Skip to main content
Log in

Invasion of Rhynchosporium commune onto wild barley in the Middle East

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Rhynchosporium commune was recently introduced into the Middle East, presumably with the cultivated host barley (Hordeum vulgare). Middle Eastern populations of R. commune on cultivated barley and wild barley (H. spontaneum) were genetically undifferentiated and shared a high proportion of multilocus haplotypes. This suggests that there has been little selection for host specialization on H. spontaneum, a host population often used as a source of resistance genes introduced into its domesticated counterpart, H. vulgare. Low levels of pathogen genetic diversity on H. vulgare as well as on H. spontaneum, indicate that the pathogen was introduced recently into the Middle East, perhaps through immigration on infected cultivated barley seeds, and then invaded the wild barley population. Although it has not been documented, the introduction of the pathogen into the Middle East may have a negative influence on the biodiversity of native Hordeum species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott DC, Brown AHD, Burdon JJ (1992) Genes for scald resistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica 61:225–231

    Article  CAS  Google Scholar 

  • Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102

    Article  CAS  Google Scholar 

  • Ali SM, Boyd WJR (1974) Host range and physiologic specialization in Rhynchosporium secalis. Aust J Agric Res 25:21–31

    Article  Google Scholar 

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37

    Article  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Badr A, Sch MKR, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    CAS  PubMed  Google Scholar 

  • Borer ET, Hosseini PR, Seabloom EW, Dobson AP (2007) Pathogen-induced reversal of native dominance in a grassland community. Proc Natl Acad Sci USA 104:5473–5478

    Article  CAS  PubMed  Google Scholar 

  • Brown JS (1990) Pathogenic variation among isolates of Rhynchosporium secalis from barley grass growing in south eastern Australia. Euphytica 50:81–89

    Article  Google Scholar 

  • Caldwell RM (1937) Rhynchosporium secalis of barley, rye, and other grasses. J Agric Res 55:175–198

    Google Scholar 

  • Ceccarelli S, Grando S, Amri A, Asaad FA, Benbelkacem A, Harrabi M, Maatougui M, Mekni MS, Himoun H, El-Einen RA, El-Felah M, Sayed AF E-, Shreidi AS, Yahyaoui A (2001) Decentralized and participatory plant breeding from marginal environments CABI Publ. Wallingford, Oxon

    Google Scholar 

  • Chen RS, Boeger JM, McDonald BA (1994) Genetic stability in a population of a plant pathogenic fungus over time. Mol Ecol 3:209–218

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci USA 104:2773–2778

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Genger RK, Brown AHD, Knogge W, Nesbitt K, Burdon JJ (2003) Development of SCAR markers linked to a scald resistance gene derived from wild barley. Euphytica 134:149–159

    Article  CAS  Google Scholar 

  • Goodwin SB, Maroof MAS, Allard RW, Webster RK (1993) Isozyme variation within and among populations of Rhynchosporium secalis in Europe, Australia and the United States. Mycol Res 97:49–58

    Article  CAS  Google Scholar 

  • Grunwald NJ, Goodwin SB, Milgroom MG, Fry WE (2003) Analysis of genotypic diversity data for populations of microorganisms. Phytopathology 93:738–746

    Article  PubMed  Google Scholar 

  • Jackson LF, Webster RK (1976) Race differentiation, distribution, and frequency of Rhynchosporium secalis in California. Phytopathology 66:719–725

    Article  Google Scholar 

  • Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  Google Scholar 

  • Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Zool 39:242–252

    Article  Google Scholar 

  • Lewontin RC (1972) The appointment of human diversity. Evol Biol 6:381–391

    Google Scholar 

  • Linde CC, Zala M, McDonald BA (2005) Isolation and characterization of microsatellite loci from the barley scald pathogen, Rhynchosporium secalis. Mol Ecol Notes 5:546–548

    Article  CAS  Google Scholar 

  • Linde CC, Zala M, McDonald BA (2009) Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Mol Phylogenet Evol 51:454–464

    Article  CAS  PubMed  Google Scholar 

  • McDonald BA, Zhan J, Burdon JJ (1999) Genetic structure of Rhynchosporium secalis in Australia. Phytopathology 89:639–645

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Genetics 3:429–441

    CAS  PubMed  Google Scholar 

  • Schwartz MW, Hermann SM, Vogel CS (1995) The catastrophic loss of Torreya taxifolia: assessing environmental induction of disease hypotheses. Ecol Appl 5:501–516

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication Urbana. University of Illinois Press, IL

    Google Scholar 

  • Stoddart JA, Taylor JF (1988) Genotype diversity: estimation and prediction in samples. Genetics 118:705–711

    CAS  PubMed  Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, systematic and ecogeographic studies on crop genepools, 2nd edn. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • von Bothmer R, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam, pp 9–27

    Chapter  Google Scholar 

  • von Korff M, Udupa SM, Yahyaoui A, Baum M (2004) Genetic variation among Rhynchosporium secalis populations of West Asia and North Africa as revealed by RAPD and AFLP analysis. J Phytopathol 152:106–113

    Article  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zaffarano PL, McDonald BA, Zala M, Linde CC (2006) Global hierarchical gene diversity analysis suggests the Fertile Crescent is not the center of origin of the barley scald pathogen Rhynchosporium secalis. Phytopathology 96:941–950

    Article  CAS  PubMed  Google Scholar 

  • Zaffarano PL, McDonald BA, Linde CC (2008) Rapid speciation followed host specialization in Rhynchosporium. Evolution 62:1418–1436

    Article  CAS  PubMed  Google Scholar 

  • Zaffarano PL, McDonald BA, Linde CC (2009) Phylogeographical analyses reveal global migration patterns of the barley scald pathogen Rhynchosporium secalis. Mol Ecol 18:279–293

    Article  CAS  PubMed  Google Scholar 

  • Zaffarano PL, McDonald BA, Linde CC (2010) Two new species of Rhynchosporium. Mycologia (in press)

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of Plants in the Old World. Oxford University Press/Clarendon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Linde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiros-Meles, A., Gomez, D., McDonald, B.A. et al. Invasion of Rhynchosporium commune onto wild barley in the Middle East. Biol Invasions 13, 321–330 (2011). https://doi.org/10.1007/s10530-010-9808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9808-6

Keywords

Navigation