Skip to main content
Log in

Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a β-glucuronidase from Staphylococcus sp. RLH1

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Bilirubin, a key active ingredient of bezoars with extensive clinical applications in China, is produced through a chemical process. However, this method suffers from inefficiency and adverse environmental impacts. To address this challenge, we present a novel and efficient approach for bilirubin production via whole-cell transformation. In this study, we employed Corynebacterium glutamicum ATCC13032 to express a β-glucuronidase (StGUS), an enzyme from Staphylococcus sp. RLH1 that effectively hydrolyzes conjugated bilirubin to bilirubin. Following the optimization of the biotransformation conditions, a remarkable conversion rate of 79.7% in the generation of bilirubin was obtained at temperate 40 °C, pH 7.0, 1 mM Mg2+ and 6 mM antioxidant NaHSO3 after 12 h. These findings hold significant potential for establishing an industrially viable platform for large-scale bilirubin production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arul L, Benita G, Balasubramanian P (2008) Functional insight for beta-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1. Bioinformation 2(8):339–343

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421

    Article  CAS  PubMed  Google Scholar 

  • Boyer JL (2013) Bile formation and secretion. Compr Physiol 3(3):1035–1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629–633

    Article  ADS  CAS  PubMed  Google Scholar 

  • Dong H, Huang H, Yun X, Kim DS, Yue Y, Wu H, Sutter A, Chavin KD, Otterbein LE, Adams DB, Kim YB, Wang H (2014) Bilirubin increases insulin sensitivity in leptin-receptor deficient and diet-induced obese mice through suppression of ER stress and chronic inflammation. Endocrinology 155(3):818–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Tang H, Han B, Lv B, Li C (2016) Enhancing the thermostability of β-glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy. Ind Eng Chem Res 55(19):5474–5483

    Article  CAS  Google Scholar 

  • Gao J, Zheng HL, Wang XQ (2022) A β-glucuronidase and its application. Chinese patent, 202210905244.9

  • Gazzin S, Vitek L, Watchko J, Shapiro SM, Tiribelli C (2016) A novel perspective on the biology of bilirubin in health and disease. Trends Mol Med 22(9):758–768

    Article  CAS  PubMed  Google Scholar 

  • Hinds TD Jr, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE (2020) Bilirubin nanoparticles reduce diet-induced hepatic steatosis, improve fat utilization, and increase plasma β-hydroxybutyrate. Front Pharmacol 11:594574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Lee H, Ji SY, Kim SY, Hwangbo H, Park SH, Kim GY, Park C, Leem SH, Hong SH, Choi YH (2021) Induction of apoptosis by isoalantolactone in human hepatocellular carcinoma Hep3B Cells through activation of the ROS-dependent JNK signaling pathway. Pharmaceutics 13(10)

  • Ku S, Zheng H, Park MS, Ji GE (2011) Optimization of β-glucuronidase activity from Lactobacillus delbrueckii Rh2 and its use for biotransformation of baicalin and wogonoside. J Korean Soc Appl Bi 54(2):275–280

    Article  CAS  Google Scholar 

  • Lee B, Lee S, Kim H, Jeong K, Park J, Lee E, Lee J (2015) Biotransformation of oleic acid into 10-ketostearic acid by recombinant Corynebacterium glutamicum-based biocatalyst. Biotechnol Lett 37(5):1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Na YA, Kim E, Lee HS, Kim P (2016) The actinobacterium Corynebacterium glutamicum, an industrial workhorse. J Microbiol Biotechnol 26(5):807–822

    Article  PubMed  Google Scholar 

  • Liu Y, Jie HF, Qi F, KaleemWenwenLi IEC (2012) Effects of a non-conservative sequence on the properties of β-glucuronidase from Aspergillus terreus Li-20. PLoS ONE 7(2):e30998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mindt M, Beyraghdar KA, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins DSV, Wendisch VF, Cankar K (2022) Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Fact 21(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni ZH, Liu L, Chen KL, Li H, Yin ZC (2021) The method and application of bilirubin isolation. Chinese patent, 202110652964.4

  • Qi F, Dai D, Liu Y, Kaleem I, Li C (2011) Effects of low-shear modeled microgravity on the characterization of recombinant β-D-glucuronidase expressed in Pichia pastoris. Appl Biochem Biotech 163(1):162–172

    Article  CAS  Google Scholar 

  • Rao P, Suzuki R, Mizobuchi S, Yamaguchi T, Sasaguri S (2006) Bilirubin exhibits a novel anti-cancer effect on human adenocarcinoma. Biochem Bioph Res Co 342(4):1279–1283

    Article  CAS  Google Scholar 

  • Sofronescu AG, Loebs T, Zhu Y (2012) Effects of temperature and light on the stability of bilirubin in plasma samples. Clin Chim Acta 413(3):463–466

    Article  CAS  PubMed  Google Scholar 

  • Son J, Jang JH, Choi IH, Lim CG, Jeon EJ, Bae BH, Jeong KJ (2021) Production of trans-cinnamic acid by whole-cell bioconversion from l-phenylalanine in engineered Corynebacterium glutamicum. Microb Cell Fact 20(1):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Sakagishi Y (1994) Determination of serum bilirubin by the diazo method using the diazotized 3-nitroaniline reacting readily with the photoproducts of bilirubin. Jpn J Clin Oncol 23(2):158–163

    CAS  Google Scholar 

  • Vítek L (2012) The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front Pharmacol 3:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei B, Wang PP, Yan ZX, Yan R (2018) Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Appl Microbiol Biot 102(21):9193–9205

    Article  CAS  Google Scholar 

  • Zanussi JT, Zhao J, Dorn CA, Liu G, Feng Q, Wei W, Mosley JD, Stein CM, Kawai VK (2022) Identifying potential therapeutic applications and diagnostic harms of increased bilirubin concentrations: a clinical and genetic approach. Clin Pharmacol Ther 111(2):435–443

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MAG (2018) Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb Cell Fact 17(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Gao B, Xiao Y, Yang H, Wang Y, Du L, Zhu D (2020) Purification and characterization of a novel β-glucuronidase precisely converts glycyrrhizin to glycyrrhetinic acid 3-O-mono-β-D-glucuronide from plant endophytic Chaetomium globosum DX-THS3. Int J Biol Macromol 159:782–792

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Qian C, Tang H, Kitaguchi T, Ueda H (2023) Creating a thermostable β-glucuronidase switch for homogeneous immunoassay by disruption of conserved salt bridges at diagonal interfaces. Biochemistry 62(2):309–317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of the Education Department of Anhui Province (grant no. K120438044 to W.Z.) and the Research funding of Anhui University (grant no. S020318003/012 to W.Z.).

Funding

Key Research Program of the Education Department of Anhui Province,K120438044,Wei Zhou,Research funding of Anhui university,S020318003/012,Wei Zhou

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Contributions

M.Z., Y.Z.W and W.Z. conceived the project. Y.N.C., M.Y.C, Q.J.G., K.B and W.Z. performed experiments. W.Z., M.Z., and Y.N.C. analyzed the data. W.Z. and M.Z. wrote the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Cui, Y., Chen, M. et al. Production of bilirubin via whole-cell transformation utilizing recombinant Corynebacterium glutamicum expressing a β-glucuronidase from Staphylococcus sp. RLH1. Biotechnol Lett 46, 223–233 (2024). https://doi.org/10.1007/s10529-024-03468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-024-03468-1

Keywords

Navigation