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Abstract

Objectives The applicability of proton-transfer-re-

action mass spectrometry (PTR-MS) as a versatile

online monitoring tool to increase consistency and

robustness for recombinant adeno-associated virus

(rAAV) producing HEK 293 bioprocesses was eval-

uated. We present a structured workflow to extract

process relevant information from PTR-MS data.

Results Reproducibility of volatile organic com-

pound (VOC) measurements was demonstrated with

spiking experiments and the process data sets used for

applicability evaluation consisted of HEK 293 cell

culture triplicates with and without transfection. The

developed data workflow enabled the identification of

six VOCs, of which two were used to develop a soft

sensor providing better real-time estimates than the

conventional capacitance sensor. Acetaldehyde,

another VOC, provides online process information

about glucose depletion that can directly be used for

process control purposes.

Conclusions The potential of PTR-MS for HEK 293

cell culture monitoring has been shown. VOC data

derived information can be used to develop soft

sensors and to directly set up new process control

strategies.

Keywords HEK 293 cell culture monitoring �
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Abbreviations

AQC 6-Aminoquinolyl-N-hydroxysuccinimidyl

carbamate

CI Confidence interval

m/z Ion mass-to-charge ratio

NRMSE Normalized root mean square error

PC Principal component

PCA Principal component analysis

pptv Parts per trillion by volume

PTR-

MS

Proton-transfer-reaction mass

spectrometry

rAAV Recombinant adeno-associated virus
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SD Standard deviation

VOC Volatile organic compound

Introduction

Recombinant adeno-associated viruses (rAAV) are

one of the most popular viral vectors for in vitro and

in vivo gene delivery used to treat diseases derived

from monogenic disorders (Naso et al. 2017). A

number of 149 unique clinical trials were already

reported by 2019 (Kuzmin et al. 2021). Many efforts

and resources have been focused on scalable manu-

facturing processes to achieve high titers with high full

to empty capsid ratios. This emerging manufacturing

technology is mostly based on triple transfection in

HEK 293 cells and requires extended experience to

deliver a batch-to-batch consistent product quality

(Hernandez Bort 2019). To generally better under-

stand and monitor cell behavior and product formation

during cultivations, spectroscopic methods became

more popular within the last decade (Rathore et al.

2010; Mercier et al. 2014; Jiang et al. 2017;

Wasalathanthri et al. 2020). While spectroscopic

methods in combination with chemometric modeling

are attractive PAT tools, overlapping spectra or lack of

sensitivity to particular components render some

drawbacks in their broader applicability.

An alternative process analyzer, already evaluated

with microbial systems and CHO cells is proton-

transfer-reaction mass spectrometry (PTR-MS)

(Bunge et al. 2008; Luchner et al. 2012; Schmidberger

et al. 2014), which allows for quantitative real-time

measurement of volatile organic compounds (VOCs)

in the bioreactor exhaust gas stream with high

sensitivity and frequency. For these systems, the

identified most prominent VOCs found in the off-gas

comprised methanol, acetaldehyde, ethanol, metha-

nethiol, ethanethiol, acetone, and isoprene. The

advantage of PTR-MS or online mass spectroscopic

techniques, in general, is the potential to directly

measure the compound’s absolute concentration

reaching the sensor at high sensitivity and high

sampling rates. Thereby, this process analyzer gives

direct insights into the cellular response to specific

process conditions. To date, the investigation of VOC

emission by PTR-MS in HEK cells is not covered by

literature, providing an interesting and promising

field. This research gap concerning VOCs becomes

apparent when expanding this research topic to

mammalian cells in general. Only one recent study

investigated VOC emission profiles of different

mammalian cell lines by using gas chromatography-

mass spectrometry, providing a classification of VOCs

as well as discussing the impact of the utilized media

(McCartney et al. 2020). Even though a head-to-head

comparison of both methods is not valid, e.g., due to

different basic functionalities, sensitivity levels, and

operation steps, the herein reported VOC profiles

demonstrate differences between the investigated cell

lines and metabolic changes during cell growth. While

the major parts of these compounds were classified

either as a type of alkane, esters, alcohols, oximes, or

others, still 19.2% of the detected VOC signals are of

unknown origin, highlighting the necessity of further

research in this field.

In general, extraction of valuable process informa-

tion can be achieved with unsupervised learning

strategies to identify process parameters, spectro-

scopic wavelengths, or masses driving process varia-

tions (Bayer et al. 2020a, b). In the next step, soft

sensors based on those variables combined with non-

parametric or hybrid modeling approaches (Bayer

et al. 2020a, b) can be set up to monitor target

parameters or critical quality attributes in real-time.

Here, we describe a workflow to exclude irrelevant

PTR-MS masses and simultaneously identify valuable

ones for rAAV producing HEK 293 cell culture

processes by applying an unsupervised learning strat-

egy combined with process knowledge. Based on the

results of this approach, a soft sensor to monitor

biomass concentration was developed and compared

to the state-of-the-art capacitance based biomass soft

sensor. Further, a PTR-MS based decision tool for

glucose depletion was developed.

Material and methods

Experimental setup

The experimental setup for online monitoring of

VOCs consisted of a bioreactor, a sampling system,

and a high-sensitivity hs-PTR-MS instrument (Ionicon

Analytik, Austria). To test the functionality of the

instrument and the sampling line, experiments with

selected VOCs were performed.
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The response time from pulse to signal increase in

the PTR-MS and the reproducibility of the measure-

ments were used as evaluation criteria. The VOCs

were added either into the gas stream or to the media.

These results are presented in Supplementary Fig. 1

and summarized in Supplementary Table 1.

Two HEK 293 cultivation set-ups were conducted

in biological triplicates. The first one was a 4-day

batch culture, and the second one was a process with

transfection after 4 days growth in batch mode and

subsequent cultivation for another 5 days.

Cell line and cultivation

HEK 293 cells adapted to growth in suspension and

cultivated in chemically defined serum-free medium

(FreeStyleTM F17, ThermoFisher, NY, USA) were

used for the production of rAAV8 vectors. Batch

cultivation was performed in 20 L (WV 12 L)

bioreactors at ?37 �C in a humidified atmosphere

containing 5% carbon dioxide and with constant

stirring at 190 rpm. Transient transfection of HEK

293 cells with three plasmids containing Adenovirus 5

Helper genes, Rep2Cap8, and human FVIII sequence,

respectively, was carried out with Polyethylenimine

(Polysciences, PA, USA). For this, the cell culture was

grown to approximately 8 9 106 cells/mL and diluted

with one volume of fresh medium before transfection.

The fermentation producing rAAV8 particles was

completed five days after transfection.

Cell density and viability were determined with a

Nucleocounter NC-200 (Chemometec, Denmark). In

addition, an Incyte Arc permittivity sensor (Hamilton

Bonaduz, Switzerland) was used for online monitoring

of the viable cell density. A correlation factor of 0.63

was applied to determine the viable cell density based

on the measured permittivity. The correlation factor

was determined for the used HEK 293 cell line in a

previous study (data not shown).

Substrates and metabolites including glucose, lac-

tate, glutamine, and glutamate were determined with a

Cedex Bio HT Analyzer (Roche Diagnostics,

Germany).

Amino acid determination

Pre-column derivatization with 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate (AQC) was used to

determine and quantify amino acids (Ala, Arg, Asn,

Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe,

Pro, Ser, Thr, Trp, Tyr, Val) in the fermentation

supernatant. The AccQ-Tag reaction was performed

according to the supplier’s instructions (UPLC Amino

Acid Analysis Solution; Waters, MA, USA). Fermen-

tation samples were diluted to the amino acid

concentration range of the amino acid standard with

three concentrations ranging from 50 to 400 nmol/mL.

The amino acid DL-Norvaline (Sigma-Aldrich, MO,

USA) was added to Amino Acid Standard Solution

(5061-3330; Agilent, CA, USA) and the fermentation

samples as an internal standard. The use of an internal

standard with the calibration standard was used to

correct volumetric errors introduced during sample

preparation.

rAAV8 ELISA

A sandwich ELISA was used to determine the product

titer (rAAV8 capsid concentration) in the fermentation

supernatants. Capsid particles were captured by anti-

AAV8 antibodies and then detected by binding to

biotinylated anti-AAV8 antibodies. Streptavidin per-

oxidase and a peroxidase substrate are then used for

measuring bound anti-AAV8 and thus the concentra-

tion of rAAV8 capsids.

PTR-MS installation and measurement

A commercially available high sensitivity hs-PTR-MS

instrument (Ionicon Analytik, Austria) was used to

analyze VOCs emanating from the fermentation

process. PTR-MS allows online detection and quan-

tification of VOCs down to parts per trillion by volume

(pptv) levels. An extensive description of the PTR-MS

principle and technique can be found elsewhere

(Hansel et al. 1995). In brief, VOCs in the sample

air are ionized by proton transfer from H3O
? ions.

Molecules with a higher proton affinity than water

(165 kcal/mol) are ionized, whereas the common

components of air (e.g. N2, O2, and CO2) have a

lower proton affinity and therefore do not react. The

protonated molecules weigh 1 amu more than the

original compounds (m ? 1). A quadrupole mass

filter in combination with a secondary electron mul-

tiplier allows the ion separation according to the ion

mass-to-charge ratio (m/z) which is directly linked to

the mass of the VOC. The sampling system for VOC

transfer from the headspace of the bioreactor to the
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PTR-MS instrument as well as data acquisition have

already been described in detail elsewhere (Luchner

et al. 2012). Example PTR-MS data (.xlsx file) of both

presented cultivation set-ups are provided as Support-

ing Information. For process investigation and soft

sensor development, time alignment of the online data

(Incyte Arc and PTR-MS) and the offline data was

performed.

Exploratory data analysis

Principal component analysis (PCA) was applied to

reveal hidden structures, i.e., principal components

(PC), in the PTR-MS data of the HEK 293 biopro-

cesses, discovering relevant m/z signals explaining the

variance in the data (Bro 1997). This exploratory

analysis of the VOC matrix was performed with

MATLAB (2020a, MathWorks, USA).

Soft sensor development

Model building & validation

To estimate the cell density (response variable) in real-

time a soft sensor on two PTR-MS signals (m/z 33 and

m/z 59) was established. Therefore, an artificial neural

network applying a Bayesian regularization algorithm

was chosen. To receive smoother estimations, a 1-D

online moving average filter with a window size of 10

was applied to the output of the network.

To train the model, the sampled data from the three

non-transfected HEK 293 cultivations was considered,

i.e., 26 biomass measurements. For internal validation

of the model performance, leave-one-batch-out cross-

validation was performed, i.e., the initial model was

built on two cultivations and the parameters were

optimized by applying it to the third cultivation. Once

no further improvement was observed, the model

training stopped. This procedure was repeated until

every cultivation was once used for model validation.

For this procedure, the number of neurons (2–10)

and hidden layers (1–3) were varied to find the optimal

setting to fit the experimental data. The nodes of the

hidden layer used hyperbolic tangent transfer func-

tions, while the input and output layers used linear

transfer functions. A single hidden layer with eight

neurons proved to deliver the best performance with

respect to the normalized root mean square error

(NRMSE) in Eq. 1, where y is the analytical value, ŷ is

the estimated counterpart for each sampling point (t), y

is the mean of the measured values and N the total

number of observations.

NRMSE½%�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N �

P

ðyðtÞ � ŷðtÞÞ2
q

�y
� 10 ð1Þ

Model aggregation & model testing

To assess the risk of model misprediction, aggregation

of the individual models was performed, i.e., model

averaging (Freedman 1981). This approach allows

selecting individual models from each of the three

internal cross-validations (boots). Averaging the esti-

mations of multiple models into one gives the operator

more control in model selection and represents a

robust way to investigate and deal with model

uncertainties. The final bootstrap-aggregated soft

sensor consisted of two individual models, derived

from different boots. To access this final model

performance and the model uncertainty, the NRMSE

was used along with the standard deviation (SD)

(Eq. 2) and the confidence interval (CI) (Eq. 3), where

ŷbootstrap is the estimation of the bootstrap aggregated

model, ŷmodel is the estimation of the respective model,

i the index of these models (1:2), and n is the number

of observations for each time point.

SDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1
�
X

ðŷbootstrapðtÞ � ŷmodelðiÞðtÞ Þ
2

r

ð2Þ

CI tð Þ ¼ ŷbootstrapðtÞ � SD tð Þ ð3Þ

Testing of the developed bootstrap-aggregated soft

sensor model was performed by introducing an

external test set, i.e., the three transfected HEK 293

cultivations (45 biomass measurements). The com-

plete workflow for the soft sensor development was

developed with MATLAB (2020a, MathWorks,

USA).

Results and discussion

rAAV production process

To guarantee a sound evaluation of the HEK 293

bioprocesses and estimate the biological and analyt-

ical deviation, the average values and the SD of the
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non-transfected and transfected bioprocess triplicates

are presented. For this evaluation, the cell density,

viability, glucose, and lactate concentrations, and the

titer of the transfected cultivations were considered

and are shown in Fig. 1.

The non-transfected triplicate (Fig. 1A, B) dis-

played overall reproducible analytical results, indi-

cated by small SDs. A similar picture emerged from

the transfected triplicates (Fig. 1C, D). Even though

the measured viability on the first day displayed a high

SD, this can be considered as an outlier, and also the

SD of the product titer is set in the range of the

analytical measurement error. Overall, these presented

results in Fig. 1 demonstrate high reproducibility of

the bioprocesses, which is important for the further

evaluation of the PTR-MS and investigation of the

cellular behavior. Moreover, the herein presented cell

growth and product formation are comparable to

already published literature (Chahal et al. 2014;

Grieger et al. 2016; Blessing et al. 2019; Zhao et al.

2020), constituting a well-performing manufacturing

platform.

VOC selection procedure

For the selection of meaningful PTR-MS signals out of

the entire VOC matrix, a structured workflow was

developed. This workflow consists of four individual

steps with an increasing specificity to find and select

Fig. 1 Trends of non-transfected and transfected HEK 293

bioprocesses. For the non-transfected bioprocess (N = 3), the

cell density (green diamonds) and viability (grey circles) are

presented as a function of the process time (A), as well as the

glucose (blue triangles) and lactate concentration (red triangles)

(B). For the transfected bioprocess (N = 3), the timepoint of

transfection (dashed grey line) is indicated and the normalized

titer (black triangles) is presented along with the cell density and

the viability (C). Glucose and lactate concentrations are

similarly displayed (D). The displayed values are the average

of the respective triplicate ± SD
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valuable m/z signals from the original 201 signals, as

shown in Fig. 2.

Using the structured approach from Fig. 2A, the

initial 201 m/z signals of the VOC matrix were

reduced to two m/z signals. Due to existing knowledge

about the device and the process (step I), the VOC

matrix could be reduced to 129 m/z signals by

excluding irrelevant signals, i.e., signals below m/z

33 are only derived from the device itself (except m/z

18) and above m/z 160 no responses were detected by

the device (ppb values around 0–4). On this reduced

VOC matrix, unsupervised learning was applied (step

II). Here, PCA revealed that out of the remaining

signals, only 11 m/z signals are responsible for almost

all the variance in the data, which were further used in

the workflow. For these 11 m/z signals, literature

research and causality analysis were performed (step

III) to identify matching m/z values with known and

reported VOCs from literature (Bunge et al. 2008;

Luchner et al. 2012; Schmidberger et al. 2014) and if

possible causal linkages, which allowed to reduce this

number even further to 6 m/z signals. In short, the

important m/zs, and the most likely corresponding

VOCs according to known substances from the

literature (in brackets), were found in 18 (ammonia),

33 (methanol), 45 (acetaldehyde), 47 (ethanol), 59

(acetone) and 63 (ethanethiol). More detailed infor-

mation about selection step II (unsupervised PCA) and

III (literature and causality analysis) are presented in

Supplementary Fig. 2. The final step IV was per-

formed to determine which of these 6 m/z signals do

not only contain useful information but can also be

used for supervised learning, i.e., displaying correla-

tions to analytical measurements. The heatmap

(Fig. 2B) revealed that the timely progression of two

m/z signals, m/z 33 and m/z 59, displayed the highest

correlations to trends of analytical measurements, e.g.,

the cell density, and were, therefore, suitable for soft

sensor development.

While the herein presented workflow is generally

applicable, the outcome is specific for the system and

used media. The utilization of different systems or

media might lead to the identification of other m/z

signals, e.g., due to an activated pathway by different

Fig. 2 Selection procedure of meaningful PTR-MS signals out

of the entire VOC matrix. The complete workflow (step I–IV)

and the conducted actions, reducing the potential candidate m/z

signals are given (A). Initial exclusion of these signals was

performed with existing knowledge (step I), followed by

unsupervised learning (PCA, step II). The identified impactful

m/z signals were compared to known VOCs from literature and

assigned according to the highest likelihood or excluded if no

linkage could be found (step III). For step IV (supervised

learning), the correlation between the remaining m/z signals and

the analytical measurements is provided as a heatmap (B)
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media components. However, to more closely inves-

tigate and verify these findings, and also with respect

to causality, additional experiments with different

systems and media should be performed in future

studies.

PTR-MS for cell density soft sensing

Based on the results from the VOC selection proce-

dure (Fig. 2), a metabolic soft sensor based on m/z 33

and m/z 59 was developed, estimating the cell density

in real-time. Since the soft sensor derived from the

Incyte Arc probe is considered as standard for cell

density estimations, it was utilized as the benchmark

performance and directly compared. This performance

comparison for the two soft sensors estimating the cell

density in the HEK 293 bioprocess triplicates is

presented in Fig. 3.

The comparison of the soft sensors in Fig. 3,

estimating the cell density based either on PTR-MS

data or the Incyte Arc probe, has shown that the PTR-

MS delivers more reliable results. The triplicate, used

Fig. 3 Soft sensor performance comparison for estimating the

cell density in HEK 293 bioprocesses. The cell density (green

diamonds) is presented for the entire process time of the three

non-transfected cultivations (A–C) and the transfected cultiva-

tions (D–F). For the transfected cultivations, the timepoint of

transfection (dashed grey line) is indicated. For each cultivation,

the soft sensor estimation of the PTR-MS (blue lines) and the

Incyte Arc probe (orange lines) are given. The scatter plot

(G) provides an overview of the entire performance comparison,

displaying the analytical values (x-axis) versus the estimated

values (y-axis) for the PTR-MS training data (light blue circles),

PTR-MS test data (dark blue circles), and the Incyte Arc probe

(orange circles). For the time-resolved presentation of the PTR-

MS soft sensor (A–F), the CI (light blue lines) and the error bars
indicating the SD in the scatter plot are given
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for training the PTR-MS soft sensor (Fig. 3A–C),

were accurately estimated (NRMSE 15.8%) with a

low risk of model uncertainties indicated by small CIs.

The test set (Fig. 3D–F) proved to be more challeng-

ing (NRMSE 24.4%), but still performed superior

compared to the Incyte Arc soft sensor (NRMSE:

48.7%), which almost constantly under- or overesti-

mated the analytically derived values (Fig. 3G).

However, the PTR-MS soft sensor displayed two

shortcomings in the test set. First, the cell density in

the second test cultivation at the time point of

transfection (Fig. 3E) was overestimated, and second,

the cell growth after the transfection until the plateau

phase was reached, was generally overestimated. This

demonstrates that for the implementation of a more

powerful and highly robust soft sensor, a design space

must be chosen and characterized. In that way,

variance is introduced to the model and such altered

cultivation trends can be understood and therefore

accurately estimated by the model. Besides a more

robust process model, these additional experiments

would also increase the confidence about the poten-

tially identified VOCs, i.e., varying trends at other

process settings, affecting cellular responses, might

further verify our selection or indicate misinterpreted

m/z signals.

Nevertheless, the test set of the developed PTR-MS

soft sensor highly differed from the training set, e.g.,

different starting cell densities and it also contained

the time after transfection (extrapolation of the non-

transfected bioprocess used for model training). This

is not only leading to a bigger size of the test data set

but also metabolic conditions and cellular behavior the

model has never seen before, which provides a good

indication for the soft sensor performance Despite

these challenges, the developed PTR-MS soft sensor

proved to be well-suited for online monitoring the cell

density in HEK 293 bioprocesses, since the unspecific

m/z measurement can immediately be interpreted by

the trained algorithm into specific concentrations. This

enables real-time estimation of an important process

variable without the need of taking a sample and

analytical time delay, e.g., as is the case by utilizing

hemocytometry or thermogravimetric analysis.

PTR-MS as a beneficial process monitoring tool

and control action indicator

The four m/z signals, which are of importance

according to the unsupervised PCA (Fig. 2A, step II)

but did not show correlations to offline measurements

were investigated for other potential applications. The

graphical comparison between the trend and behavior

of these four VOCs (m/z 18, m/z 45, m/z 47, and m/z

63) throughout a non-transfected cultivation is pre-

sented in Supplementary Fig. 3. In this process, m/z 45

(potentially acetaldehyde) proved to be the most

suitable VOC for process monitoring and as a control

action indicator. To demonstrate the application

possibilities, the trend of m/z 45 along with the cell

density, glucose, and lactate concentration is pre-

sented for an exemplary non-transfected and trans-

fected HEK 293 cultivation in Fig. 4.

The measured concentrations of m/z 45 were

almost noise-free and steady until the glucose in the

cultivation was about to be depleted, for which the

exact time point can only be assumed due to the

resolution of the sampling interval. Close to glucose

Fig. 4 Trends of bioprocess variables along with m/z 45 for a

non-transfected and transfected HEK 293 cultivation. The cell

density (green diamonds), glucose (blue triangles), and lactate

concentrations (red triangles) are displayed along with m/z 45

(dark yellow lines) for a non-transfected (A) and a transfected

HEK 293 cultivation (B). For the transfected cultivation, the

time point of transfection (dashed grey line) is indicated
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depletion, the signal sharply started to fluctuate,

displaying increasing values by 185% compared to

the steady trend (from * 60 to * 170 ppb) for the

non-transfected cultivation (Fig. 4A). This behaviour

was observed after approximately 2.5 days, where cell

densities reached a plateau in all the observed

cultivations. However, since it is almost impossible

to exactly determine the cultivation timepoint at which

glucose was depleted by offline measurements, the

finding of m/z 45, as a simple online process

monitoring tool for glucose depletion, is of high

value. Additionally, with this reliable online indicator,

the optimal time for the transfection can be precisely

determined in real-time and is not depending on the

sampling procedure. In addition, due to this prompt

online available information about glucose depletion

and as a result, the possibility to rapidly react, the cells

will not go into starvation for longer periods, thus

fewer process variability after transfection, and there-

fore more robust and consistent bioprocesses can be

expected.

The same behavior was observed in the transfected

cultivation (Fig. 4B). Herein, the glucose was

depleted after * 4 days and m/z 45 also displayed

fluctuating values, sharply increasing by 185% com-

pared to the steady trend (from* 170 to* 485 ppb).

Moreover, after transfection and the hereby newly

added glucose, the fluctuations quickly stopped and

the trend from the non-transfected phase before was

restored, indicating that the cell metabolism was able

to recover from glucose starvation. Interestingly, the

same fluctuations started again once the glucose was

depleted in the production phase (shortly after day 6),

rising by roughly 220% (from * 170 to* 550 ppb).

These first findings indicate that falling below a

critical glucose level triggers m/z 45 to be emitted in

waves, which can be a hint to a drastically altered

cellular ‘breathing’ pattern, e.g., due to unfavored

process conditions and enhanced stress levels. A

further factor to be considered for this behavior is the

onset of lactate consumption as an alternative fuel,

which potentially leads to these fluctuations. To gain

certainty about this reasoning, further cultivations,

which are carried out and monitored beyond the

complete depletion of glucose and lactate (e.g., for

some additional days) could provide more information

and evidence about the origin of m/z 45 and its

emission profile with even higher levels of stress.

The PTR-MS signal of m/z 45 has been demon-

strated to be well-suited for rapidly indicating glucose

depletion in Fig. 4, i.e., no further cell growth and

therefore the optimal time of transfection. The reso-

lution of the offline measurement was not high enough

to precisely determine this time point. Therefore, the

online determination of this time point in the process

as precisely as possible is of high value, especially

concerning process consistency. Since the Incyte Arc

probe may also be suitable to indicate glucose

depletion, i.e., displaying a plateau in the cell density,

it was considered as a further reference and compared.

This comparison of both online signals along with the

glucose concentration for the non-transfected HEK

293 bioprocess triplicate is shown in Fig. 5 for the

whole process time and also for the relevant time

windows.

As it can be seen in Fig. 5, precise capture the time

of glucose depletion is a tremendous challenge with

respect to sampling and the analytical time delay.

Since more than two samplings per day are rarely

meaningful in mammalian processes, the high benefit

of such an online indicator is highlighted again. The

expected responses of both online sensors to glucose

depletion are measurable for the three different

cultivations (Fig. 5A–C). To gain deeper insights,

the narrowed time window of each cultivation was

investigated and the response time of the two sensors

was compared. The time window was chosen con-

cerning the availability of offline measurements,

guaranteeing a sound statement (1 to 1.2 days).

For the first cultivation (Fig. 5A , D), the PTR-MS

displayed the first peak of m/z 45 after 2.5 days,

indicating glucose depletion. The Incyte Arc probe

displayed a small drop in the estimation of the cell

density after 2.75 days, which rose again until a

plateau was reached around day 3. Similar observa-

tions were made for the second cultivation (Fig. 5B,

E) at which the first peak of m/z 45 was measured after

2.3 days. For the Incyte Arc probe, the same drop as

before was observed after 2.6 days until the plateau

was reached at day 3. The same behavior was observed

in the third cultivation (Fig. 5C, F). Here, the first peak

of the PTR-MS was measured after 2.85 days, while

the drop in the Incyte Arc signal appeared after

3.1 days and the plateau phase after 3.5 days.

The direct comparison of the two probes showed

that the PTR-MS, more precisely m/z 45, clearly

responds faster than the Incyte Arc probe with respect
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to the response time indicating glucose depletion. The

first response in the Incyte Arc signal was

detectable 0.25–0.3 days after the first measurable

peak of the PTR-MS. After this initial drop in the

Incyte Arc signal, it took 0.25–0.4 additional days

until a plateau was reached, i.e., after the first observed

peak in the PTR-MS, 0.5–0.7 additional days elapsed

until the Incyte Arc probe indicated the plateau phase.

Moreover, besides the assumed almost immediate

response after glucose depletion, the peaks of m/z 45

were way more explicit compared to the trends

provided by the Incyte Arc probe.

Both these characteristics, the significantly faster

response time and the explicit nature of the peaks,

emphasize the use of the PTR-MS as a rapid and well-

suited online indicator for glucose depletion and

therefore to get the perfect transfection time avoiding

that cells go into starvation. However, as already

discussed above, the origin of m/z 45 close to glucose

depletion needs to be uncovered in future studies to

verify this signal as a generic and robust process

indicator, i.e., the mechanism of triggering this stress

response needs to be investigated.

Since Fig. 4B showed that the steady trend of m/z

45 can be recovered once glucose is again added to the

cultivation, also the usability of this online indicator

for glucose depletion for the transfection phase was

investigated. A complete transfected HEK 293

cultivation including the key process variables along

with the online signals of m/z 45 and the Incyte Arc

probe is shown in Fig. 6.

Considering the presentation of an entire trans-

fected HEK 293 cultivation in Fig. 6, all observations

and findings from the previous results were verified

and retrieved. At the time point of transfection (day

3.7) glucose was already depleted, which was indi-

cated by the PTR-MS 0.2 days in advance (at day 3.5)

but not recognized by the Incyte Arc probe. Moreover,

the fluctuating PTR-MS signal recovered after glucose

was again added to the cell culture, restoring the

previous level until glucose was again depleted from

the medium (offline measurement at day 6.7). The first

peak of m/z 45 was already detected on day 6.35 and

the drop in the Incyte Arc signal at day 6.5 was also

observed. Moreover, the Incyte Arc probe estimated

an increasing cell density until a plateau was reached

at day 7.75, even though glucose was depleted more

than a day before, and additionally, a steady cell

density was reached.

This again highlights the faster response time

(assumingly in real-time) and the higher sensitivity

of the PTR-MS to indicate glucose depletion and

thereto related cellular restrictions. Since the steady

trend of the m/z 45 signal can be recovered by adding

glucose to the cultivation, this effect cannot only be

used as an online indicator for the optimal transfection

Fig. 5 Comparison of two online indicators for glucose

depletion in HEK 293 cultivations. The glucose concentration

(blue triangles), the PTR-MS signal for m/z 45 (dark yellow

lines), and the cell density estimation of the Incyte Arc probe

(orange lines) are given for each non-transfected HEK 293

cultivation (A–C). The time window of interest for each

cultivation is displayed beneath the overall presentation of the

respective cultivation (D–F)
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time but moreover during the transfection phase. For

instance, potentially as a closed-loop feedback control

to add glucose on demand, improving the cellular

conditions and receiving higher yields.

Conclusion

The presented structured workflow facilitates the

identification of valuable m/z signals from the entire

VOC matrix and highlights the added value of PTR-

MS as a versatile online monitoring tool in rAAV

HEK 293 gene therapy bioprocesses. The herewith

developed PTR-MS based soft sensor enables real-

time monitoring of the cell density with a smaller

NRMSE (24.4%) than the benchmark sensor (NRMSE

48.7%). Compared to conventional offline analytics,

this timely advantage also provides the opportunity to

act as promptly as possible in case time-critical actions

are required, while simultaneously eliminating the

contamination risk due to sampling procedure. Addi-

tionally, m/z 45 was identified to be a highly sensitive

and rapidly responding online indicator for glucose

depletion. This very simple and straightforward online

indicator can be used to determine the optimal time

point of transfection and potentially enable a closed-

loop feedback control to add glucose on demand,

avoiding cell starvation and improving process

performance.

Supporting Information PTRMS_ExampleData

Fig. S1. Characterization of the PTR-MS response time by

VOC spiking experiments. Three VOCs were injected into the

gas stream and the media to investigate the response time and

outgassing characteristics: acetaldehyde (m/z 45, A: media; B:

gas), ethanol (m/z 47, C: media; D: gas), and acetone (m/z 59,

E: media; F: gas).

Table S1. Response time of the PTR-MS for different spiked

compounds and phases. The indicated response time presents

the mean value from all replicates ± SD

Fig. S2. PCA results of the VOC matrix from HEK 293

bioprocesses. The stacked explained variance of the first three

PCs is displayed in blue, green, and orange, respectively (A).

Results are shown for all non transfected cultivations (left bar),

all transfected cultivations (middle bar), and all cultivations

(right bar). The scores for the first two PCs of the non-

transfected (blue symbols) and transfected bioprocess tripli-

cates (green symbols) are presented as scatter plot (B) along

with the direction (black arrow).

Fig. S3. Comparison of the usability of different m/z signals

as metabolic markers in HEK 293 cultivations. For one non-

transfected cultivation, the cell density (green diamonds),

glucose (blue triangles), and lactate (red triangles) concentra-

tions are displayed along with the four VOC candidates. The

VOCs are represented by solid lines: m/z 18 (A, red), m/z 45

(B, dark yellow), m/z47 (C, blue), and m/z 63 (D, turquoise).
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