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Abstract
To integrate gene expression and DNA methylation data and find the potential role 
of DNA methylation in the invasion and replication of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2). We first conducted differential expression 
and methylation analysis between the coronavirus disease of 2019 (COVID-19) 
and healthy controls. FEM was employed to identify functional epigenetic mod-
ules, from which a diagnostic model for COVID-19 was built. SKA1 and WSB1 
modules were identified, with SKA1 module enriched in COVID-19 replication 
and transcription, and WSB1 module related to ubiquitin-protein activity. The dif-
ferentially expressed or differentially methylated genes in these two modules could 
be used to distinguish COVID-19 from healthy controls, with AUC reaching 1 and 
0.98 for SKA1 and WSB1 modules, respectively. Two epigenetically activated genes 
(CENPM and KNL1) from the SKA1 module were upregulated in HPV- or HBV-
positive tumor samples and were found to be significantly associated with the sur-
vival of tumor patients. In conclusion, the identified FEM modules and potential 
signatures play an essential role in the replication and transcription of coronavirus.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused 
a widespread global pandemic resulting in over 569 million confirmed cases and 
more than 6 million deaths, as reported by the Johns Hopkins University Coro-
navirus Resource Center on July 23rd, 2022 (https:// coron avirus. jhu. edu/ map. 
html). With the increasing research on SARS-CoV-2 (Roshandel et al. 2020; Bal-
aky et  al. 2020; Zhu et  al. 2020), more and more high-throughput multi-omics 
sequencing data are being made available on databases such as Gene Expression 
Omnibus (GEO), enabling integrative analyses of DNA methylation and gene 
expression data to identify epigenetically regulated modules or potential bio-
markers. Thair et al. (2021) performed RNA-Seq on the samples infected with six 
viruses, including SARS-CoV-2, and identified a series of differentially expressed 
genes. Manuel Castro de Moura et  al. (2021) analyzed the DNA methylation 
status of peripheral blood samples from 407 confirmed COVID-19 patients and 
identified 44 CpG sites associated with the severity of COVID-19. Finally, Bal-
nis et al. (2021) compared the differentially methylated regions (DMR) between 
COVID-19 patients and healthy individuals, finding that the DMRs were enriched 
in gene promoter regions and hypomethylated in COVID-19 samples.

It’s worth noting that there has not been any study that focuses on integrat-
ing DNA methylation and gene expression datasets to identify the functional epi-
genetic module and potential biomarkers for COVID-19. However, a supervised 
algorithm called FEM (Jiao et  al. 2014) can be used to identify gene modules 
where a significant number of genes are differentially methylated and expressed 
simultaneously. FEM has already been applied to module discovery in many 
studies (Teschendorff et al. 2016; Cancer Genome Atlas Research Network et al. 
2017; Ding et  al. 2020a; Wang et  al. 2020) and is commonly used to integrate 
DNA methylation and gene expression datasets (Ding et al. 2020b).

In this study, we first conducted differential expression and methylation analy-
sis, identified two functional epigenetic modules using the FEM algorithm, and 
performed gene set enrichment analysis for the genes from the identified mod-
ules. Interestingly, we found that the SKA1 module is associated with virus rep-
lication and transcription, while the WSB1 module is related to the activity of 
ubiquitin-protein and ubiquitin-protein ligase. We also observed that two genes, 
CENPM and KNL1, in the SKA1 module were significantly hypomethylated and 
upregulated in COVID-19 samples compared with healthy individuals. To vali-
date the associations between these two epigenetically activated genes and virus 
infections, we performed differential expression and survival analysis in cervi-
cal squamous cell carcinoma (CESC), liver hepatocellular carcinoma (LIHC), and 
oropharyngeal squamous cell carcinoma (OPSCC) tumor samples with human 
papillomavirus (HPV) and hepatitis B virus (HBV) positive or negative infor-
mation. As expected, those two genes are upregulated in HPV- or HBV- posi-
tive group compared with the negative group, and the expression or methylation 
of those two genes was significantly associated with the survival of the corre-
sponding tumor samples. Finally, we built the diagnostic modules based on the 
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expression and methylation values of the genes from those two modules, the 
area under the ROC Curve (AUC) was greater than 0.98. Our results suggest that 
the FEM modules and the identified epigenetically activated genes may play an 
important role in the replication and transcription of SARS-CoV-2 and could 
serve as potential biomarkers and therapeutic targets for COVID-19.

Material and Method

Datasets and Preprocessing

The datasets used in this study were downloaded from GEO (https:// www. 
ncbi. nlm. nih. gov/ geo/); for RNA-Seq data, the read count data, including 62 
COVID-19 patients and 24 healthy controls, were obtained under accession ID 
GSE152641(Thair et al. 2021), followed by the normalization with edgeR (Robin-
son et al. 2010). The processed Infinium Methylation EPIC DNA methylation data-
set of 102 COVID-19 patients and 26 non-COVID-19 patients’ whole blood tissue 
samples was obtained with accession GSE174818 (Balnis et al. 2021).

Differential Analysis and Identification of Functional Epigenetic Modules

The PPI network was obtained from InBio (Li et  al. 2017) and BioPlex (Huttlin 
et  al. 2015) databases. Given the PPI network, using gene expression and DNA 
methylation matrix as input, the FEM algorithm was implemented to perform dif-
ferential expression and methylation analysis and identify function epigenetic 
modules. Genes with |stat(mRNA)|≥ 1.5 and P(mRNA) ≤ 0.05 were regarded as 
significantly differentially expressed genes, and genes with |stat(DNAm)|≥ 1.5 and 
P(DNAm) ≤ 0.05 were defined as differentially methylated genes.

Genes Set Enrichment Analysis

The hypomethylated genes and the genes in the identified FEM modules were sub-
mitted to the online website DAVID (Huang et al. 2009a, b) to perform gene ontol-
ogy (GO) and KEGG enrichment analysis. Terms with FDR ≤ 0.05 were considered 
as significantly enriched terms; for better visualization, −  log10(FDR) was calcu-
lated to plot the dot plot (Fig. 3).

Diagnostic Model

The logistic regression module was built using python scikit-learn (https:// scikit- 
learn. org/) based on the expression or the methylation beta values of the genes from 
SKA1 and WSB1 FEM modules. All samples were randomly split into training and 
test sets with a 4:1 ratio, and the test dataset was used to evaluate our model.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://scikit-learn.org/
https://scikit-learn.org/
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Analysis of the Epigenetically Activated Genes in Tumors with HPV and HBV

To validate the association of two epigenetically activated genes, CENPM and 
KNL1 (significantly hypomethylated and upregulated in COVID-19 samples), 
the cancer genome atlas (TCGA) cancer type and virus types were queried on the 
OncoDB database (http:// oncodb. org) (Tang et al. 2022) using default parameters. 
We only included the figures with at least three samples and a p-value ≤ 0.05 in 
Fig. 5.

Result

Differential Expression and Methylation Analysis

We first performed differential expression and methylation analysis, as shown in 
Fig. 1A. Our analysis revealed that there were 2168 upregulated, 2110 downregu-
lated, 105 promoter hypermethylated, and 531 promoter hypomethylated genes. We 
also identified 143 epigenetically activated genes and 17 epigenetically silenced 
genes.

Moreover, we found that the hypermethylated genes were enriched in response 
to lipopolysaccharide. In contrast, the hypomethylated genes were enriched in func-
tions such as protein binding, protein homodimerization activity, focal adhesion, and 
so on, as depicted in Fig. 1B.
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Our findings were consistent with a previous study (Thair et  al. 2021), which 
showed that upregulated genes were enriched in G-protein coupled receptor sign-
aling pathway, neuroactive ligand-receptor interaction, inflammatory response, and 
DNA replication-dependent nucleosome assembly. In contrast, downregulated genes 
were enriched in rRNA processing, viral transcription, viral process, RNA transport, 
et al. (Supplementary Table S1).

Functional Epigenetic Modules

To further investigate the relationship between gene expression and DNA methyl-
ation, we used the FEM algorithm (Jiao et  al. 2014) to integrate these two omic 
data. Our analysis identified two significant functional epigenetic modules SKA1 
(p-value = 0.003) and WSB1 (p-value = 0.043), comprising 79 and 60 genes, respec-
tively (Fig. 2 and Supplementary Table S2).

After performing enrichment analysis for the genes in these two modules, we 
were surprised to find that the genes in the SKA1 module were enriched in the bio-
logical process of virus DNA replicating, including sister chromatid cohesion, cell 
division, mitotic nuclear division, chromosome segregation, cell cycle, and viral 
transcription (Fig.  3A). These results suggest that the SKA1 module may play a 
potential role in the replication and transcription of SARS-CoV-2.

In contrast, the genes in the WSB1 module were found to be enriched in pro-
tein polyubiquitination and protein ubiquitination-related biological processes and 
KEGG pathways (Fig. 3B). This indicates that the WSB1 module may be involved 
in protein regulation and signaling pathways related to ubiquitination.

Development of a Diagnostic Model for COVID‑19 and Validation of Potential 
Markers

After identifying two modules that may be associated with the replication and tran-
scription of SARS-CoV-2 and protein ubiquitination, we built a diagnostic model 
to test whether the genes in those two modules (SKA1 and WBS1) can distinguish 
COVID-19 samples from healthy controls. We randomly split the whole data into 
training and test sets, then implemented a logistic regression classifier to train the 
model in the training set and validate it in the test set. As expected, the AUC of this 
model was 1 and 0.79 for the gene expression and DNA methylation-based models, 
respectively (Fig. 4A and B). The heatmap (Fig. 4C and D) clearly showed a pattern 
for the expression and DNA methylation of SKA1 module genes between COVID-
19 and healthy control samples. Similarly, the classifier for the WSB1 module had a 
good performance of AUC 0.83 and 0.99 (Supplementary Figure S1). The learning 
curves show that the training and validation accuracy become closer as the training 
size (number of samples) increases (Supplementary Figure S2), indicating that our 
model was not overfitting.

We noticed five epigenetically activated genes in the SKA1 and WSB1 modules, 
including CENPM, KNL1, RBCK1, CCNF, and UNKL, which were significantly 
hypomethylated and overexpressed in COVID-19 samples. Since the SKA1 module 
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was enriched in the replication and transcription of SARS-CoV-2, we hypothesized 
that these CENPM and KNL1 might also be associated with the replication and 
transcription of viruses. To investigate this hypothesis, we examined the differential 
expression status of CENPM and KNL1 in six major oncoviruses across TCGA can-
cer types using OncoDB (see “Methods” section).

Fig. 2  Functional epigenetic modules. Module SKA1 (A) and WSB1 (B), The node color illustrates the 
DNA methylation difference (blue means high methylation, and yellow indicates low methylation), while 
the edge color shows differentially expressed genes (red represents genes with elevated expression levels 
in COVID-19 and green represents genes with low expression). The size of the nodes is correlated with 
the degrees of the nodes in the network



2324 Biochemical Genetics (2023) 61:2318–2329

1 3

The OncoDB analysis showed that among all TCGA cancer types, the differential 
expression of CENPM was observed in HPV-positive CESC, OPSCC, and HBV-
positive LIHC tumor samples. Specifically, compared with virus-negative samples, 
both CENPM and KNL1 are significantly overexpressed in virus-positive samples 
in the corresponding virus type (Fig. 5, p-value < 0.01). In addition, a study by Xiao 
et al. (Xiao et al. 2019) also reported overexpression of CENPM in hepatitis B virus 
(HBV)-related liver tissues compared with normal tissues, which is consistent with 
our findings.

Finally, we examined the association between the gene expression or DNA meth-
ylation of CENPM and KNL1 and the overall survival probability of tumor samples 
stratified by virus-positive in the corresponding TCGA cancer types. As anticipated, 
we found that CENPM and KNL1 are significantly associated with the survival of 
HPV-positive CESC and OPSCC, as well as HBV-positive LIHC tumor samples 
(p-value ≤ 0.05). Our results suggest that genes CENPM and KNL1 are involved in 
the replication and transcription of SARS-CoV-2, as well as in the process of HPV 
and HBV in tumors.

Discussion

DNA methylation is a critical biomarker in many diseases, including cancer (Ding 
et al. 2019). Various studies have investigated the DNA methylation or gene expres-
sion profiles in COVID-19. However, to date, no research has focused on the com-
bined analysis of gene expression and DNA methylation simultaneously and identi-
fying functional epigenetic modules that are differentially methylated and expressed.

20 40 60 80 100 120

-log10(FDR)

sister chromatid cohesion

cell division

mitotic nuclear division

protein sumoylation

chromosome segregation

regulation of glucose
transport

kinetochore assembly

CENP-A containing
nucleosome assembly

tRNA export from nucleus

mitotic spindle assembly
checkpoint

mitotic nuclear envelope
disassembly

mitotic sister chromatid
segregation

Cell cycle

regulation of cellular
response to heat

intracellular transport of
virus

SKA1
Biological Process
KEGG Pathway

10 20 30 40

-log10(FDR)

protein polyubiquitination

protein ubiquitination

ubiquitin-dependent
protein catabolic process

protein ubiquitination
involved in ubiquitin-dependent

protein catabolic process

SCF-dependent proteasomal
ubiquitin-dependent protein

catabolic process

positive regulation of
proteasomal ubiquitin-dependent

protein catabolic process

protein destabilization

Ubiquitin mediated
proteolysis

proteasome-mediated
ubiquitin-dependent protein

catabolic process

WSB1
Biological Process
KEGG PathwayA B

Fig. 3  Enrichment results for the genes in module SKA1 (A) and WSB1 (B)



2325

1 3

Biochemical Genetics (2023) 61:2318–2329 

Here we identified two significantly functional epigenetic modules by integrat-
ing Methylation EPIC DNA methylation array and RNA-Seq datasets using FEM. 
SKA1 module was found to be closely associated with the cell cycle, DNA replica-
tion, and transcription of SARS-CoV-2, while module WSB1 is related to protein 
ubiquitination. Ubiquitin modifications can regulate the innate immune response 
by affecting the related regulatory proteins, altering their stability via the ubiqui-
tin–proteasome pathway, or directly regulating their activity. It has been reported 
that viruses, including coronaviruses, often use modulation of ubiquitin and ubiq-
uitin-like modifiers to evade the host cell’s immune response (Lin and Zhong 2015; 
Tang et al. 2018). Recent research indicated that deubiquitinating enzymes play an 
essential role in coronavirus pathogenesis, involving the production of non-structural 
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Fig. 5  Associations between HPV, HBV in CESC, OPSCC, LIHC, and genes CENPM and KNL1. In 
each TCGA cancer type, the expression of CENPM and KNL1 in virus-positive and virus-negative 
groups are shown as boxplots (upper panel). The lower panel shows the Kaplan–Meier survival curve of 
the overall survival based on the gene expression (CENPM on CESC: HPV, LIHC: HBV, and KNL1 on 
OPSCC: HPV) or DNA methylation (CENPM on OPSCC: HPC and KNL1 on CESC: HPV) of CENPM 
or KNL1
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proteins required for the replication process of coronavirus (Clemente et al. 2020). 
ORF9b interrupts its K63-linked polyubiquitination upon viral stimulation, thereby 
inhibiting the canonical IκB kinase alpha (IKKα)/β/γ-NF-κB signaling and subse-
quent interferon production, which contributes mainly to the viral pathogenesis and 
development of COVID-19 (Wu et  al. 2021). These studies indicated that protein 
ubiquitination is associated with the coronavirus’s replication process and the patho-
genesis and development of COVID-19, which means both SKA1 and WSB1 mod-
ules may play essential roles in the replication process of coronavirus.

Then, we built a logistic regression model only using the expression or DNA 
methylation values of genes from SKA1 or WSB1 modules. our results showed that 
the genes in these two modules could be used to distinguish COVID-19 samples 
from controls. The AUC is 1 and 0.79 for gene expression and DNA methylation of 
SKA1 module, respectively.

Finally, we screened out two potential marker genes, CENPM and KNL1, from 
SKA1 module. These two genes are epigenetically activated in COVID-19 samples. 
Surprisingly, these two genes are significantly overexpressed in HPV-positive CESC 
and OPSCC tumor samples, as well as HBV-positive LIHC tumor samples. In addi-
tion, the expression and DNA methylation profile of CENPM and KNL1 are also 
significantly associated with the overall survival of HPV- or HBV- positive CESC, 
OPSCC, or LIHC tumor samples.

To conclude, we identified two functional epigenetic modules, SKA1 and WSB1, 
and potential biomarkers, CENPM and KNL1, that are associated with the repli-
cation process of coronavirus and may be used as potential therapeutic targets for 
COVID-19 after further verification.
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