Skip to main content

Advertisement

Log in

A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The transforming growth factor beta (TGF-β) signaling plays a critical role in immune evasion and tumor progression. However, its modulatory influences on prognosis, tumor microenvironment (TME), and therapeutic efficacy remain unknown in colorectal cancer (CRC). We summarized TGF-β-related genes and comprehensively estimated their expression pattern in 2142 CRC samples from 9 datasets. Two distinct cluster patterns were divided and biological characteristics of each pattern were further analyzed. Then, to quantify the TGF-β cluster pattern of individual CRC patient, we generated the TGF-β score (TGFBscore) model based on TGF-β cluster pattern-relevant differentially expressed genes (DEGs). Subsequently, we conducted correlation analysis for TGFBscore and clinical prognosis, consensus molecular subtypes (CMSs), TME characteristics, liver metastasis, drug response, and immunotherapeutic efficacy in CRC. We illustrated transcriptional and genetic alterations of TGF-β-relevant genes, which were closely linked with carcinogenic pathways. We identified two different TGF-β cluster patterns, characterized by a high and a low TGFBscore. The TGFBscore-high group was significantly linked with worse patient survival, epithelial–mesenchymal transition (EMT) activation, liver metastasis tendency, and the infiltration of immunosuppressive cells (regulatory T cells [Tregs], M2 macrophages, cancer-associated fibroblasts [CAFs], and myeloid-derived suppressor cells [MDSCs]), while the TGFBscore-low group was linked with a survival advantage, epithelial phenotype, early CRC staging, and the infiltration of immune-activated cells (B cell, CD4 T cell, natural killer T [NKT] cell, and T helper 1 [Th1] cell). In terms of predicting drug response, TGFBscore negatively correlated (sensitive to TGFBscore-high group) with drugs targeting PI3K/mTOR, JNK and p38, RTK signaling pathways, and positively correlated (sensitive to TGFBscore-low group) with drugs targeting EGFR signaling pathway. Also, TGFBscore could predict the efficacy of different anti-tumor therapies. TGFBscore-low patients might benefit more from anti-PDL1 immunotherapy, adjuvant chemotherapy (ACT), and ERBB targeted therapy, whereas TGFBscore-high patients might benefit more from antiangiogenic targeted therapy. Our study constructed a novel TGF-β scoring model that could predict prognosis, liver metastasis tendency, and TME characteristics for CRC patients. More importantly, this work emphasizes the potential clinical utility of TGFBscore in evaluating the efficacy of chemotherapy, targeted therapy, and immunotherapy, guiding individualized precision treatment in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All datasets related to this study can be downloaded from the Cancer Genome Atlas database (TCGA, https://portal.gdc.cancer.gov/) and the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/).

Abbreviations

TGF-β:

Transforming growth factor beta

TGFBscore:

TGF-β score

CRC:

Colorectal cancer

CRLM:

Colorectal cancer liver metastasis

mCRC:

Metastatic colorectal cancer

TME:

Tumor microenvironment

DEGs:

Differentially expressed genes

CMSs:

Consensus molecular subtypes

EMT:

Epithelial–mesenchymal transition

Tregs:

Regulatory T cells

CAFs:

Cancer-associated fibroblasts

MDSCs:

Myeloid-derived suppressor cells

NKT:

Natural killer T

Th1:

T helper 1

1; PDL1:

Programmed death ligand

TAMs:

Tumor-associated macrophages

TANs:

Tumor-associated neutrophils

ACT:

Adjuvant chemotherapy

CNV:

Copy number variation

SNV:

Single-nucleotide variation

TCGA:

The Cancer Genome Atlas

GEO:

Gene Expression Omnibus

COAD:

Colon adenocarcinoma

READ:

Rectum adenocarcinoma

GSVA:

Gene set variation analysis

ssGSEA:

Single sample gene set enrichment analysis

TIDE:

Tumor immune dysfunction and exclusion

PCA:

Principal component analysis

GDSC:

Genomics of Drug Sensitivity in Cancer

OS:

Overall survival

RFS:

Relapse-free survival

CR:

Complete response

PR:

Partial response

SD:

Stable disease

PD:

Progressive disease

MSI:

Microsatellite instability

dMMR:

Deficient mismatch repair

TMB:

Tumor mutation burden

IPS:

Immunophenoscore

References

  • Al Bandar MH, Kim NK (2017) Current status and future perspectives on treatment of liver metastasis in colorectal cancer (Review). Oncol Rep 37:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, Osokin N, Kozlov I, Frenkel F, Gancharova O et al (2021) Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39(845–865):e847

    Google Scholar 

  • Batlle E, Massague J (2019) Transforming growth factor-beta signaling in immunity and cancer. Immunity 50:924–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejarano L, Jordao MJC, Joyce JA (2021) Therapeutic targeting of the tumor microenvironment. Cancer Discov 11:933–959

    Article  CAS  PubMed  Google Scholar 

  • Bellomo C, Caja L, Moustakas A (2016) Transforming growth factor beta as regulator of cancer stemness and metastasis. Br J Cancer 115:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1:a003129

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunen D, Willems SM, Kellner U, Midgley R, Simon I, Bernards R (2013) TGF-beta: an emerging player in drug resistance. Cell Cycle 12:2960–2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  CAS  PubMed  Google Scholar 

  • Cazac BB, Roes J (2000) TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13:443–451

    Article  CAS  PubMed  Google Scholar 

  • Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zaidi S, Rao S, Chen JS, Phan L, Farci P, Su X, Shetty K, White J, Zamboni F et al (2018) Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-beta pathway. Gastroenterology 154:195–210

    Article  CAS  PubMed  Google Scholar 

  • Colak S, Ten Dijke P (2017) Targeting TGF-beta signaling in cancer. Trends Cancer 3:56–71

    Article  CAS  PubMed  Google Scholar 

  • da Rocha ST, Gendrel AV (2019) The influence of DNA methylation on monoallelic expression. Essays Biochem 63:663–676

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ridder J, de Wilt JH, Simmer F, Overbeek L, Lemmens V, Nagtegaal I (2016) Incidence and origin of histologically confirmed liver metastases: an explorative case-study of 23,154 patients. Oncotarget 7:55368–55376

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394:1467–1480

    Article  PubMed  Google Scholar 

  • Derynck R, Turley SJ, Akhurst RJ (2021) TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18:9–34

    Article  PubMed  Google Scholar 

  • Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, Krogsdam A, Loncova Z, Posch W, Wilflingseder D et al (2019) Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med 11:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, Liu XS (2020) Large-scale public data reuse to model immunotherapy response and resistance. Genome Med 12:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr (2019) Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol 16:361–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rendueles AR, Rodrigues JS, Garcia-Rendueles ME, Suarez-Farina M, Perez-Romero S, Barreiro F, Bernabeu I, Rodriguez-Garcia J, Fugazzola L, Sakai T et al (2017) Rewiring of the apoptotic TGF-beta-SMAD/NFkappaB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 36:652–666

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golubnitschaja O, Sridhar KC (2016) Liver metastatic disease: new concepts and biomarker panels to improve individual outcomes. Clin Exp Metastasis 33:743–755

    Article  CAS  PubMed  Google Scholar 

  • Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R (2017) Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol 316:1–10

    Article  CAS  PubMed  Google Scholar 

  • Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackl C, Neumann P, Gerken M, Loss M, Klinkhammer-Schalke M, Schlitt HJ (2014) Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer 14:810

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Baker D, Ten Dijke P (2019) TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 20:2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawinkels LJ, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JH, Mesker W, ten Dijke P, Sier CF (2014) Interaction with colon cancer cells hyperactivates TGF-beta signaling in cancer-associated fibroblasts. Oncogene 33:97–107

    Article  CAS  PubMed  Google Scholar 

  • Horn SR, Stoltzfus KC, Lehrer EJ, Dawson LA, Tchelebi L, Gusani NJ, Sharma NK, Chen H, Trifiletti DM, Zaorsky NG (2020) Epidemiology of liver metastases. Cancer Epidemiol 67:101760

    Article  PubMed  Google Scholar 

  • Ioannou M, Kouvaras E, Papamichali R, Samara M, Chiotoglou I, Koukoulis G (2018) Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study. J Mol Histol 49:235–244

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehrl JH, Thevenin C, Rieckmann P, Fauci AS (1991) Transforming growth factor-beta suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J Immunol 146:4016–4023

    Article  CAS  PubMed  Google Scholar 

  • Kopetz S (2019) New therapies and insights into the changing landscape of colorectal cancer. Nat Rev Gastroenterol Hepatol 16:79–80

    Article  CAS  PubMed  Google Scholar 

  • Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJ, Watanabe T (2015) Colorectal cancer. Nat Rev Dis Primers 1:15065

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladabaum U, Dominitz JA, Kahi C, Schoen RE (2020) Strategies for colorectal cancer screening. Gastroenterology 158:418–432

    Article  CAS  PubMed  Google Scholar 

  • Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT (2018) The human transcription factors. Cell 172:650–665

    Article  CAS  PubMed  Google Scholar 

  • Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leivonen SK, Kahari VM (2007) Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124

    Article  CAS  PubMed  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    Article  CAS  PubMed  Google Scholar 

  • Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S et al (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Qi T, Li X, Yao Y, Othmane B, Chen J, Zu X, Ou Z, Hu J (2021) A novel TGF-beta risk score predicts the clinical outcomes and tumour microenvironment phenotypes in bladder cancer. Front Immunol 12:791924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak MP, Tong P, Diao L, Cardnell RJ, Gibbons DL, William WN, Skoulidis F, Parra ER, Rodriguez-Canales J, Wistuba II et al (2016) A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res 22:609–620

    Article  CAS  PubMed  Google Scholar 

  • Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier AM (2006) Epidemiology and management of liver metastases from colorectal cancer. Ann Surg 244:254–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R et al (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda Y, Wakai T, Kubota M, Osawa M, Hirose Y, Sakata J, Kobayashi T, Fujimaki S, Takamura M, Yamagiwa S, Aoyagi Y (2014) Valproic acid overcomes transforming growth factor-beta-mediated sorafenib resistance in hepatocellular carcinoma. Int J Clin Exp Pathol 7:1299–1313

    PubMed  PubMed Central  Google Scholar 

  • Modest DP, Stintzing S, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmuller C, Kahl C et al (2015) Impact of subsequent therapies on outcome of the fire-3/AIO KRK0306 trial: first-line therapy with folfiri plus cetuximab or bevacizumab in patients with KRAS wild-type tumors in metastatic colorectal cancer. J Clin Oncol 33:3718–3726

    Article  CAS  PubMed  Google Scholar 

  • Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B et al (2023) Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-beta activation. Cancer Cell 41(757–775):e710

    Google Scholar 

  • Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Y, Soliman A, Joehlin-Price A, Rose PG, Vlad A, Edwards RP, Mahdi H (2021) High TGF-beta signature predicts immunotherapy resistance in gynecologic cancer patients treated with immune checkpoint inhibition. NPJ Precis Oncol 5:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning T, Li J, He Y, Zhang H, Wang X, Deng T, Liu R, Li H, Bai M, Fan Q et al (2021) Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer. Mol Ther 29:2723–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perri F, Longo F, Giuliano M, Sabbatino F, Favia G, Ionna F, Addeo R, Scarpati DV, Di Lorenzo G, Pisconti S (2017) Epigenetic control of gene expression: potential implications for cancer treatment. Crit Rev Oncol Hematol 111:166

    Article  CAS  PubMed  Google Scholar 

  • Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D (2017) Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife 6:e26476

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebestyen E, Singh B, Minana B, Pages A, Mateo F, Pujana MA, Valcarcel J, Eyras E (2016) Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res 26:732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethy C, Kundu CN (2021) 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: implication of DNA repair inhibition. Biomed Pharmacother 137:111285

    Article  CAS  PubMed  Google Scholar 

  • Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  CAS  PubMed  Google Scholar 

  • Steller EJ, Raats DA, Koster J, Rutten B, Govaert KM, Emmink BL, Snoeren N, van Hooff SR, Holstege FC, Maas C et al (2013) PDGFRB promotes liver metastasis formation of mesenchymal-like colorectal tumor cells. Neoplasia 15:204–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stojnev S, Krstic M, Cukuranovic Kokoris J, Conic I, Petkovic I, Ilic S, Milosevic-Stevanovic J, Velickovic LJ (2019) Prognostic impact of canonical TGF-beta signaling in urothelial bladder cancer. Medicina (kaunas) 55:302

    Article  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  • Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Canellas A, Hernando-Momblona X et al (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554:538–543

    Article  CAS  PubMed  Google Scholar 

  • Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380

    Article  CAS  PubMed  Google Scholar 

  • Trapani JA (2005) The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell 8:349–350

    Article  CAS  PubMed  Google Scholar 

  • Tsilimigras DI, Brodt P, Clavien PA, Muschel RJ, D’Angelica MI, Endo I, Parks RW, Doyle M, de Santibanes E, Pawlik TM (2021) Liver metastases. Nat Rev Dis Primers 7:27

    Article  PubMed  Google Scholar 

  • Tsubakihara Y, Moustakas A (2018) Epithelial-mesenchymal transition and metastasis under the control of transforming growth factor beta. Int J Mol Sci 19:3672

    Article  PubMed  PubMed Central  Google Scholar 

  • Turati M, Mousset A, Issa N, Turtoi A, Ronca R (2023) TGF-beta mediated drug resistance in solid cancer. Cytokine Growth Factor Rev. https://doi.org/10.1016/j.cytogfr.2023.04.001

    Article  PubMed  Google Scholar 

  • Ukai S, Sakamoto N, Taniyama D, Harada K, Honma R, Maruyama R, Naka K, Hinoi T, Takakura Y, Shimizu W et al (2021) KHDRBS3 promotes multi-drug resistance and anchorage-independent growth in colorectal cancer. Cancer Sci 112:1196–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungefroren H (2019) Blockade of TGF-beta signaling: a potential target for cancer immunotherapy? Expert Opin Ther Targets 23:679–693

    Article  CAS  PubMed  Google Scholar 

  • Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V (2020) 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther 206:107447

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    Article  CAS  PubMed  Google Scholar 

  • Wu MZ, Yuan YC, Huang BY, Chen JX, Li BK, Fang JH, Zhuang SM (2021) Identification of a TGF-beta/SMAD/lnc-UTGF positive feedback loop and its role in hepatoma metastasis. Signal Transduct Target Ther 6:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L (2023) Development of a TGF-beta signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 13:1124080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav P, Shankar BS (2019) Radio resistance in breast cancer cells is mediated through TGF-beta signalling, hybrid epithelial-mesenchymal phenotype and cancer stem cells. Biomed Pharmacother 111:119–130

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Kuranaga Y, Kumazaki M, Shinohara H, Taniguchi K, Akao Y (2016) Colorectal cancer cell-derived extracellular vesicles induce phenotypic alteration of T cells into tumor-growth supporting cells with transforming growth factor-beta1-mediated suppression. Oncotarget 7:27033–27043

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR et al (2013) Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41:D955-961

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Luo W, Yang ZJ, Chi JR, Li YR, Ding Y, Ge J, Wang X, Cao XC (2018) miR-190 suppresses breast cancer metastasis by regulation of TGF-beta-induced epithelial-mesenchymal transition. Mol Cancer 17:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng D, Li M, Zhou R, Zhang J, Sun H, Shi M, Bin J, Liao Y, Rao J, Liao W (2019) Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res 7:737–750

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, He R, Dai Y, Lu X, Deng L, Zhu Q, Liu Y, Liu Q, Lu W, Wang Y, Jin J (2022) Identification of TGF-beta signaling-related molecular patterns, construction of a prognostic model, and prediction of immunotherapy response in gastric cancer. Front Pharmacol 13:1069204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wei J, Sun J (2020) Roles of TGF-beta signaling pathway in tumor microenvirionment and cancer therapy. Int Immunopharmacol 89:107101

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ji Q, Li Q (2021) Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J Exp Clin Cancer Res 40:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y (2022) Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 7:70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the China National Science and Technology Major Project for Prevention and Treatment of Infectious Diseases (2017ZX10203207).

Author information

Authors and Affiliations

Authors

Contributions

JHC, BRT, CHY, and YM: designed this study. BRT, CHY, and YTL: were responsible for the integration and analyses of the data. BRT and YTL: wrote this manuscript. JHC, CHY, YM, BZ, YG, ZMC, and XCM: edited and revised the manuscript. All authors approved this manuscript.

Corresponding author

Correspondence to Jinhong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, B., Yi, C., Ma, Y. et al. A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer. Biochem Genet (2023). https://doi.org/10.1007/s10528-023-10591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10591-7

Keywords

Navigation