Skip to main content
Log in

Probability models to facilitate a declaration that an exotic insect species has not yet invaded an area

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A procedure is presented to facilitate a declaration that an area has not yet been invaded by a specific exotic insect pest following a trapping campaign to detect the pest species. For this we use a probability model to assess null trapping results and also a growth model to help verify that pests were not present at a given time in the past. The probability model is developed to calculate the probability of negative trapping results if in fact there were insects present, and then the hypothesis that insects are present can be rejected. The model depends on knowledge of the efficiency of the traps and also the area of attractiveness of the traps. If an incipient and undetected population does become established, then natural growth should eventually make it apparent. Using a growth model, the rate of increase of an insect population starting from one gravid female insect is calculated. For both the probability model and the growth model, the conclusion that no invaders were present relates to some period in the past, the lag being defined by the time interval during the trapping activity or the time taken for one fertilized female to produce a population detectable by trapping. If no insects are observed after a suitable waiting period, then a conclusion can be drawn that none were present. The methodology is applied to hypothetical insects with discrete or continuous reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anonymous (2002) Exotic bark beetle survey. In: Summary of plant quarantine pest and disease situations in Canada—2002. http://www.inspection.gc.ca/english/sci/surv/sit2002e.shtml#2

  • Barclay HJ, Hargrove JW (2005) Probability models to facilitate a declaration of pest-free status, with special reference to tsetse (Diptera: Glossinidae). Bull Entomol Res 95:1–11. doi:10.1079/BER2004331

    Article  PubMed  CAS  Google Scholar 

  • Barclay H, van den Driessche P (1983) Pheromone trapping models for insect pest control. Res Popul Ecol (Kyoto) 25:105–115. doi:10.1007/BF02528786

    Article  Google Scholar 

  • Barclay HJ, Safranyik L, Linton D (1998) Trapping mountain pine beetles Dendroctonus ponderosae (Coleoptera: Scolytidae) using pheromone-baited traps: effects of trapping distance. J Entomol Soc Br Columbia 95:25–31

    Google Scholar 

  • Brockerhoff EG, Jones DC, Kimberley MO, Suckling DM, Donaldson T (2006) Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. For Ecol Manag 228:234–240. doi:10.1016/j.foreco.2006.02.046

    Article  Google Scholar 

  • Campbell RW (1969) Studies on gypsy moth population dynamics. In: Forest insect population dynamics. USDA, Forest Service, Research Paper NE-125, pp 29–34

  • Chiang CL (1968) Introduction to stochastic processes in biostatistics. John Wiley, New York

    Google Scholar 

  • Doane CC, McManus ML (1981) The gypsy moth: research toward integrated pest management. USDA, Forest Service Technical Bulletin 1584, Washington, DC

    Google Scholar 

  • Elkinton JS, Liebhold AM (1990) Population dynamics of gypsy moth in North America. Annu Rev Entomol 35:571–596

    Google Scholar 

  • Food and Agricultural Organization (1999) Determination of pest status in an area. International Standards for Phytosanitary Measures, Pub. No. 8, Secretariat of the International Plant Protection Convention, FAO, UN, Rome

    Google Scholar 

  • Humble L (2001) Invasive bark and wood-boring beetles in British Columbia, Canada. In: Alfaro RI, Day KR, Salom SM, Nair KSS, Evans H, Liebold AM, Lieutier F, Wagner M, Futai K, Suzuki K (eds) Protection of world forests: advances in research. Proceedings of the 21st IUFRO world congress, August 7–12, 2001, Kuala, pp 69–77

  • Knipling EF, McGuire JU (1966) Population models to test theoretical effects of sex attractants used for insect control. Agric Info Bull 308, USDA

  • LaBonte JR, Mudge AD, Johnson KJR (2005) Nonindigenous woodboring Coleoptera (Cerambycidae, Curculionidae: Scolytinae) new to Oregon and Washington, 1999–2002: consequences of the intercontinental movement of raw wood products and solid wood packing materials. Proc Entomol Soc Wash 107:554–564

    Google Scholar 

  • Lampur, Malaysia. IUFRO Secretariat, Vienna, IUFRO World Series, vol 11, 253 pp

  • Liebhold AM, Tobin PC (2006) Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul Ecol 48:253–262. doi:10.1007/s10144-006-0014-4

    Article  Google Scholar 

  • Liebhold AM, Elkinton JS, Wallner WE (1986) Effect of burlap bands on between-tree movement of late-instar gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Environ Entomol 15:373–379

    Google Scholar 

  • Lindgren BS (1983) A multiple funnel trap for scolytid beetles (Coleoptera). Can Entomol 115:299–302

    Article  Google Scholar 

  • Mason CJ, McManus ML (1981) Larval dispersal of the gypsy moth. In: Doane CC, McManus ML (eds) The gypsy moth: research toward integrated pest management. USDA Forest Service Technical Bulletin 1584, 757 pp

  • Mitchell WC (1980) Verification of the absence of the oriental fruit and melon fruit fly following and eradication program in the Mariana Islands. Proc Hawaii Entomol Soc 1977(23):239–243

    Google Scholar 

  • Mudge AD, LaBonte JR, Johnson KJR, LaGasa EH (2001) Exotic woodboring Coleoptera (Micromalthidae, Scolytidae) and Hymenoptera (Xiphydriidae) new to Oregon and Washington. Proc Entomol Soc Wash 103:1011–1019

    Google Scholar 

  • Parzen E (1960) Modern probability theory and its applications. Wiley, New York

    Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Rabaglia R, Duerr D, Acciavatti R, Ragenovich I (2008) Early detection and rapid response for non-native bark and ambrosia beetles. United States Department of Agriculture, Forest Service, Forest Health Protection, 12 pp. http://www.fs.fed.us/foresthealth/publications/EDRRProjectReport.pdf

  • Richards MS, Tarry DW (1992) Has the warble fly problem gone away? Society for veterinary epidemiology and preventive medicine: tenth anniversary proceedings, 1st–3rd April, 1992. University of Edinburgh, pp 148–156

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi:10.1146/annurev.ecolsys.32.081501.114037

    Article  Google Scholar 

  • Thompson SK (2002) Sampling, 2nd edn. Wiley, New York 367 pp

    Google Scholar 

  • Thorpe KW, Hickman AD, Tcheslavskaia KS, Leonard DS, Roberts EA (2007) Comparison of methods for deploying female gypsy moths to evaluate mating disruption treatments. Agric For Entomol 9:31–37. doi:10.1111/j.1461-9563.2006.00312.x

    Article  Google Scholar 

  • Turchin P, Odendaal FJ (1996) Measuring the effective sampling area of a pheromone trap for monitoring population density of Southern Pine Beetle (Coleoptera: Scolytidae). Environ Entomol 25:582–588

    Google Scholar 

  • Weseloh RM (1985) Dispersal, survival and population abundance of gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), larvae determined by releases and mark-recapture studies. Ann Entomol Soc Am 78:728–835

    Google Scholar 

  • Weseloh RM (1987) Dispersal and survival of gypsy moth larvae. Can J Zool 65:1720–1723

    Article  Google Scholar 

Download references

Acknowledgements

We thank Vince Nealis, Les Safranyik and Imre Otvos for useful discussions and for providing literature references for gypsy moth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. Barclay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barclay, H.J., Humble, L. Probability models to facilitate a declaration that an exotic insect species has not yet invaded an area. Biol Invasions 11, 1267–1280 (2009). https://doi.org/10.1007/s10530-008-9331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9331-1

Keywords

Navigation