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Abstract
Coronavirus disease 2019 (COVID-19) seriously threatens human health and has 
been disseminated worldwide. Although there are several treatments for COVID-19, 
its control is currently suboptimal. Therefore, the development of novel strategies 
to treat COVID-19 is necessary. Ion channels are located on the membranes of all 
excitable cells and many intracellular organelles and are key components involved 
in various biological processes. They are a target of interest when searching for drug 
targets. This study aimed to reveal the relevant molecular features of ion channel 
genes in COVID-19 based on bioinformatic analyses. The RNA-sequencing data of 
patients with COVID-19 and healthy subjects (GSE152418 and GSE171110 data-
sets) were obtained from the Gene Expression Omnibus (GEO) database. Ion chan-
nel genes were selected from the Hugo Gene Nomenclature Committee (HGNC) 
database. The RStudio software was used to process the data based on the corre-
sponding R language package to identify ion channel-associated differentially 
expressed genes (DEGs). Based on the DEGs, Gene Ontology (GO) functional 
and pathway enrichment analyses were performed using the Enrichr web tool. The 
STRING database was used to generate a protein–protein interaction (PPI) network, 
and the Cytoscape software was used to screen for hub genes in the PPI network 
based on the cytoHubba plug-in. Transcription factors (TF)–DEG, DEG–micro-
RNA (miRNA) and DEG–disease association networks were constructed using 
the NetworkAnalyst web tool. Finally, the screened hub genes as drug targets were 
subjected to enrichment analysis based on the DSigDB using the Enrichr web tool 
to identify potential therapeutic agents for COVID-19. A total of 29 ion channel-
associated DEGs were identified. GO functional analysis showed that the DEGs 
were integral components of the plasma membrane and were mainly involved in 
inorganic cation transmembrane transport and ion channel activity functions. Path-
way analysis showed that the DEGs were mainly involved in nicotine addiction, cal-
cium regulation in the cardiac cell and neuronal system pathways. The top 10 hub 
genes screened based on the PPI network included KCNA2, KCNJ4, CACNA1A, 
CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 and KCNN3. The 
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TF–DEG and DEG–miRNA networks revealed significant TFs (FOXC1, GATA2, 
HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-mir-27a-3p, 
hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129–2-3p). Gene-disease association 
network analysis revealed that the DEGs were closely associated with intellectual 
disability and cerebellar ataxia. Drug-target enrichment analysis showed that the rel-
evant drugs targeting the hub genes CACNA2D1, CACNA1A, CACNA1E, KCNA2 
and KCNA5 were gabapentin, gabapentin enacarbil, pregabalin, guanidine hydro-
chloride and 4-aminopyridine. The results of this study provide a valuable basis for 
exploring the mechanisms of ion channel genes in COVID-19 and clues for develop-
ing therapeutic strategies for COVID-19.

Keywords  Bioinformatics · Coronavirus disease 2019 (COVID-19) · Ion channels · 
Molecular characterisation · SARS-CoV-2

Introduction

The new coronavirus pneumonia disease 2019 (COVID-19) caused by severe acute 
respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a severe respiratory dis-
ease, with the first case identified in December 2019. It has now spread worldwide 
and poses a serious threat to public health and economic conditions (Wiersinga et al. 
2020; Coronaviridae Study Group of the International Committee on Taxonomy of 
Viruses 2020; Dhama et al. 2020; Bchetnia et al. 2020; Weston and Frieman 2020; 
Ahsan et al. 2021). After the COVID-19 outbreak, effective diagnostic methods and 
infectious disease control measures, such as new coronavirus nucleic acid detec-
tion, urban blockade and use of masks, were implemented throughout the country, 
which decreased the spread of the disease in some countries and regions (Lian et al. 
2020). Despite the rapid and effective containment of COVID-19 outbreaks in mul-
tiple regions, the global spread of COVID-19 has not been effectively controlled in 
all affected countries to date (Zhang et al. 2020a). According to the data provided 
by the World Health Organization, as of 22 December 2020, 78,299,811 confirmed 
cases of COVID-19 and more than 1.7 million deaths were reported worldwide 
(Ahamad et al. 2020; Aktar et al. 2021; Uddin et al. 2021). In addition, by the end 
of May 2021, approximately, 169 million COVID-19 cases and more than 3.5 mil-
lion deaths had been confirmed worldwide (Aktar et al. 2021; Auwul et al. 2021). 
COVID-19 has emerged as one of the most devastating and long-lasting epidem-
ics affecting human health in the 21st century. Therefore, effectively controlling 
and treating COVID-19 are grave concerns worldwide. Unlike other severe infec-
tious diseases, COVID-19 lacks a typical clinical presentation. Respiratory symp-
toms and others reported to be related to COVID-19 include fever, cough, headache, 
conjunctivitis, diarrhoea and muscle or systemic pain (Rothan and Byrareddy 2020; 
Pascarella et al. 2020), which may be similar to the symptoms of other respiratory 
infections. Some patients may not have any symptoms after infection but may spread 
the disease. Moreover, specific drugs for treating COVID-19 have not yet been 
developed for clinical use, thus making the rapid diagnosis, effective control and 
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treatment of COVID-19 difficult. Therefore, the identification of novel biomarkers 
at different omic levels (genomic, transcriptional or proteomic) may facilitate large-
scale screening, diagnosis and treatment of COVID-19 (Chen et al. 2021), which is 
crucial to reveal the underlying pathogenesis of COVID-19, develop novel therapeu-
tic strategies, discover potential therapeutic targets and improve therapeutic efficacy.

Ion channels are specific membrane proteins present in all cell membranes and 
some organelle membranes (e.g., mitochondria, Golgi apparatus, endoplasmic 
reticulum and lysosomes) (Wu et  al. 2019; Tao et  al. 2016). Ion channel genes 
encode these specific membrane proteins (mainly pore-forming membrane proteins) 
expressed in each living cell, which are oligomeric protein complexes composed 
of multiple subunits with ion-selective and voltage-gating properties (Noskov and 
Roux 2007). These membrane proteins can precisely control the passive influx and 
efflux of signalling ions into and out of the cell, thereby regulating ion concentra-
tions inside and outside the cell membrane, membrane potential and volume size 
of the cell (Kondratskyi et  al. 2018). Ion channels are involved in various physi-
ological activities (Becchetti 2011), including muscle contraction, hormone secre-
tion, cell proliferation and immune responses (Camerino et  al. 2008; Fiske et  al. 
2006; Roger et  al. 2006), and play an important role in maintaining homeostasis 
of the intracellular environment. Ion channels include sodium (Na +), potassium 
(K +), calcium (Ca +) and chloride (Cl-) ions and nonspecific cation channels (Lu 
et al. 2021a). Because ion channels play a key role in diverse biological functions, 
abnormal expression of ion channel genes plays a crucial role in many diseases (Sun 
et  al. 2020). Ion channel genes are closely associated with tumour initiation and 
progression {e.g., breast cancer (Nelson et al. 2014), lung cancer (Ko et al. 2014), 
liver cancer (Lu et al. 2021b) and gastric cancer (Anderson et al. 2019)}, epilepsy 
(Oyrer et  al. 2018), kidney stones, hypertension, insulin secretion deficiency and 
cardiac arrhythmias (Jentsch et al. 2004). However, limited information is available 
regarding the molecular characteristics of ion channel genes involved in COVID-
19. In addition to impairing the respiratory system, COVID-19 has been reported 
to present in multiple organs to produce various clinical manifestations, including 
cardiovascular, urological, musculoskeletal, and neurological symptoms (Chen et al. 
2020), whereas ion channels are known to be highly enriched in the nervous system 
and cardiac organs. It has been suggested that ion channels may be involved in the 
inflammation, pain, fever, anosmia, ageusia, respiratory, cardiovascular, gastroin-
testinal and neurological complications caused by COVID-19 infection (Jaffal and 
Abbas 2021). Epilepsy has been reported in the literature to occur with COVID-
19 infection (Nikbakht et  al. 2020), and epilepsy is currently considered to be an 
ion channel-related disorder. Therefore, exploring the relevant features of ion chan-
nels in COVID-19 and understanding their biological mechanisms are crucial for the 
treatment of COVID-19.

In this study, we adopted an analytical strategy involving an integrated bio-
informatic approach to explore the mechanism of ion channel-related genes in 
COVID-19. We used biological datasets and several online databases to identify 
relevant features of ion channel genes in COVID-19 and identified 29 ion chan-
nel-related differentially expressed genes (DEGs) in COVID-19. Based on this, 
several bioinformatic analyses were performed to understand the involvement of 
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these genes in the biological processes of the organism. In addition, we attempted 
to elucidate the pathogenic molecular mechanisms of these genes in COVID-
19 and predict potential therapeutic agents. These differential genes have good 
application prospects for the diagnosis and treatment of COVID-19 and provide 
new perspectives for the discovery of potential biomarkers and drug targets of 
COVID-19.

Methods

Data Sources

To analyse the biological mechanisms and potential therapeutic targets of ion 
channel-related genes present in COVID-19, we obtained gene expression data-
sets (GSE152418 and GSE171110) from the Gene Expression Omnibus (GEO) 
database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE152418 is based on the Illu-
mina NovaSeq 6000 (Homo sapiens) (GPL24676) platform for RNA-sequencing 
(RNA-Seq) data on COVID-19. This dataset contains information on 17 patients 
with COVID-19 and 17 healthy subjects, with samples collected from peripheral 
blood mononuclear cells (PBMCs), and was derived from the research contribu-
tions of Arunachalam et al. (2020). GSE171110 is based on the Illumina HiSeq 
2500 (Homo sapiens) (GPL16791) platform for RNA-Seq data on COVID-19. 
This dataset contains information on 44 patients with COVID-19 and 10 healthy 
subjects, with samples collected from whole blood tissue, and was derived from 
the research contributions of Lévy et al. (2021). Table 1 shows the basic informa-
tion of both datasets. Ion channel genes were downloaded from the HUGO Gene 
Nomenclature Committee (HGNC) database (http://​www.​genen​ames.​org/), and a 
total of 330 ion channel genes were obtained.

Screening of Differential Genes

To identify ion channel-related DEGs, we downloaded the RStudio software (ver-
sion 2022.02.0 + 443) (https://​www.​rstud​io.​com/), which is run on the R soft-
ware (version 4.1.3) (https://​www.r-​proje​ct.​org/). The RNA-Seq data of patients 
with COVID-19 (GSE152418 and GSE171110) were processed using RStudio 
based on the edgeR R package (version 3.36.0). The cut-off criteria of false dis-
covery rate (FDR) < 0.05 and absolute value of log2-fold change (|logFC|) ≥ 1.0 
were used to screen for significant DEGs in the abovementioned datasets. A Venn 
diagram was created using the VennDiagram R package (version 1.7.3) to show 
interacting genes by considering the intersection of DEGs obtained for each of 
the GSE152418 and GSE171110 datasets with the 330 ion channel-related genes. 
These interacting DEGs were used for subsequent analyses. Volcano plots were 

http://www.ncbi.nlm.nih.gov/geo/
http://www.genenames.org/
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drawn using the EnhancedVolcano R package (version 1.12.0) to show the differ-
ential genes in the GSE152418 and GSE171110 datasets.

Functional and Pathway Enrichment Analyses

A comprehensive gene set enrichment web tool, Enrichr (https://​maaya​nlab.​cloud/​
Enric​hr/), was used for functional annotation and pathway enrichment analysis of 
DEGs (Chen et al. 2013; Kuleshov et al. 2016; Xie et al. 2021). Gene set enrich-
ment analysis (GSEA) is an important effort that enables the classification and sum-
marisation of common biological insights to help understand the underlying bio-
logical mechanisms of target gene sets (Subramanian et  al. 2005). We used Gene 
Ontology (GO) terms for functional enrichment analysis, which included the three 
aspects of biological process (BP), cellular composition (CC) and molecular func-
tion (MF). The Kyoto Encyclopedia of Genes and Genomes (KEGG), WikiPathways 
and Reactome databases were used as data sources for pathway enrichment analysis. 
An adjusted p value of < 0.05 was considered statistically significant GO terms and 
pathways.

Protein–Protein Interaction Networks and Screening of Hub Genes

In cell biology and systems biology, the evaluation and analysis of protein–protein 
interaction (PPI) networks and their functions are fundamental and key to the inter-
pretation and understanding of cellular activities (Szklarczyk et  al. 2019; Ewing 
et  al. 2007; Ben-Hur and Noble 2005). We input the 29 identified DEGs into the 
STRING database (https://​string-​db.​org/) to generate PPI networks (Szklarczyk 
et  al. 2017). Furthermore, we downloaded the Cytoscape software (version 3.9.1) 
(https://​cytos​cape.​org/) and imported the constructed PPI networks into this soft-
ware for further processing and analysis (Shannon et al. 2003; Smoot et al. 2011). 
The Cytoscape software is an open platform that includes a number of plug-ins with 
scalable visualisation options and network analysis (Shannon et al. 2003). We used 
the cytoHubba plug-in in the Cytoscape software (http://​apps.​cytos​cape.​org/​apps/​
cytoh​ubba) to screen for hub genes. CytoHubba is a plug-in for ranking and extract-
ing central, potential or targeted elements of a biological network based on vari-
ous network features and contains 11 methods to score networks based on different 
perspectives, with the best one being Maximal Clique Centrality (MCC) at present 
(Chin et al. 2014). We used the MCC method to identify the top 10 hub genes in the 
PPI network.

Transcriptional and Post‑transcriptional Regulatory Networks Analyses

Transcription factors (TFs) are proteins that attach to specific genes and control 
the rate of transcription of genetic information (Caramori et al. 2013). MicroRNAs 
(miRNAs) are a class of short, endogenously initiated and non-coding RNAs that 
repress or degrade messenger RNAs (mRNAs) through translation, thereby con-
trolling gene expression at the post-transcriptional level (Cai et al. 2009). TFs and 

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://string-db.org/
https://cytoscape.org/
http://apps.cytoscape.org/apps/cytohubba
http://apps.cytoscape.org/apps/cytohubba
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miRNAs are essential for molecular biology research. We used the online web tool 
NetworkAnalyst (Zhou et  al. 2019; Xia et  al. 2015) (https://​www.​netwo​rkana​lyst.​
ca/) to construct TF–DEG and DEG–miRNA regulatory networks to analyse rele-
vant TFs and miRNAs. The TF–DEG network was established using the JASPAR 
database. JASPAR is a publicly available repository that provides maps of TFs for 
multiple species in six major taxa (Khan et al. 2018). The DEG–miRNA network 
was established using the TarBase database. TarBase is the main experimental valid-
ity database for miRNAs interacting with target genes (Sethupathy et al. 2006).

Gene–Disease Association Analysis

We analysed DEGs using the DisGeNET database through the online web tool Net-
workAnalyst to examine the association of these DEGs with diseases. DisGeNET 
is a comprehensive database exploring the association of genes and diseases based 
on various biomedical aspects of diseases, which synchronises relationships from 
multiple sources (Pinero et al. 2017). It provides and highlights new insights into the 
study of human genetic diseases (Pinero et al. 2020).

Protein–Drug Interaction Analysis

It is important to predict protein–drug interaction (PDI) based on target genes or 
identify potential drug molecules. We used the gene set enrichment network tool 
Enrichr based on the Drug Signature Database (DSigDB) to identify potential drugs 
that significantly interact with genes through PPI network pairs of the screened 10 
hub genes (Yoo et al. 2015). DSigDB is a free web-based resource repository con-
taining relevant information on drugs and their target genes for GSEA (Yoo et al. 
2015). DSigDB currently contains a total of 22,527 gene sets, including 17,389 
drugs and 19,531 genes (Auwul et  al. 2021; Mahmud et  al. 2021). An adjusted p 
value of < 0.05 was set as the statistical criteria for identifying drugs significantly 
associated with target genes.

Results

Identification of Differentially Expressed Genes

The COVID-19 datasets GSE152418 and GSE171110 from the GEO database 
were used for analysis. We used the RStudio software to process the data using the 
edgeR R package. The criteria for screening DEGs were as follows: FDR < 0.05 
and |logFC|≥ 1.0. In the GSE152418 dataset, a total of 2080 genes were screened; 
of which, 1905 were upregulated and 175 were downregulated. In the GSE171110 
dataset, a total of 3986 genes were screened; of which, 2620 were upregulated and 
1366 were downregulated. Table  1 shows information regarding the number of 
DEGs in the two datasets. The VennDiagram R package was used for Venn anal-
ysis. The 330 ion channel-related genes obtained from the HGNC database were 

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
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intersected with the DEGs of the GSE152418 and GSE171110 datasets, and 29 
ion channel-related DEGs were eventually identified. Table 2 shows the expression 
information of 29 DEGs in the GSE152418 and GSE171110 datasets. The Venn dia-
gram is shown in Fig. 1A. The visualization of differential genes in the GSE152418 
and GSE171110 datasets is shown in Fig. 1B and C.

GO and Pathway Enrichment Analyses

GO and pathway enrichment analyses were performed to identify the biological 
significance and enriched pathways of the 29 DEGs of interest using the online 

Table 2   Expression information of 29 DEGs in the GSE152418 and GSE171110 datasets

Gene GSE152418 GSE171110

Log2FC FDR Type Log2FC FDR Type

KCNN3 3.875565247 5.06E − 22 Up 3.71805478 7.96E − 14 Up
CACNA2D3  − 1.934427624 7.81E − 11 Down  − 3.224177117 7.06E − 17 Down
SCN1B 1.694963987 1.59E − 10 Up 1.925623978 4.24E − 09 Up
KCNA2 1.188179351 4.16E − 06 Up 1.043307154 0.003261774 Up
AQP10 1.853616625 6.08E − 06 Up 1.891566838 0.001042295 Up
ANO2 2.739331713 1.02E − 05 Up 2.601512862 3.36E − 06 Up
CACNA1E 1.951378596 5.47E − 05 Up 1.782979464 4.19E − 05 Up
GJA4 2.811174491 9.77E − 05 Up 2.209293255 0.000160142 Up
CACNA1A 1.03471284 0.000146293 Up 1.332922487 2.75E − 05 Up
CATSPERD 2.776130738 0.000226835 Up 1.504241193 0.026799943 Up
TRPC1  − 1.033107512 0.00024422 Down  − 1.457710412 1.73E − 06 Down
KCNT2 2.646145885 0.000286884 Up 3.745253923 0.000357053 Up
TRPM1 2.259304259 0.000323608 Up 1.657205891 0.001286955 Up
ASIC4 2.064311007 0.000479613 Up 1.69682146 1.39E − 05 Up
NALCN 2.206464254 0.000638513 Up 1.675033515 0.000173107 Up
KCNG2 1.501487903 0.001142459 Up 3.019338629 1.24E − 05 Up
TRPM3 2.010824749 0.001300631 Up 1.281553025 0.00692089 Up
AQP9 1.060161386 0.001965165 Up 1.185764556 8.64E − 06 Up
GRIK5 1.698086032 0.002450449 Up 1.232928314 0.001037696 Up
KCNJ4 2.11639305 0.00385028 Up 3.155367763 0.001483182 Up
CHRNA2 1.659963162 0.005103148 Up 1.82443945 0.000381008 Up
KCNA5  − 1.170337718 0.005329720 Down  − 1.790680806 0.004616677 Down
GABRD 1.656924477 0.007725023 Up 1.481505214 0.030444915 Up
SCNN1B 2.131785521 0.009464007 Up 3.803559267 3.58E − 08 Up
TRPV5 1.442177547 0.010570825 Up 2.045644869 1.65E − 05 Up
CHRNB2 1.154450485 0.022489232 Up 1.760804737 5.78E − 05 Up
CNGB1 1.505139155 0.027513742 Up 1.175020522 0.000297923 Up
GJB5 1.361208469 0.034618091 Up 1.373879663 0.003175905 Up
CACNA2D1 1.767534655 0.041805155 Up 3.068993135 0.003340099 Up
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web tool Enrichr. GO analysis included the following three categories: BP, CC 
and MF. GO enrichment analysis revealed that DEGs in BP were significantly 
enriched in ‘inorganic cation transmembrane transport’, ‘calcium ion transport’ 
and ‘calcium ion transmembrane transport’. The bar graph is shown in Fig. 2A. 
DEGs in CC were significantly enriched in ‘integral component of plasma mem-
brane’, ‘voltage-gated potassium channel complex’, ‘potassium channel complex’ 
and ‘voltage-gated calcium channel complex’. The bar graph is shown in Fig. 2B. 
DEGs in MF were significantly enriched in the categories ‘ion channel activity’, 
‘ligand-gated cation channel activity’, ‘calcium channel activity’, ‘voltage-gated 
cation channel activity’ and ‘cation channel activity’. The bar graph is shown in 
Fig. 2C. Table 3 enlists the top 10 terms enriched by DEGs in BP, CC and MF.

Pathway analysis is a technique to deduce the interaction between various dis-
eases by modelling a molecular or biological process underlying the organism 
(Wittig and De Beuckelaer 2001), which can reveal the organism’s response to its 
intrinsic modifications. Three global databases, KEGG, WikiPathways and Reac-
tome, were used as data sources for pathway enrichment analysis. The analysis 
showed that DEGs in the KEGG database were significantly enriched in ‘nicotine 

Fig. 1   Identification of ion channel-related genes in the GSE152418 and GSE171110 datasets of differ-
entially expressed genes (DEGs). A Screening of 29 DEGs. B Volcano plots of GSE152418. C Volcano 
plots of GSE171110
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Fig. 2   GO enrichment analysis bar plot of DEGs obtained by Enrichr web tool. A Biological processes; 
B Cellular composition; C Molecular function
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Fig. 3   Pathway enrichment analysis bar plot of DEGs obtained by Enrichr web tool. A KEGG; B WikiP-
athways; C Reactome
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addiction’, ‘cholinergic synapse’, ‘glutamatergic synapse’, ‘MAPK signaling 
pathway’, ‘adrenergic signaling in cardiomyocytes’, ‘neuroactive ligand-receptor 
interaction’ and ‘oxytocin signaling pathway’. The bar graph is shown in Fig. 3A. 
DEGs in the WikiPathways database were significantly enriched in ‘calcium 
regulation in the cardiac cell’, ‘MAPK signaling pathway’ and ‘arrhythmogenic 
right ventricular cardiomyopathy’. The bar graph is shown in Fig. 3B. DEGs in 
the Reactome database were significantly enriched in ‘neuronal system’, ‘stimuli-
sensing channels’ and ‘ion channel transport’. The bar graph is shown in Fig. 3C. 
Table 4 provides information regarding the top 10 pathways enriched by DEGs in 
the three databases, namely, KEGG, WikiPathways and Reactome.

PPI Networks and Hub Genes

PPI analysis was performed using the STRING database to identify key molecules. 
We input the 29 DEGs into the STRING database to generate a PPI network, set-
ting the minimum required interaction score (MIS) to 0.150 and hiding disconnected 
nodes in the network. The analysis revealed that this PPI network contained 29 
nodes and 161 edges (Fig. 4A). In the PPI network, the most interconnected nodes 
were considered hub genes. We imported the PPI network results into the Cytoscape 
software for network visualisation, and hub genes were screened using the MCC 
method in the cytoHubba plug-in. The top 10 hub genes screened were KCNA2, 
KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 
and KCNN3. The hub gene network is presented in Fig. 4B, and relevant informa-
tion regarding these 10 hub genes is provided in Table 5. These hub genes may be 
potential biomarkers for COVID-19.

Correlation Analysis of DEGs with TFs and miRNAs

To understand the transcriptional and post-transcriptional regulatory characteristics 
of DEGs, TF–DEG and DEG–miRNA interaction networks were constructed using 
the network database. The TF–DEG network contained 86 nodes and 193 edges, and 
TFs closely associated with DEGs were FOXC1, GATA2, HINFP, USF2, JUN and 
NFKB1. The TF–DEG network is presented in Fig. 5. The miRNA–DEG network 
contained 161 nodes and 246 edges, and miRNAs closely associated with DEGs 
were hsa-mir-146a-5p, hsa-mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-
129–2-3p. The DEG–miRNA network is shown in Fig. 6. These TFs and miRNAs 
may play an important regulatory role on DEGs.

Analysis of the Association between DEGs and Diseases

Different diseases may have one or more genes in common, making it possi-
ble for diseases to be interrelated (Al-Mustanjid et al. 2020). Discovering asso-
ciations between genes and diseases can help in the development and design 
of disease treatment strategies (Moni and Lio 2014). The online web tool 
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Fig. 4   PPI network analysis of DEGs. A PPI network obtained from STRING database. B 10 hub genes 
screened by cytoscape software
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NetworkAnalyst was used to obtain a DEG–disease association network, which 
contained 248 nodes and 280 edges. We found that intellectual disability and 
cerebellar ataxia were more closely associated with the DEGs. This finding sug-
gests that COVID-19 may be associated with intellectual disability and cerebel-
lar ataxia. The DEG–disease association network is presented in Fig. 7.

Drug Prediction Analysis

Assessment and analysis of protein–drug interactions are essential to understand 
the structural features required for receptor sensitivity (Mahmud et  al. 2020; 
Mosharaf et al. 2020). In addition to investigating protein–drug interactions, we 
screened for candidates that could affect COVID-19. We considered the screened 
10 hub genes as drug targets and performed drug-target enrichment analysis 
using the online web tool Enrichr based on DSigDB. The results showed that 
the drugs gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochlo-
ride and 4-aminopyridine, which act on five pivotal genes, namely, CACNA2D1, 

Fig. 5   TF-DEG network obtained by NetworkAnalyst web tool. Red indicates DEGs, and blue indicates 
TF. The boxes marked in red indicate TF that are more closely associated with DEGs
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CACNA1A, CACNA1E, KCNA2 and KCNA5, respectively, may be potential 
drugs for the treatment of patients with COVID-19. Table  6 provides relevant 
information regarding these drugs.

Discussion

COVID-19 is an emerging and rapidly growing pandemic with increasing infection 
and mortality rates worldwide (Team CC-R, 2020). COVID-19 has spread world-
wide and poses a significant threat to humans. The current situation has prompted 
researchers to discover effective treatments against COVID-19 (Kumar et al. 2021). 
The causative agent of COVID-19, SARS-CoV-2, is highly pathogenic to humans. 
However, it is currently poorly understood, and specific treatments for COVID-19 
remain unexplored. Hence, it is difficult to overcome this life-threatening preva-
lent disease (Li et  al. 2021). Therefore, it is important to use bioinformatic meth-
ods to analyse the characteristics and pathogenesis of COVID-19 and discover novel 

Fig. 6   DEG-miRNA network obtained by NetworkAnalyst web tool. Red indicates DEGs, and blue indi-
cates miRNA. The boxes marked in red indicate miRNA that are more closely associated with DEGs
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therapeutic targets for the development of effective drugs and vaccines, thus pro-
viding a basis for public health decision-making (Ma et al. 2021). Ion channels are 
pore-forming membrane proteins that allow the passage of ions through the chan-
nel pore. Their functions include establishing the resting membrane potential (Abdul 
Kadir et al. 2018), shaping action potentials and other electrical signals by control-
ling ion flow across cell membranes, controlling ion flow in secretory and epithe-
lial cells and regulating cell volume. Ion channels play an important role in various 
biological functions (Sun et  al. 2020). However, the role of ion channel genes in 
COVID-19 remains unclear.

In this study, we used an integrated bioinformatic approach to gain insights into 
the associated features of ion channel-related genes in COVID-19. A total of 29 ion 
channel-related DEGs were identified in two RNA-Seq datasets (GSE152418 and 
GSE171110) containing data derived from the blood tissues of 61 patients with 
COVID-19 and 27 healthy subjects and including 330 ion channel gene sets. To 

Fig. 7   DEG–disease association network obtained by NetworkAnalyst web tool. Red indicates DEGs, 
and blue indicates disease. The boxes marked in red indicate disease that are more closely associated 
with DEGs
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examine the biological significance of these DEGs in the pathogenesis of COVID-
19, we performed GO and pathway analyses on the DEGs. GO is a general theo-
retical model in gene regulation that outlines the functions of genes and their inter-
relationships (Al-Mustanjid et  al. 2020). It develops progressively through the 
acquisition of biological knowledge regarding gene function and its regulation based 
on linguistic relationships among various ontological categories (Rana et al. 2019). 
The GO database was used as an annotation source for ontology to analyse the three 
categories, namely, BP, CC and MF, of the target genes. According to GO term 
interpretation, BP is the molecular activity, CC is the cellular structure in which 
genes regulate their function and MF is a description of activity at the molecular 
level (Moni and Lio 2015). Pathway analysis is a modern scientific strategy that 
helps to understand and reveal how biologically or molecularly complex diseases are 
connected and is the best way to obtain an organism’s response triggered by internal 
changes (Rana et al. 2020). In this study, GO enrichment analysis revealed that the 
DEGs were integral components of the plasma membrane (CC) and were signifi-
cantly enriched in relevant functions such as inorganic cation transmembrane trans-
port (BP) and ion channel activity (MF), and these processes mainly involved cal-
cium and potassium channels. Furthermore, pathway enrichment analysis revealed 
that the DEGs were significantly enriched in pathways related to nicotine addiction 
(KEGG), calcium regulation in the cardiac cell (WikiPathways) and the neuronal 
system (Reactome). Calcium channels are activated upon membrane depolarisation 
to conduct calcium ions into the cell and organelles while initiating many physi-
ological responses, including secretion, contraction and gene transcription (Zamponi 
et  al. 2015). Calcium channel mutations and their dysfunctions have been associ-
ated with several diseases, such as disorders of the cardiovascular system {e.g., 
hypertension, arrhythmias and heart failure (Liao and Soong 2010; Venetucci et al. 
2012)}, periodic skeletal muscle paralysis (Jurkat-Rott and Lehmann-Horn 2006), 
impaired insulin release and islets β-cell apoptosis in patients with diabetes (Yang 
et al. 2014), chronic pain and migraine (Bourinet et al. 2014; Kowalska et al. 2021) 
and numerous brain disorders (Heyes et al. 2015; Ortner and Striessnig 2016). How-
ever, the mechanism of action of calcium channels in COVID-19 remains unclear. 
Several studies (Neuraz et  al. 2020; Peng et al. 2021; Kow et al. 2022) have sug-
gested that the use of calcium channel blockers (CCBs), which reduce mortality in 
patients with COVID-19, has a therapeutic effect on COVID-19. However, other 
studies have reported (Mancia et al. 2020) that CCBs have no significant therapeutic 
effect on COVID-19 but increase the risk of tracheal intubation and death in patients 
with COVID-19 (Mendez et al. 2021). Potassium channels are located on the cell 
membrane and control the efflux and influx of potassium ions out of and into the 
cell (Kuang et al. 2015). They play a crucial role in both excitable and non-excit-
able cells. They are found in almost all species except some parasites (Kuo et  al. 
2005). The role of potassium channels in COVID-19 remains unknown; however, 
several studies have highlighted that multiple anti-COVID-19 drugs and inflamma-
tory cytokines can interfere with cardiac potassium channels, such as the use of anti-
biotics (azithromycin and fluoroquinolones), antimalarials (hydroxychloroquine and 
chloroquine) and antivirals (lopinavir/ritonavir and atazanavir). In addition, some 
tyrosine kinase inhibitors (vandetanib) can inhibit hERG potassium channels and/
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or impair channel transport, thereby causing prolongation of the QT interval and 
increasing the risk of ventricular arrhythmias (Carpenter et al. 2020; Cubeddu et al. 
2022). The smoke of inhaled cigarettes contains nicotine. Smoke particles carry nic-
otine to the pulmonary organs and are rapidly absorbed into the pulmonary venous 
circulation and subsequently into the arterial circulation, from where they move rap-
idly to the brain and bind to nicotinic cholinergic receptors (ligand-gated ion chan-
nels that normally bind to acetylcholine), producing and maintaining tobacco addic-
tion (nicotine addiction) by acting on nicotinic cholinergic receptors in the brain and 
triggering the release of dopamine and other neurotransmitters, which is a major 
cause of disability and premature death in patients (Benowitz 2010). Although the 
association of smoking with the morbidity and mortality of a wide range of res-
piratory infections is well recognised, it remains unclear in COVID-19. Studies 
have suggested that active smokers do not have a high prevalence of COVID-19, 
which may be related to the ability of smoking to modulate angiotensin-converting 
enzyme-2 (ACE2) expression; however, the exact effects remain unclear (Usman 
et  al. 2021). A recent study reported that smoking and nicotine may upregulate 
ACE2 (Brake et al. 2020). If smoking can upregulate ACE2, it may be a protective 
factor for COVID-19 (Verdecchia et  al. 2020). However, studies published before 
the COVID-19 pandemic have reported that smoking and nicotine contribute to the 
downregulation of ACE2 (Oakes et al. 2018), which may promote increased expres-
sion of ACE2 receptors and viral receptors in smokers, thus increasing the opportu-
nity for SARS-CoV-2 to invade the body (Berlin et al. 2020). However, the role of 
nicotine in COVID-19 requires further investigation. The regulatory role of calcium 
ions as intracellular second messengers (Bers 2008) in the heart is self-evident. It 
is well known that myocardial contraction is controlled by intracellular calcium ion 
concentration changes. The concentration of calcium ions in cardiomyocytes should 
be high enough to activate contractile proteins to pump blood out of the heart. Dur-
ing diastole, the concentration of calcium ions in cardiomyocytes should decrease 
to a sufficiently low level, which in turn relaxes the heart muscles so that the heart 
chamber becomes congested (Eisner 2018). This process relies on the regulation of 
calcium ion concentration, in which calcium channels play an important role. Stud-
ies have suggested a potential susceptibility of cardiomyocytes to COVID-19 (Yang 
et al. 2021). Cardiomyocytes contain abundant calcium ion channels; therefore, cal-
cium regulation in cardiomyocytes may be one of the mechanisms of myocardial 
injury in patients with COVID-19. Ion channel-related genes, initially considered to 
be associated with inherited excitability disorders in the muscle and heart, play an 
important role in the molecular diagnosis of central nervous system diseases (Noe-
bels 2017). Ion channels underlie the genesis of nerve impulses and are therefore 
an important component of the nervous system. Related studies have reported that 
SARS-CoV-2 can invade the nervous system (Liu et al. 2021; Mukerji and Solomon 
2021) and heart (Van Cleemput et  al. 2021) in humans. In this study, enrichment 
analysis suggested that ion channel-related genes play an important role. Overall, 
the results of GO and pathway analyses in this study partly explained the molecu-
lar basis and mechanism of action of the identified DEGs in the pathogenesis of 
COVID-19.
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PPI networks are used to decode the key signalling molecules in molecular net-
works (Rahman et al. 2019). In this study, PPI network analysis revealed the most 
important hub proteins. We built a PPI network based on the 29 DEGs and screened 
10 hub genes from them, which may be key drug targets or biomarkers for COVID-
19. The KCNA2 gene encodes potassium voltage-gated channel subfamily A mem-
ber 2, which is a member of the oscillator-like delayed rectifier potassium channel 
family (Corbett et  al. 2016). It is mainly expressed in axons and presynaptic ter-
minals in the central nervous system (Gu et  al. 2003; Lorincz and Nusser 2008). 
It is now known that KCNA2 mutations can cause various neurological disorders, 
such as epileptic encephalopathy, mental retardation and motor disorders caused by 
cerebellar dysfunction (Doring et  al. 2021). The KCNJ4 gene encodes potassium 
voltage-gated channel subfamily J member 4, which is an inward rectifier potassium 
channel family member. Studies have shown that KCNJ4 is associated with the pro-
gression and poor prognosis of lung adenocarcinoma (Wu and Yu 2019), dilated 
cardiomyopathy (Szuts et al. 2013) and prostate cancer (Kim et al. 2016). The CAC-
NA1A gene encodes a subunit of the voltage-dependent P/Q-type calcium chan-
nel α-1A (Zhang et al. 2020b), and the CACNA1E gene encodes a subunit of the 
voltage-dependent R-type calcium channel α-1E (Helbig et al. 2018). These genes 
are widely expressed throughout the central nervous system and are strongly asso-
ciated with epilepsy and intellectual developmental disorders (Hommersom et  al. 
2021; Royer-Bertrand et al. 2021). In addition, CACNA1E is of potential therapeutic 
value in non-small cell lung cancer (Gao et al. 2022). The NALCN gene encodes 
a non-selective cation channel that conducts a permanent sodium leak current and 
regulates the resting membrane potential and neuronal excitability associated with 
respiration, locomotion and circadian rhythms (Bramswig et  al. 2018; Lutas et  al. 
2016; Shi et al. 2016). NALCN is essential for mammalian survival; however, the 
gating, ion selectivity and pharmacological properties of NALCN remain unclear 
(Chua et  al. 2020; Kschonsak et  al. 2020). The KCNA5 gene encodes potassium 
voltage-gated channel subfamily A member 5, which is involved in the regulation 
of several functions including cardiac action potential, vascular smooth muscle cell 
activity, insulin release and tumour cell proliferation (Bossini-Castillo et al. 2012; 
Ahmed et al. 2016). The CACNA2D1 gene encodes a calcium voltage-gated chan-
nel α2δ-1 subunit, which enhances channel transport, increases the expression of 
functional calcium channels at the plasma membrane and affects the biophysical 
properties of the channel (Dolphin 2012). It has been widely implicated in the regu-
lation of neuronal excitability, action potential firing patterns and neurotransmission 
in nociceptive pathways (Gribkoff 2006). The TRPC1 gene encodes the transient 
C-potential subfamily channel 1 (Zeng et al. 2021), which is involved in the regula-
tion of intracellular calcium ion concentration and plays an important role in cell 
proliferation, differentiation, apoptosis and migration and is expressed in almost all 
normal tissues and many tumours (Berridge et al. 2000; Zeng et al. 2016). Studies 
have shown that TRPC1 is a therapeutic target against herpes simplex virus type 1 
(He et  al. 2020). The TRPM3 gene encodes the transient receptor potential chan-
nel melastatin subfamily member 3, which is a non-selective calcium ion-permeable 
cation channel that can be activated by diverse stimuli including heat, osmotic pres-
sure and chemically related activators (Held and Toth 2021). It activates/modulates 
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calcium channels or transporters by guiding calcium ions through their pores or 
regulating membrane potential, which in turn increases the levels of intracellu-
lar calcium (Wu et  al. 2010). TRPM3 is a recognised temperature receptor in the 
peripheral sensory neurons of the dorsal root ganglion, and mutations in TRPM3 
in humans have recently been reported to be associated with epilepsy and intellec-
tual disability (Zhao et  al. 2020). KCNN3 encodes a neuronal small-conductance 
calcium-activated potassium channel containing two polyglutamine chains, which 
plays a key role in determining neuronal firing patterns and regulating intracellular 
calcium channels (Curtain et al. 2005). In this study, we screened 10 hub genes via 
the PPI network using COVID-19 datasets; however, the associated features are not 
reported. These genes may be potential therapeutic targets for COVID-19.

Because gene expression regulation is controlled by TFs and miRNAs at the tran-
scriptional and post-transcriptional levels, changes in these molecules may provide 
critical information regarding the dysregulated expression of the 29 DEGs. Among 
the identified TFs, FOXC1, GATA2 and NFKB1 have been identified as important 
regulators of COVID-19 (Islam et  al. 2020). HINFP, a histone cell cycle regula-
tor, is a unique zinc-finger TF (Medina et al. 2008). Upstream stimulatory factor 2 
(USF2), a TF involved in various cellular processes that is essential for maintain-
ing reactive oxygen radical levels and mitochondrial morphology and function, is 
particularly prominent in tumour development (Chi et al. 2020). JUN is a subunit of 
activator protein 1 (an inducible transcription factor composed of multiple protein 
complexes), which plays a role in many types of cellular differentiation and inflam-
matory processes (Chang et al. 2013) and plays a specific role in the regulation of 
angiogenesis and endothelial cell proliferation (Yoshitomi et al. 2021). miRNAs are 
emerging as attractive biomarkers in numerous diseases. Among the identified miR-
NAs, hsa-mir-146a-5p is thought to regulate natural killer cells (innate lymphocytes 
with cytotoxic properties), thereby allowing the host to play an important role in 
early defence against infectious pathogens and surveillance against tumours (Pesce 
et al. 2018). The gene encoding hsa-mir-27a-3p is located on human chromosome 
19, and its downregulation promotes tumour cell proliferation and the development 
of neurological diseases and is an important suppressor in diseases (Wu et al. 2015; 
Sala Frigerio et al. 2013). hsa-mir-335-5p plays an important role in regulating car-
diac differentiation (Kay et  al. 2019). hsa-let-7b-5p is a potential therapeutic tar-
get for tuberculosis (Tripathi et  al. 2018). However, these miRNAs have not been 
reported to be associated with COVID-19 thus far. In conclusion, the TFs and miR-
NAs identified based on bioinformatic analyses in this study may serve as important 
regulators in the pathogenesis of COVID-19. In addition, we analysed the gene–dis-
ease relationship to predict the association of DEGs with diseases and found that 
intellectual disability and cerebellar ataxia were strongly associated with DEGs and 
may share common pathogenic features with COVID-19. It has been reported that 
the intellectually challenged population is at a greater risk of developing COVID-19 
(Turk et al. 2020). Neurological symptoms have been suggested as potential compli-
cations of COVID-19, and cerebellar ataxia is a rare post-infectious or post-parain-
fection immune-mediated phenomenon associated with COVID-19 (Chan et  al. 
2021). The DEGs identified in this study may act as a ‘bridge’ in these diseases. 
Finally, we used DSigDB to identify drugs that may target the five screened pivotal 
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genes, namely, CACNA2D1, CACNA1A, CACNA1E, KCNA2 and KCNA5. These 
drugs included gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochlo-
ride and 4-aminopyridine. Among these drugs, gabapentin can treat cough induced 
by acute and chronic COVID-19 infection, thereby reducing clinical symptoms 
(Song et al. 2021). Pregabalin may play a role in reducing the mortality of COVID-
19 (Oddy et al. 2021). Guanidine alkaloids may have strong antiviral activity, thus 
providing a basis for the study of anti-COVID-19 (El-Demerdash et al. 2021). Fur-
ther biological and clinical studies of these candidates are recommended to evaluate 
their potential therapeutic significance in patients with COVID-19.

In this study, we used bioinformatic analyses to investigate the features of ion 
channel-related genes associated with COVID-19 to identify key candidate genes 
and their regulatory molecules, examine the gene–disease association and discover 
potential therapeutic agents. To improve the reliability of the results, we used two 
datasets with data derived from blood tissues for analysis to avoid the influence 
of sample size and different tissue samples on the results. However, this study has 
some limitations owing to the lack of clinical validation of the identified molecules. 
Therefore, further validation is required to interpret the results.

Conclusions

In this study, we examined the molecular features of ion channel genes associated 
with COVID-19. On analysing the RNA-Seq transcriptome datasets (GSE152418 
and GSE171110) and 330 ion channel-related genes downloaded from the HGNC 
database, we identified 29 DEGs. GO analysis revealed that these DEGs were inte-
gral components of the plasma membrane (CC) and were enriched in inorganic cat-
ion transmembrane transport (BP) and ion channel activity (MF). Pathway analy-
sis revealed that the DEGs were enriched in pathways related to nicotine addiction 
(KEGG), calcium regulation in the cardiac cell (WikiPathways) and the neuronal 
system (Reactome). PPI networks were constructed using 29 DEGs, and 10 impor-
tant hub genes (KCNA2, KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CAC-
NA2D1, TRPC1, TRPM3 and KCNN3) were identified. Significant TFs (FOXC1, 
GATA2, HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-
mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129–2-3p) were identified 
through the TF–DEG and DEG–miRNA networks. The DEG–disease association 
network revealed that intellectual disability and cerebellar ataxia were highly associ-
ated with these DEGs. Drug–target enrichment analysis based on DSigDB identi-
fied relevant drugs (gabapentin, gabapentin enacarbil, pregabalin, guanidine hydro-
chloride and 4-aminopyridine) targeting five hub genes (CACNA2D1, CACNA1A, 
CACNA1E, KCNA2 and KCNA5, respectively), which may have potential value 
for the treatment of COVID-19. Because the present study was based on bioinfor-
matic analyses, further clinical studies should be performed to validate the identi-
fied molecular features. We hope that the results of this study will be helpful for the 
rapid control of COVID-19.
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