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Jackknife tests revealed that mean annual tempera-
ture had the highest gain when used in isolation for 
Z. piceicollis, compared with minimum precipitation 
of the driest month for Z. signatipennis. These tests 
also revealed that the highest and lowest contribut-
ing environmental variables for Z. piceicollis and Z. 
signatipennis were minimum precipitation of the dri-
est month (37.9 and 46.7%) and maximum annual 
temperature of the warmest month (3.8 and 12.3%), 
respectively. MaxEnt modelling predicted that at least 
six of South Africa’s nine provinces provide regions 
that would support the proliferation of both beetles, 
with conditions best suited for Z. piceicollis. Despite 
predictions that both beetles should establish through-
out the range of T. rotundifolia in South Africa, their 
realized establishment has so far been poor. Other 
factors, besides climate, including release size, site 
destructions, drought, soil moisture and texture could 
be constraining establishment.
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Introduction

Currently, over 460 insect agents have been released 
worldwide for the biological control of invasive 
alien plants, with around 70% establishing in their 

Abstract  Two Mexican leaf-feeding beetles, Zygo-
gramma piceicollis (Stål) and Zygogramma signati-
pennis (Stål) (Coleoptera: Chrysomelidae), were 
released in South Africa for the biological control 
of the invasive  species Tithonia rotundifolia (Mill.) 
S.E. Blake (Asteraceae: Heliantheae). The aim of 
this study was to predict the potential of these bee-
tles to establish and spread in South Africa, using 
MaxEnt climate modelling that incorporated local-
ity data recorded in Mexico between 2008 and 2019 
and data from the Global Biodiversity Information 
Facility. Zygogramma signatipennis displayed a wider 
distribution than Z. piceicollis in Mexico, with some 
overlap between the two species. The average receiver 
operating characteristic curves obtained for Z. picei-
collis and Z. signatipennis predicted high mean area 
under curve values of 0.910 and 0.885, respectively. 
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new range (Hinz et  al. 2019) and facilitating the 
control of around 65% of the targeted weed spe-
cies (Schwarzländer et  al. 2018). In South Africa, 
Zachariades (2021) reported that out of 136 spe-
cies of biological control agents released against 
90 weed species, about 68% were reported as fully 
established. Although several factors affect the suc-
cess of introduced agents, a considerable number 
of introductions fail due to climatic incompatibility 
between the agents’ native and introduced ranges 
(Clausen 1978; Goolsby et  al. 2005; Harms et  al. 
2020).

Climatic factors, notably temperature and pre-
cipitation, play a major role in the population 
dynamics of insects (Kamata and Igarashi 1994; 
Schoonhoven et  al. 2005; Harms et  al. 2020). In 
particular, temperature directly affects the survival, 
developmental rates and reproduction of insect pop-
ulations (Schoonhoven et  al. 2005; Liebhold and 
Bentz 2011). Furthermore, precipitation influences 
the microclimatic conditions of the niches inhab-
ited by the different insect life stages (Kamata and 
Igarashi 1994). Climate is thus major determinant 
of the distribution of insect agents and their host 
plants in their new ranges (Goolsby et  al. 2006). 
Hence, climate matching is an important component 
of biocontrol programmes. Besides predictions of 
regional suitability for candidate agents, it can iden-
tify reasons for the failure or poor establishment of 
released agents.

Climate-matching models currently include bio-
climatic models, species distribution models or eco-
logical niche models (Hirzel and Arlettaz 2003). 
These models utilize species distribution and envi-
ronmental data to construct a species profile that 
describes how environmental variables drive the 
known distribution (Hirzel and Arlettaz 2003). The 
fundamental principle underlying these models is 
that climate is the primary determinant of the poten-
tial range of animals and plants (Andrewartha and 
Birch 1954; McCarty et al. 2009). The environmen-
tal requirements of each species are characterized in 
terms of the unique upper and lower limits of dif-
ferent combinations of environmental variables, and 
the models are used to produce maps that describe 
the environmental suitability of each location for 
the species (Kriticos and Randall 2001; Peterson 
2003; Barry and Elith 2006).

In recent years, computer-based systems such as 
MaxEnt and Climex have facilitated climate-match-
ing models, each with different advantages and short-
comings. Moreover, the majority of these models 
are constrained by very limited data on species pres-
ence in the native range (Merow and Silander 2014). 
Although the results from these models are not unique 
to a particular species, they remain very important, 
particularly when very little is known about an indi-
vidual organism (Baker et  al. 2000). These models 
thus constitute valuable tools in a variety of applica-
tions, including invasive species management, natural 
resource management, environmental health, agri-
culture and other ecological fields (Corsi et al. 1999; 
Scott et al. 2002; Peterson and Shaw 2003).

Native to Mexico, red sunflower, Tithonia rotun-
difolia (Mill.) S.E. Blake (Asteraceae: Heliantheae), 
is increasing its invasive status in South Africa, 
with extensive monospecific stands in over 42 
quarter degree squares inhabiting roadsides, agro-
ecosystems, rivers and natural systems (Henderson 
2007, 2020; Mawela et  al. 2022). Five out of South 
Africa’s nine provinces, namely Gauteng, KwaZulu-
Natal, Limpopo, Mpumalanga and North West sup-
port populations of T. rotundifolia (Henderson 2007, 
2020; Simelane et  al. 2011; Mawela and Simelane 
2021; Mawela et  al. 2022). A biological control 
programme was thus initiated in 2007 (Mawela and 
Simelane 2021) and culminated in release of two 
leaf-feeding beetles, Zygogramma piceicollis (Stål) 
and Zygogramma signatipennis (Stål) (Coleoptera: 
Chrysomelidae), from 2014 to 2019 (Mawela et  al. 
2022). Founder populations of the two Zygogramma 
species originated from different regions in Mexico, 
with somewhat different climatic conditions, suggest-
ing that their distribution in South Africa may also 
vary. Additional releases of the two beetles should 
cover the extent of the weed’s distribution in South 
Africa, which occurs across a range of climatic condi-
tions from the “Lowveld” (150–600 m altitude) to the 
“Highveld” (1500–2100 m altitude) regions (Supple-
mentary Figure S1).

The aim of this study was to predict the potential 
distribution of Z. piceicollis and Z. signatipennis 
in South Africa, using maximum entropy model-
ling (MaxEnt). The model outcomes could identify 
regions best suited for additional releases, as well as 
explain why earlier releases have resulted in either 
good or poor establishment success.
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Materials and methods

Study area and mapping

Five roadside surveys were conducted in Mexico 
between late September and early November during 
2008–2019, in search of insect natural enemies of T. 
rotundifolia. These incorporated seven states, namely 
Mexico, Puebla, Guerrero, Veracruz, Oaxaca, Chia-
pas and Tabasco, situated from the central region to 
the far south of Mexico. Locality data for sites sup-
porting the two Zygogramma species were recorded, 
using a Garmin hand-held multi-satellite Global 
Positioning System (NUVI 2497 LMT) receiver 
with ± 5 m positional accuracy. Additional records for 
both species were downloaded from the Global Bio-
diversity Information Facility, to increase the sample 
size for both beetle species (GBIF 2022a, 2022b). 
Using the R ‘Biogeo’ package in R statistical soft-
ware R v 4.0.2 (R Core Team 2020) as in Robertson 
et al. (2016), the presence data were ‘cleaned’ to fil-
ter out records with erroneous coordinates, as well as 
duplicated or inaccurate records.

The model for Z. piceicollis incorporated 87 
‘clean’ records, arising from 31 survey records and 
353 records from the GBIF database (GBIF 2022a), 
while the model for Z. signatipennis incorporated 
111 ‘clean’ records, arising from 35 survey records 
and 343 GBIF records (GBIF 2022b). The number of 
occurrence points for each Zygogramma species thus 
exceeded the minimum sample size (i.e., 23) required 
to construct a robust Environmental Niche Model in 
MaxEnt (Stockwell and Peterson 2002). MaxEnt was 
selected because it is a freely available software that 
is widely used for species distribution and environ-
mental niche modelling (Phillips et  al. 2006), with 
over 1000 published applications since 2006 (Merow 
et al. 2013). Furthermore, MaxEnt has proved to per-
form well compared to alternative available models 
(Phillips et al. 2017). MaxEnt uses a set of environ-
mental and georeferenced occurrence locality data 
of a species for modelling its niche and distribution 
(Phillips et al. 2006). The ‘cleaned’ locality data were 
converted to CSV files (comma-separated values) and 
imported into ArcGIS online to delineate the beetles’ 
native range distribution.

Environmental variables and species occurrence data

We obtained a set of bioclimatic predictor variables 
from the World-Clim data set (a set of global climate 
layers with a spatial resolution of 1 km2; http://​www.​
world​clim.​org) (Hijmans et  al. 2005), which were 
used to determine the most influential variables asso-
ciated with the distribution of the two beetles. These 
comprised raster layers with a spatial resolution of 30 
arc seconds. In general, the bioclimatic variables are 
those environmental variables known to indicate gen-
eral patterns of temperature and precipitation, includ-
ing the extremity and seasonality of temperatures. 
Environmental variables that are highly correlated are 
known to reduce the accuracy of the predicted results. 
Therefore, Pearson correlation analysis was used to 
screen out environmental variables with correlation 
values higher than 0.8.

The selected variables included annual precipita-
tion (Bio 12), maximum annual temperature in the 
warmest month (Bio 5), and both mean annual tem-
perature (Bio 1) and minimum precipitation in the 
driest month (Bio 14) (Table  1). Jackknife tests for 
regularized training gain and area under the receiver 
operating characteristic (ROC) area under curve 
(AUC), for both Zygogramma species, incorporated 
these four variables. MaxEnt version 3.4.1 was used 
to predict the potential distribution of the two Zygo-
gramma species in South Africa. The analysis of 
omission/commission was conducted to test the 
omission rate and predicted area, as a function of the 
cumulative threshold averaged over the replicate runs. 
The climatic suitability was categorised using colour 
codes where dark green indicates an unsuitable area, 
light green a marginally (low) suitable area, yellow a 

Table 1   Estimates of the percentage contributions of four 
environmental variables to the MaxEnt model for Zygogramma 
piceicollis and Zygogramma signatipennis 

Environmental variable Z. piceicollis Z. signatipennis

Minimum precipitation in the 
driest month (Bio 14)

37.9 46.7

Mean annual temperature 
(Bio 1)

35.3 27.8

Annual precipitation (Bio 12) 23.1 13.2
Maximum annual tempera-

ture in the warmest month 
(Bio 5)

3.8 12.3

http://www.worldclim.org
http://www.worldclim.org
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moderately (average) suitable area, orange a suitable 
(above average) area and red a highly suitable area.

Results

Native range distribution

Field surveys conducted between 2008 and 2019 
revealed that the distributions of the two Zygogramma 
species were different in their native Mexican range. 
Zygogramma signatipennis displayed the widest 
distribution and occurred in almost all surveyed 
states, while Z. piceicollis was concentrated in only 
two states, namely the coastal region of Oaxaca and 
inland of Chiapas (Fig. 1). Zygogramma signatipennis 
was located predominantly in the higher altitude areas 
of Oaxaca and Puebla States, with altitudes averaging 
1500–2000 m, while Z. piceicollis was mainly found 
in relatively lower altitude (100–1700 m), humid and 
hotter regions of Oaxaca and Chiapas States.

Predicted distribution in introduced ranges

The average omissions and predicted areas for Z. 
piceicollis (Fig.  2a) and Z. signatipennis (Fig.  2b) 
varied with the choice of cumulative threshold. 
The omissions for both Zygogramma species are 
generally below the predicted omissions, although 
the model for Z. piceicollis displayed considerably 
more variation than that for Z. signatipennis. Using 
AUC to assess model performance, the AUC values 
for both Zygogramma species show good perfor-
mance to predict their potential distribution using 
available data. The average ROC curves determined 
by MaxEnt produced mean (± SD) AUC values of 
0.910 (± 0.027) for Z. piceicollis (Fig. 2c) and 0.885 
(± 0.005) for Z. signatipennis (Fig. 2d). The perfor-
mance of the model was thus slightly higher for Z. 
piceicollis than for Z. signatipennis.

Validation of the models revealed that the pre-
dicted and realized distributions in the native range 
were generally aligned for both Z. piceicollis (Fig. 3a) 

Fig. 1   Distribution of Zygogramma piceicollis and Zygo-
gramma signatipennis in their native Mexican range, based on 
surveys conducted between 2008 and 2019. Constructed using 

ArcGIS online basemap. Sources: Environmental Systems 
Research Institute (Esri); DeLorme Publishing Company; Here 
Technologies; MapmyIndia
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and Z. signatipennis (Fig. 3b). Similarly, MaxEnt pre-
dicted a wide distribution of the two Zygogramma 
beetle species in South Africa. The Jackknife test of 
variable importance for Z. piceicollis revealed that 

mean annual temperature has the highest gain when 
used in isolation, therefore providing the most use-
ful information by itself. Minimum precipitation in 
the driest month decreased the gain the most when 

Fig. 2   Average omission and predicted area (a and b) and average sensitivity vs. 1-specificity (c and b) for Zygogramma piceicollis 
(left) and Zygogramma signatipennis (right). Constructed using MaxEnt (version 3.4.1)

Fig. 3   Validation of the MaxEnt models, using the predicted and realized distribution of Zygogramma piceicollis (a) and Zygo-
gramma signatipennis (b) in their native Mexican range
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omitted, implying that it provides the most infor-
mation that is absent in the other variables (Fig.  4). 
Minimum precipitation in the driest month had the 
highest contribution to the model for Z. piceicol-
lis (37.9%), while the lowest contributing factor was 
maximum annual temperature in the warmest month 
(3.8%) (Table 1). With regard to Z. signatipennis, the 
Jackknife test revealed that minimum precipitation in 
the driest month provided the highest gain when used 
in isolation (Fig.  4) while minimum precipitation in 
the driest month decreased the gain the most when 
omitted. Minimum precipitation in the driest month 
had the highest contribution to the model for Z. sig-
natipennis (46.7%) while the lowest contributing fac-
tor was maximum annual temperature in the warmest 
month (12.3%) (Table 1).

The Z. piceicollis model predicted that regions 
with the highest suitability (i.e., regions shaded 
in red) are in the provinces of Gauteng, Mpuma-
langa, Free State, North West, Limpopo, KwaZulu-
Natal, Western Cape and Eastern Cape. However, 
some areas in the North West and Free State prov-
inces ranged from moderately suitable to suitable 
while the Northern Cape, Western Cape and East-
ern Cape provinces ranged from unsuitable to suit-
able (Fig.  5a). The Z. signatipennis model similarly 

predicted that areas with the highest suitability are in 
KwaZulu-Natal (inland region), Mpumalanga, Lim-
popo, North West, Gauteng and Free State provinces, 
and some areas in the Western Cape and Northern 
Cape provinces (Fig. 5b). However, the Eastern Cape 
Province displayed only above average suitability for 
Z. signatipennis.

Discussion

Geographic features are known to play a major role 
in success or failure of biological control programs 
through differential responses of biocontrol agents 
and the targeted invasive weeds to both biotic and abi-
otic factors (Harms et al. 2020). The objective of this 
study was to predict the potential for Z. signatipennis 
and Z. piceicollis to establish and spread throughout 
the invaded range of T. rotundifolia in South Africa. 
Tithonia rotundifolia remains a major invasive weed 
in five provinces of South Africa (Henderson 2007). 
While there might be scepticism towards the release 
of almost identical biocontrol agents that attack the 
same niche, the realized distributions of Z. signati-
pennis and Z. piceicollis were different in Mexico. 
Accordingly, this may present a better chance for both 

Fig. 4   Jackknife tests for evaluation of the relative importance of environmental variables, using regularised training gain, test gain, 
and AUC for Zygogramma piceicollis (left) and Z. signatipennis (right)
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beetle species to proliferate and exert a greater impact 
on T. rotundifolia throughout its invaded range. Hoff-
mann et al. (1998) reported that, while the leaf-feed-
ing beetle Leptinotarsa defecta Dunal (Coleoptera: 
Chrysomelidae) was localised and scarce, its con-
gener L. texana Dunal proliferated in high densities 
with a wider distribution following their release as 
biocontrol agents of Solanum elaeagnifolium Cava-
nilles (Solanales: Solanaceae) in South Africa. Fur-
thermore, two leaf-feeding beetle species in the genus 
Galerucella have played a major role in the biologi-
cal control of purple loosestrife, Lythrum salicaria 
L. (Myrtales: Lythraceae) in the USA (Blossey 1992; 
Moore 2009).

The models also suggest that the native range dis-
tributions of both Zygogramma species could be more 
extensive than indicated by the available distribu-
tion records. Depending on the presence of their host 
plants, both beetle species could potentially occur 
from the southern states of the USA, through Central 
America and into South America (Supplementary 
Figs. S2 and S3). It is therefore anticipated that the 
slight difference in the distribution of the two beetle 
species in their native range may collectively increase 
the area under which they will be distributed in South 
Africa.

The model predicted that the minimum precipita-
tion in the driest month would largely determine the 
potential distribution of both Zygogramma species in 
South Africa. Given the differential contribution of 

this variable to the two models, the predicted distribu-
tion of the two Zygogramma species varied slightly. 
These results indicate a very good match for the pre-
dicted omission rate for both Zygogramma species. 
An AUC mean above 0.8 is considered reliable in 
terms of model accuracy (Araujo et al. 2005). Hence, 
the high AUC values reported for both Zygogramma 
species, based on available data, are good predictors 
of their presence.

Although the two Zygogramma species originated 
from different provinces of Mexico, with differing cli-
matic conditions, their predicted distribution in South 
Africa is similar. Areas predicted to be highly suit-
able for the establishment of both Zygogramma spe-
cies are largely consistent with the distribution of the 
target weed, T. rotundifolia, in South Africa (Mawela 
and Simelane 2021). Globally, patches of high suit-
ability were predicted in some countries ranging from 
central to north-eastern Africa, southern Europe as 
well as South East Asia (Supplementary Figs. S2 
and S3). Since T. rotundifolia is also invasive in the 
humid and sub-humid tropics of South America, 
South East Asia, as well as tropical and subtropical 
Africa (Lazarides et al. 1997; Meyer 2000; Varnham 
2006), these models may be applicable to other coun-
tries interested in utilizing the two biocontrol agents 
(Supplementary Figs. S2 and S3).

Although the models predicted that both Zygo-
gramma species would establish throughout the dis-
tribution of T. rotundifolia in South Africa, their 

Fig. 5   Potential distribution of Zygogramma piceicollis (a) and Zygogramma signatipennis (b) in South Africa, using MaxEnt mod-
elling
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realized establishment has so far been poor (Mawela 
and Simelane 2021). While the AUC values for both 
Zygogramma species suggested good model perfor-
mance, it is clear that such models have limitations 
since they rely entirely on climate-related features 
and meteorological data from the locations used 
(Sutherst 2003). In particular, there are several vari-
ables besides climatic factors (e.g., soil conditions, 
habitat preferences, landscape features, predation and 
parasitism) that are not factored into these models 
and could influence the distribution and persistence 
of these beetles in South Africa (Patrick and Olckers 
2014; Devegili et al. 2019). Soil type and soil mois-
ture that affect the survival of the subterranean pupae 
(Beirne 1970) could explain the disparity between 
the predicted and realized results. Chang et al. (2008) 
reported that moisture could directly alter the water 
balance in insects, which may affect their growth and 
population dynamics. Indeed, the minimum precipi-
tation of the driest month was determined to be the 
most important variable in the models. Low rainfall 
during the dry winter months throughout much of 
South Africa may result in low soil moisture that is 
suboptimal for the beetles and either prevents estab-
lishment or constrains population proliferation. Fur-
ther studies on the biology of the two Zygogramma 
species (e.g., thermal physiology, ecological needs) 
are thus required to elucidate their potential as bio-
control agents for T. rotundifolia in South Africa and 
other invaded countries.
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