk

parakeets have expanded from Barcelona into neigh-

boring cropland (Domènech et al. 2003).

Figure 3 presents a hypothesis about factors that

might allow an exotic species to survive in an

apparently inhospitable region. In general, as envi-

ronmental conditions become more and more similar

to the species’ native range, the probability of

occurrence increases (thin gray line in Fig. 3). The

threshold of suitability, or the conditions under which

an exotic species can become established in a new

locale, can shift if humans modify the environment in

a way that provides substitutable habitat (thick gray

line in Fig. 3). Regardless of environmental condi-

tions, high propagule pressure may allow a species to

be present although not necessarily self-sustaining

(dashed gray line in Fig. 3). The specific manner in

which the local environmental conditions interact with

propagule pressure and human modifications of the

environment is a needed future area of research, and

should be examined for different exotic species. Only

once we learn the weights of these factors can we most

effectively manage biological invasions.

We must point out that our measures of human

influence cannot distinguish between propagule pres-

sure, supplemental resources, and altered environ-

mental conditions. Cities can provide all of these

factors (Fuller et al. 2008; Grimm et al. 2008; Chytrý

et al. 2008). It is possible that the northern populations

are not viable and are just replenished over time by

more birds that have escaped or were released.

However, the Chicago population has been studied

extensively and has been growing over the last several

decades (Pruett-Jones et al. 2012), suggesting that the

birds are surviving and successfully reproducing in the

region. Several surrogates that approximate propagule

pressure have been proposed but unfortunately most of

them also affect establishment stages (Chiron et al.

2009), so that identifying the mechanisms by which

humans affect exotic species richness remains chal-

lenging (Richardson and Pyšek 2008). Future research

on exotic monk parakeets could mark and recapture

individual birds (following the marking methods of

Senar et al. 2012) and monitor nests (particularly in

northern populations) to estimate reproduction, mor-

tality, and immigration rates. If available, other

explanatory variables might further our understanding

of human influence on monk parakeet establishment.

In particular, locations of urban parks, sales of bird

seed, or sales of monk parakeet pets could be essential

in understanding the interplay between the pressures

of finding suitable and available habitat, obtaining

proper resources for survival, and propagule pressure

on the establishment of this particular exotic species.

An assumption of our analysis is that monk para-

keets have had an opportunity to colonize our entire

study area. We acknowledge that this is unlikely to be

the case, as birds are less likely to escape or be released

in uninhabited or sparsely populated parts of the

country. In particular, some areas in the western United

States (e.g., parts of the Great Basin and Rocky

Mountain regions) have few human residents and also

few reports of monk parakeets (Fig. 1). However, these

same regions had few American robin observations as

well, and thus carried little weight in our model.

Because our analysis focused on a relative comparison

of variable importance between the northern and

southern regions of the United States, and because

our approach excluded remote locations where humans

do not live or visit, we believe that this assumption

should have minimal impact on our findings.

Other studies have reported the importance of

human influences in the range expansion of monk

parakeets (Muñoz and Real 2006; Strubbe and Mat-

thysen 2009) but our study goes one step further and

disentangles factors that will be important in predict-

ing the future spread of this species. In particular, we

show that while the distribution of northern monk

parakeets may be limited to urban environments, the

distribution of the southern subgroup is best explained

by biophysical variables. This research highlights the
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importance of understanding the regionally-specific

factors that allow an exotic species to become

established, which is key to predicting their expansion

beyond areas of introduction.
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