Skip to main content

Advertisement

Log in

LncRNA ENST00000440246.1 Promotes Alzheimer’s Disease Progression by Targeting PP2A

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson’s correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aβ expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available in the GEO (https://www.ncbi.nlm.nih.gov/geo/).

References

  • Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176

    Article  CAS  PubMed  Google Scholar 

  • Arribas RL, Viejo L, Bravo I, Martínez M, Ramos E, Romero A, García-Frutos EM, Janssens V, Montiel C, de Los Ríos C (2023) C-glycosides analogues of the okadaic acid central fragment exert neuroprotection via restoration of PP2A-phosphatase activity: a rational design of potential Drugs for Alzheimer’s Disease targeting tauopathies. Eur J Med Chem 251:115245

    Article  CAS  PubMed  Google Scholar 

  • Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27(1):4–25

    Article  CAS  PubMed  Google Scholar 

  • Breijyeh Z, Karaman R (2020) Comprehensive Review on Alzheimer’s Disease: causes and treatment. Molecules 25(24):5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellani RJ (2020) The significance of tau aggregates in the human brain. Brain Sci 10(12):972

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Li C, Liang W, Li Y, Zou Z, Xie Y, Liao Y, Yu L, Lin Q, Huang M, Li Z, Zhu X (2022) The roles of optogenetics and Technology in Neurobiology: a review. Front Aging Neurosci 14:867863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong FP, Ng KY, Koh RY, Chye SM (2018) Tau proteins and Tauopathies in Alzheimer’s Disease 38(5. Cell Mol Neurobiol 38(5):965–980

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Sheng Y, Deng Y, Wang H, Zhao Z, Yu X, Xu T (2022) Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model. Int Immunopharmacol 104:108464

    Article  CAS  PubMed  Google Scholar 

  • Devi G (2023) A how-to guide for a precision medicine approach to the diagnosis and treatment of Alzheimer’s Disease. Front Aging Neurosci 15:1213968

    Article  PubMed  PubMed Central  Google Scholar 

  • Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M (2019) Long non-coding RNA BACE1-AS May serve as an Alzheimer’s Disease blood-based biomarker. J Mol Neurosci 69(3):351–359

    Article  CAS  PubMed  Google Scholar 

  • Gadhave K, Kumar D, Uversky VN, Giri R (2021) A multitude of signaling pathways associated with Alzheimer’s Disease and their roles in AD pathogenesis and therapy. Med Res Rev 41(5):2689–2745

    Article  CAS  PubMed  Google Scholar 

  • García-Fonseca Á, Martin-Jimenez C, Barreto GE, Pachón AFA, González J (2021) The emerging role of long non-coding RNAs and MicroRNAs in neurodegenerative Diseases: a perspective of machine learning. Biomolecules 11(8):1132

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Morales V, González-Acedo A, Melguizo-Rodríguez L, Pardo-Moreno T, Costela-Ruiz VJ, Montiel-Troya M, Ramos-Rodríguez JJ (2021) Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease. Biomedicines 9(12): 1910

  • Ghafouri-Fard S, Safari M, Taheri M, Samadian M (2022) Expression of Linear and Circular lncRNAs in Alzheimer’s Disease. J Mol Neurosci 72(2):187–200

    Article  CAS  PubMed  Google Scholar 

  • Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s Disease. J Biol Chem 275(8):5535–5544

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, Zhang Y (2018) Long noncoding RNA EBF3-AS promotes Neuron apoptosis in Alzheimer’s Disease. DNA Cell Biol 37(3):220–226

    Article  CAS  PubMed  Google Scholar 

  • Guan F, Gao Q, Dai X, Li L, Bao R, Gu J (2022) LncRNA RP11-59J16.2 aggravates apoptosis and increases tau phosphorylation by targeting MCM2 in AD. Front Genet 13:824495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s Disease. Mol Neurodegener 15(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Xie B, Fu X, Xu R, Yang Y (2022) New insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer’s Disease. Biomolecules 12(12):1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl D, May P, Gu W, Mayhaus M, Pichler S, Spaniol C, Glaab E, Bobbili DR, Antony P, Koegelsberger S, Kurz A, Grimmer T, Morgan K, Vardarajan BN, Reitz C, Hardy J, Bras J, Guerreiro R, Balling R, Schneider JG, Riemenschneider M (2020) A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer Disease. Mol Psychiatry 25(3):629–639

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chen KL, Lin BY, Tang L, Zhao QH, Lv YR, Guo QH (2018) Chinese version of Montreal Cognitive Assessment Basic for discrimination among different severities of Alzheimer’s Disease. Neuropsychiatr Dis Treat 14:2133–2140

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Zhang Y, Yue J, Shi Y, Xiao B, Xiao W, Luo Z (2022) Non-coding RNAs: the Neuroinflammatory regulators in neurodegenerative Diseases. Front Neurol 13:929290

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamat PK, Rai S, Nath C (2013) Okadaic acid induced neurotoxicity: an emerging tool to study Alzheimer’s Disease pathology. Neurotoxicology 37:163–172

    Article  CAS  PubMed  Google Scholar 

  • Khodayi M, Khalaj-Kondori M, Hoseinpour Feizi MA, Jabarpour Bonyadi M, Talebi M (2022) Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s Disease. Excli j 21:772–785

    PubMed  PubMed Central  Google Scholar 

  • Kim JH, Meng HW, He MT, Choi JM, Lee D, Cho EJ (2020) Krill Oil attenuates cognitive impairment by the regulation of oxidative stress and neuronal apoptosis in an amyloid β-Induced Alzheimer’s Disease Mouse Model. Molecules 25(17):3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kins S, Kurosinski P, Nitsch RM, Götz J (2003) Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am J Pathol 163(3):833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Liu Y, Ichikawa H, Takemura S, Minamiyama Y (2020) Effects of Bisphenol A on oxidative stress in the rat brain. Antioxid (Basel) 9(3):240

    Article  CAS  Google Scholar 

  • Kojro E, Postina R, Buro C, Meiringer C, Gehrig-Burger K, Fahrenholz F (2006) The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. Faseb j 20(3):512–514

    Article  CAS  PubMed  Google Scholar 

  • Lauretti E, Praticò D (2020) Alzheimer’s Disease: phenotypic approaches using Disease models and the targeting of tau protein. Expert Opin Ther Targets 24(4):319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei L, Feng J, Wu G, Wei Z, Wang JZ, Zhang B, Liu R, Liu F, Wang X, Li HL (2022) HIF-1α causes LCMT1/PP2A Deficiency and mediates tau hyperphosphorylation and cognitive dysfunction during chronic hypoxia. Int J Mol Sci 23(24):16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhang J, Li X, Chen Y, Yu F, Liu Q (2021) Insights into lncRNAs in Alzheimer’s Disease mechanisms. RNA Biol 18(7):1037–1047

    Article  CAS  PubMed  Google Scholar 

  • Liu NX, Li QH (2020) LncRNA BC200 regulates neuron apoptosis and neuroinflammation via PI3K/AKT pathway in Alzheimer’s Disease. J Biol Regul Homeost Agents 34(6):2255–2261

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loganathan T, Doss CG (2023) Non-coding RNAs in human health and Disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 23(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez OL, Kuller LH (2019) Epidemiology of aging and associated cognitive disorders: prevalence and incidence of Alzheimer’s Disease and other Dementias. Handb Clin Neurol 167:139–148

    Article  PubMed  Google Scholar 

  • Ma P, Li Y, Zhang W, Fang F, Sun J, Liu M, Li K, Dong L (2019) Long non-coding RNA MALAT1 inhibits Neuron apoptosis and Neuroinflammation while stimulates Neurite Outgrowth and its correlation with MiR-125b mediates PTGS2, CDK5 and FOXQ1 in Alzheimer’s Disease. Curr Alzheimer Res 16(7):596–612

    Article  CAS  PubMed  Google Scholar 

  • McKenzie-Nickson S, Chan J, Perez K, Hung LW, Cheng L, Sedjahtera A, Gunawan L, Adlard PA, Hayne DJ, McInnes LE, Donnelly PS, Finkelstein DI, Hill AF, Barnham KJ (2018) Modulating protein phosphatase 2A rescues Disease phenotype in Neurodegenerative Tauopathies. ACS Chem Neurosci 9(11):2731–2740

    Article  CAS  PubMed  Google Scholar 

  • Moore KBE, Hung TJ, Fortin JS (2023) Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer’s Disease and related tauopathies. Drug Discov Today 28:103487

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, García-Morales V, García-Cozar FJ, Ramos-Rodríguez JJ, Melguizo-Rodríguez L (2022) Therapeutic Approach to Alzheimer’s Disease: current treatments and new perspectives. Pharmaceutics 14(6):1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Lee KW, Oh S, Yan R, Zhang J, Beach TG, Adler CH, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM (2018) Protein phosphatase 2A and its methylation modulating enzymes LCMT-1 and PME-1 are Dysregulated in tauopathies of Progressive Supranuclear Palsy and Alzheimer Disease. J Neuropathol Exp Neurol 77(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Zhang Y, Yao K, Zhang M, Xu Y, Zhang J, Bai X, Zu H (2021) DHCR24 knockdown lead to Hyperphosphorylation of tau at Thr181, Thr231, Ser262, Ser396, and Ser422 sites by membrane lipid-raft dependent PP2A signaling in SH-SY5Y cells. Neurochem Res 46(7):1627–1640

    Article  CAS  PubMed  Google Scholar 

  • Saleh O, Albakri K, Altiti A, Abutair I, Shalan S, Mohd OB, Negida A, Mushtaq G, Kamal MA (2023) The Role of Non-coding RNAs in Alzheimer’s Disease: Pathogenesis, novel biomarkers, and potential therapeutic targets. https://doi.org/10.2174/1871527322666230519113201. CNS Neurol Disord Drug Targets

  • Shobeiri P, Alilou S, Jaberinezhad M, Zare F, Karimi N, Maleki S, Teixeira AL, Perry G, Rezaei N (2023) Circulating long non-coding RNAs as novel diagnostic biomarkers for Alzheimer’s Disease (AD): a systematic review and meta-analysis. PLoS ONE 18(3):e0281784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibener L, Zaganjor I, Snyder HM, Bain LJ, Egge R, Carrillo MC (2014) Alzheimer’s Disease prevalence, costs, and prevention for military personnel and veterans. Alzheimers Dement 10:S105–S110

    Article  PubMed  Google Scholar 

  • Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Tuo QZ, Liuyang ZY, Xie AJ, Feng XL, Yan X, Qiu M, Li S, Wang XL, Cao FY, Wang XC, Wang JZ, Liu R (2016) Extrasynaptic NMDA receptor-induced tau overexpression mediates neuronal death through suppressing survival signaling ERK phosphorylation. Cell Death Dis 7(11):e2449

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Wang P, Bian X, Xu S, Zhou Q, Zhang Y, Ding M, Han M, Huang L, Bi J, Jia Y, Xie Z (2020) Elevated plasma levels of exosomal BACE1–AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s Disease. Mol Med Rep 22(1):227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cai M, Lou Y, Zhang S, Liu X (2023) ZBTB20-AS1 promoted Alzheimer’s Disease progression through ZBTB20/GSK-3β/Tau pathway. Biochem Biophys Res Commun 640:88–96

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Meng L, Zhao Z, Li Y, Wen H, Sun H, Zhang T, Wei J, Li F, Liu C (2021) Bioinformatics prediction and experimental verification identify MAD2L1 and CCNB2 as diagnostic biomarkers of rhabdomyosarcoma. Cancer Cell Int 21(1):634

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan XW, Liu HJ, Hong YX, Meng T, Du J, Chang C (2022) lncRNA XIST induces Aβ accumulation and neuroinflammation by the epigenetic repression of NEP in Alzheimer’s Disease. J Neurogenet 36(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Yue D, Guanqun G, Jingxin L, Sen S, Shuang L, Yan S, Minxue Z, Ping Y, Chong L, Zhuobo Z, Yafen W (2020) Silencing of long noncoding RNA XIST attenuated Alzheimer’s disease-related BACE1 alteration through miR-124. Cell Biol Int 44(2):630–636

    Article  PubMed  Google Scholar 

  • Zhang Y, Li Y, Ma L (2020) Recent advances in research on Alzheimer’s Disease in China. J Clin Neurosci 81:43–46

    Article  PubMed  Google Scholar 

  • Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H (2021) Interaction between Aβ and tau in the pathogenesis of Alzheimer’s Disease. Int J Biol Sci 17(9):2181–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao MY, Wang GQ, Wang NN, Yu QY, Liu RL, Shi WQ (2019) The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s Disease progression via miR-124/BACE1 axis. Neurol Res 41(6):489–497

    Article  PubMed  Google Scholar 

  • Zhou Y, Wang Y, Wang Y, Chen L, Wang N, Su Y, Diwu Y, Zhang Q (2023) LncRNA NKILA exacerbates Alzheimer’s Disease Progression by regulating the FOXA1-Mediated transcription of TNFAIP1. Neurochem Res 48(9):2895–2910

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Cai P, Chen Z, Yang Q, Chen X, Wang X, Zhuang X (2020) Long noncoding RNA MALAT1 and its target microRNA-125b are potential biomarkers for Alzheimer’s Disease management via interactions with FOXQ1, PTGS2 and CDK5. Am J Transl Res 12(9):5940–5954

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by The Major Science and Technology Project of Anhui Province (No.201903a07020016) and The University Synergy Innovation Program of Anhui Province (No.GXXT-2020-025).

Author information

Authors and Affiliations

Authors

Contributions

GS, JH, and YWM conceived and designed the experiments. JH and YWM collected samples and clinical data. GS and FC performed the laboratory experiments. GS, FC and WYZ analyzed the clinical and molecular data. GS and JH contributed reagents/materials/analysis tools. GS wrote the paper. All authors critically revised and approved it for publication.

Corresponding authors

Correspondence to Wenming Yang or Hui Jiang.

Ethics declarations

Conflict of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Ethics Approval

The study was approved by the Ethics Committee of The First Affiliated Hospital of Anhui University of Chinese Medicine (approval no. 2022AH-01) and conducted according to the Declaration of Helsinki’s guidelines. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Fan, C., Wang, Y. et al. LncRNA ENST00000440246.1 Promotes Alzheimer’s Disease Progression by Targeting PP2A. Biochem Genet (2023). https://doi.org/10.1007/s10528-023-10552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10552-0

Keywords

Navigation