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and a second one in fructose –nitrogen mineral salt 
medium (FN).
Conclusion  Despite having two subsequent precul-
tures our protocol reduces the preculture time to less 
than 30  h and provides reproducible precultures for 
cultivation of C. necator HP80.

Keywords  Cupriavidus necator · NAD+-reducing 
hydrogenase · Preculture management · Bioprocess 
development

Introduction

Cupriavidus necator (formerly Ralstonia eutropha), 
aside from being a major producer of pholyhydroxy-
alkanoates, has become a model organism for litho-
autotrophic growth with H2 and CO2 (Burgdorf et al. 
2005; Lenz et al. 2002; Schwartz et al. 2009) but also 
its ability to produce polyhydroxybutyrate (PHB) 
(Budde et  al. 2010; Riedel et  al. 2012) and its oxy-
gen-tolerant [NiFe] hydrogenases (Lenz et  al. 2002; 
Poladyan et  al. 2019; Schäfer et  al. 2016) are in the 
focus of current research. Especially, the energy-con-
verting hydrogenases are of particular interest. They 
are involved in H2 oxidation thus making them prom-
ising candidates for H2-driven biotransformations, 
e.g. as part of co-factor regeneration systems, biosen-
sors, or as bioanodes in biofuel cells (Burgdorf et al. 
2005; Jugder et al. 2016b; Lauterbach and Lenz 2013, 
2019; Lenz et  al. 2015; Lu et  al. 2016; Schneider 
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and Schlegel 1976). Hence, it is important to find 
time- and cost-saving biotechnological processes for 
production of high yields of these hydrogenases. So 
far, different approaches to obtain NAD+-reducing 
active soluble hydrogenase (SH) from C.  necator 
have been used, however, experiments have only been 
performed at laboratory scale up to a volume of 5 L 
(Jugder et al. 2016b; Lauterbach and Lenz 2013; Lenz 
et al. 2018). For time and cost saving and for applica-
tion to industrial scales it is important to establish a 
reproducible standard to obtain precultures that leads 
to fast growing main cultures, which in the end results 
in large amounts of SH.

For almost 50 years, not much has changed in the 
standard cultivation methods of C.  necator. Thus, 
the standard method for precultures is inoculation 
with fresh transformants from agar plates into liq-
uid fructose-nitrogen medium (FN) (Kleihues et  al. 
2000; Schlegel et al. 1961). Over the years, only the 
used medium was modified in its composition, e.g. 
fructose was added for heterotrophic growth (Lenz 
et al. 1994; Schäfer et al. 2013). From the beginning, 
precultures were incubated at 30 °C, but in between, 
37 °C was repeatedly chosen as incubation tempera-
ture (Al-Shameri 2020; Karstens 2014; Poladyan 
et al. 2019; Wilkening 2021). Incubation times were 
also continuously changed; common precultures are 
either performed as overnight cultures, (Jugder et al. 
2016b) or are cultivated for up to 48 h (Goris 2011; 
Karstens 2014; Schäfer et  al. 2013). In some cases, 
inoculation from a preculture in the late stationary 
phase was performed, without specifying a specific 
time (Lenz et al. 2018). Meanwhile, the use of glyc-
erol stocks for inoculation of precultures is increas-
ingly reported (Al-Shameri 2020; Sydow et al. 2017; 
Wilkening 2021). Similarly, there has been a move 
away from a fixed volume for inoculation (e.g. pre-
culture to main culture of 1:20) (Jugder et al. 2016a) 
and more towards a fixed OD436 of 0.1 in the final 
volume (Kohlmann 2015; Wilkening 2021). To cover 
the aspect of a large volume of fit cells to inoculate 
larger main cultures two precultures are used (Wilk-
ening 2021). This is also found in cultivations of 
other organisms, such as Cupriavidus metallidurans 
(Herzberg et  al. 2015; Wiesemann et  al. 2017). In 
2013, Schiffels already pointed out that the condi-
tion of the precultures is considered to be critical for 
reproducibility (Schiffels 2013). Even though, each 
cultivation starts with a preculture and an optimal 

preculture management is a prerequisite for a sus-
tainable process performance, preculture conditions 
have not been studied in detail so far and not every 
publication details their preparation. When applying 
either of these protocols, the use of fresh colonies of 
indeterminate size for inoculation of the preculture or 
growth of the preculture for a specific time, e.g. over-
night or 48 h (Kohlmann 2015; Lu et al. 2016; Pola-
dyan et al. 2019; Schäfer et al. 2016), without control 
of culture growth, resulted in different physiological 
states of the preculture cells, which consequently led 
to very poor reproducibility of the main cultures with 
different lag phases, protein yields and activities.

Thus, since there is a lack of concrete protocols for 
uniform precultures, we have taken it up to develop 
one, based on some of the existing methods. In this 
work, we established a uniform and reproducible pro-
tocol for precultures using two precultures, inocula-
tion from defined cryostocks, a temperature of 30 °C, 
and switching from complex medium to minimal 
medium.

Materials and methods

Strain and media

C.  necator HP80 (pGE771) (Lauterbach and Lenz 
2013) was grown in nutrient broth medium (NB) 
containing 3 g meat extract l−1 and 5 g peptone from 
gelatin  l−1, or fructose-nitrogen medium (FN) with 
25 mM Na2HPO4 × 12 H2O, 11 mM KH2PO4, 0.8 mM 
MgSO4 × 7  H2O, 0.06 mM CaCl2 × 2  H2O, 0.01 mM 
FeCl3 × 6  H2O, 0.001  mM NiCl2 × 6  H2O, 37  mM 
NH4Cl and 4 g  fructose  l−1. Fructose-glycerol-nitro-
gen medium (FGN) is composed the same way as FN 
medium but contains a mixture of 2  g  fructose and 
glycerol l−1 each.

Culture conditions

Cultures were grown in 100 ml Erlenmeyer flasks in 
a final volume of 10 ml medium or 125 ml ultra yield 
flask with 25  ml medium under oxic conditions at 
30 °C on an orbital shaker (Infors HT, Switzerland). 
15 µg tetracycline  ml−1 were used for selection. The 
optical density was measured in a spectrophotometer 
(Ultrospec 2100, Amersham Biosiences) at 436  nm 
(OD436).
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Generation of glycerol stocks

Glycerol stocks of C.  necator HP80 were prepared 
as follows: Cells were grown in 100  ml Erlenmeyer 
flasks with 10  ml NB medium until the late expo-
nential growth phase was reached. The culture was 
adjusted to OD436 of 2.8 with NB medium, mixed 
with equal parts of sterile 50% glycerol, aliquoted to 
40 µl, flash-frozen and stored at -80 °C until further 
use. For inoculation of 10 ml NB preculture 40 µl of 
the cryostock was used.

Results and discussion

Growth from cryostocks works best in NB medium

The development of an efficient and robust bioprocess 
already starts with the preculture for the main pro-
cess. A preculture must not only be reproducible, but 
also provide sufficient material of vital cells in the 
shortest possible time so that the main culture can 
grow quickly without long lag phases to ensure cost-
effective production. Most critical in this regard are 
the adaptation times of the cells after transfer from a 
glycerol stock to the preculture and the transfer from 
the preculture to the main culture.

We tested three different media for their suitabil-
ity as preculture. On the one hand, FN and FGN min-
eral salt medium, which were supposed to be used for 
the main cultures, and on the other hand NB, which 
had already been used to produce the cryostock. To 
ensure reproducible cultures, all cultivations were 
started from standardized cryostocks (see Mate-
rial and Methods). Precultures in 10  ml NB, FN or 
FGN medium were inoculated with 40 µL each from 
the cryostocks in 100  ml shake flasks and cultured 
with vigorous shaking for 18  h at 30  °C. Samples 
were taken every 1 to 2 h to follow growth indicated 
as increase in optical density (OD436) (Fig. 1). Both 
the FN and FGN mineral salt media cultures showed 
almost no growth after 18  h and reached final ODs 
of only 0.03 and 0.04, respectively. This might be 
attributed to the slow adaptation of the cultures to 
these media, which is indicated by extremely long lag 
phases of 12 and 15 h, respectively (Fig. 1). In con-
trast, in NB medium, exponential growth started after 
about 3–4  h and stationary phase was reached after 
about 16  h (Fig.  1). The complex additives in NB 

medium allow a faster adaptation of the cells from the 
cryostock to the conditions in the liquid culture. Thus, 
the NB culture was chosen for inoculation of a second 
preculture instead of prolonged cultivation in FN or 
FGN.

Inoculation of the second precultures should be done 
from 12–15 h first precultures.

Three time points were chosen to inoculate a second 
precultures in either FN or FGN mineral salt medium 
from the NB preculture. These time points corre-
spond to the exponential growth phase after 12 h at an 
expected OD436 of approximately 1, the late exponen-
tial phase after 15 h at an expected OD436 of 2, and 
the early stationary phase after 18 h with an expected 
OD of 2.5. Samples were taken at different time 
points and OD436 was measured to follow growth 
(Fig. 2).

All cultures show comparable growth and reach 
similar OD436 maxima of approx. 9 in FN medium 
and 5 in FGN medium, respectively, irrespective of 
the duration of the 1st preculture. However, the exten-
sion of the 1st preculture leads to a slower growth of 
the 2nd preculture. Cultures inoculated from a 12-h 
preculture reach stationary phase after 15 and 18  h 
in FGN and FN medium, respectively, while cultures 
inoculated from 15- or 18-h precultures require 3 and 
6 h longer to reach stationary phase in FGN and FN 
medium, respectively (Fig. 2). The slower growth can 
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Fig. 1   Growth of C.  necator HP80 in different media inocu-
lated from a NB cryostock. Precultures were inoculated with 
40  µl cryostocks in 10  ml of each medium. Growth curves 
recorded by measurement of OD436 were performed in NB 
medium (green rhombuses), FN medium (red triangles) and 
FGN medium (blue squares). The arrows indicate time points 
for inoculation of the 2nd preculture
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be attributed to a reduced fitness of the cells that leads 
to a prolonged lag phase when older precultures are 
used. Consequently, a 2nd preculture in FN medium 
inoculated from a 12 h first preculture in NB medium 
was found to be optimal.

Main cultures should be inoculated from 14–17 h 
second precultures.

The first and second precultures were prepared as 
described above. After 14 h, 17 h and 20 h, a main 
culture of 25 ml was inoculated from the second pre-
culture in a 125  ml ultra yield flask and the growth 
curve was recorded by OD436 measurement in the 
spectrophotometer (Fig. 3).

The two cultures inoculated from 14 and 17  h 
precultures grew nearly identical and slightly faster 
than that inoculated from the 20  h preculture with 
growth-rates µ of 0.23  h−1, 0.23  h−1 and 0.22  h−1. 
Both cultures reached stationary phase at an OD of 
about 4 after 15  h of cultivation. At that time the 
culture started from the 20  h preculture reached 
only about half of the OD436 from the other two 
cultures and reached stationary phase with simi-
lar OD436 of 4 only after 18  h. For inoculation of 
the main culture it was set that a second preculture 
should be cultivated between 14 and 17  h to gain 
fast and high growth of the main culture.

Consequently, a 12  h first preculture in NB 
medium followed by a 14  h second preculture 
in FN medium where found to be optimal for fast 
and reproducible growth of the main culture. The 
inoculation of the main culture with exponentially 
growing cells is more favorable, as adaptation to the 
fresh medium occurs more easily and faster. In con-
trast inoculation with cells from the late stationary 
phase tends to have negative effects on the subse-
quent growth of the main culture, characterized by a 
prolonged lag phase. Compared to single preculture 
systems in which the cells are cultivated for 48  h 
(Crépin et  al. 2016; Wilkening 2021), or until the 
later stationary phase is reached (Lenz et al. 2018), 
the two-preculture system allows faster growth, 
due to the decoupling of the two critical adaptation 
steps, i.e. the transition from cryostock to grow-
ing liquid culture and the transition from complex 
medium to mineral salt medium.
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Fig. 2   Growth of C. necator HP80 in FN (a) and FGN 
medium (b) inoculated from a 1st NB preculture. The cells 
were obtained during exponential growth phase (green  rhom-
buses), late exponential phase (red triangles) or stationary 

phase (blue squares). Cell growth was recorded over 30  h of 
cultivation at 30  °C by shaking at 250  rpm. All cultivations 
were done in triplicates. The arrows indicate time points for 
inoculation of the main culture
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Fig. 3   Main cultures of C. necator were grown in 25 ml FGN 
medium in 125 ml baffled shake flasks. They were inoculated 
to an OD436 of 0.1 after 14 h (green rhombuses), 17 h (red tri-
angles) and 20 h (blue squares) of growth of the second precul-
ture in FN medium. Growth was detected by measurements of 
OD436. All cultivations were done in triplicates
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Conclusion

The present work addresses an important aspect of 
bioprocess development, the preculture management, 
which is often overlooked or underestimated, but is 
nevertheless important for successful and economic 
process design. Based on our results, we propose a 
two-stage preculture to be optimal (Fig. 4).

The major difficulty of single-stage precultures is 
that the critical transitions in the physiology of the 
cells, which occur when changing from cryostock 
or agar plate to liquid culture and from complex 
medium to the mineral salt medium used in the main 
culture, have to occur simultaneously. Both changes 
require an adaptation of the cell physiology and are 
accompanied by a more or less long growth arrest, 
which is represented by a prolonged lag phase. This 
problem is no longer apparent when using the two 
preculture scheme. The decoupling of the required 
two adaptions is advantageous as it allows faster 
adaptation of the cellular physiology thus reduc-
ing the overall preculture time to less than 30  h. 
Moreover, the possibility to use log-phase cells for 
inoculation of the main culture nearly abolishes 
a lag phase in the main culture thus further reduc-
ing the overall process duration which is beneficial 
for process economy. Furthermore, the almost neg-
ligible differences in growth of the individual cul-
tures demonstrates the high reproducibility of our 

protocol, thus allowing accurate prediction of the 
time and culture volume required for inoculation of 
the main culture, allowing additional resource sav-
ings, e.g. reactor volume and culture medium.

In view of the increasing demand for alternative 
green energy, hydrogenases will be more and more 
in the focus of research. At the same time, the bio-
technological production of hydrogenases must be 
improved in order to make these enzymes available 
in sufficient quantities for cost-effective application 
also on an industrial scale. The preculture manage-
ment presented here could represent a first contribu-
tion to the development of such a process.
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Fig. 4   Protocol of optimized preculture procedure. A cry-
ostock is prepared by cultivation of C.  necator in 10  ml NB 
medium to an OD436 of 2.8 and mixing of the culture 1:1 with 
50% sterile glycerol. A first preculture is inoculated with 40 µl 
cryostock in 10% filled shakeflask with NB medium and grown 

for 12 h at 30 °C and 250 rpm shaking. Then a second precul-
ture is inoculated to OD436 0.1 from the first preculture at 10% 
filling of the shakeflask and cultivated for 14 h to 17 h at 30 °C 
and shaking with 250 rpm
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