
Vol.: (0123456789)
1 3

BioControl (2022) 67:457–472 
https://doi.org/10.1007/s10526-022-10163-5

REVIEW

Multitrophic interactions of entomopathogenic fungi 
in BioControl

Enrique Quesada‑Moraga  · 
Inmaculada Garrido‑Jurado  · 
Meelad Yousef‑Yousef  · Natalia González‑Mas 

Received: 7 March 2022 / Accepted: 20 September 2022 / Published online: 30 September 2022 
© The Author(s) 2022

biocontrol strategies for their synergistic application 
in IPM programs. A comprehensive understanding of 
the impact of these multitrophic interactions in longer 
term, farm-level real-life biocontrol implementation 
studies will provide new opportunities in plant pro-
tection and production.

Keywords Epiphyte · Endophyte · Rhizosphere 
competent · Natural enemies · Parasitoids · Predators, 
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Introduction

Hypocrealean entomopathogenic fungi (EF) stand out 
among microbial control agents not only because their 
mode of infection by direct penetration through the 
cuticle and relatively easy mass production, but also 
because the newly described EF plant-interacting life-
styles, which place them at the forefront of crop pro-
tection and production tools (Quesada-Moraga et  al. 
2020). The current knowledge of the primary mode of 
action of EF and the molecules involved in different 
steps of their infection pathway has been extensively 
reviewed (Vega et  al. 2012; Mannino et  al. 2019). 
Besides, newly described modes of action of EF have 
also been discovered such the accidental death caused 
by stress in the insects through oral infection (Butt 
et  al. 2013; Garrido-Jurado et  al. 2015) and indirect 
mortality related to EF associations with the plants 
(Akello et al. 2008; Butt et al. 2013; Vidal and Jaber 
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2015; Klieber and Reineke 2016; Garrido-Jurado 
et al. 2017, 2020; Resquín-Romero et al. 2016; Vega 
2018; Zhu et al. 2018; Russo et al. 2019).

Particularly noteworthy are the associations of 
EF with plants as epiphytic (with the plant surface), 
endophytic (inside the plant), and rhizosphere compe-
tent microorganisms described mainly in the twenty-
first century. As epiphytic microorganisms, EF 
propagules can become part of the phylloplane micro-
biota of different types of vegetation in natural and 
transformed habitats (Meyling and Eilenberg 2006; 
Ormond et  al. 2010; Meyling et  al. 2011; Garrido-
Jurado et al. 2015). Recent studies on the adaptation 
and evolution of EF towards epiphytic, endophytic, or 
rhizosphere lifestyles reveal passive or active disper-
sal of EF soil conidia by wind or arthropods, respec-
tively (Meyling and Eilenberg 2006; Garrido-Jurado 
et  al. 2015; Fernández-Bravo et  al. 2017; González-
Mas et al. 2021b).

The endophytic behavior of EF with biocon-
trol potential, first described in corn in 1991 (Bing 
and Lewis 1991), has been thoroughly and widely 
reported in numerous cultivated and non-cultivated 
plant species, both naturally colonized and artifi-
cially inoculated (Quesada-Moraga et al. 2014; Vidal 
and Jaber 2015; Vega 2018; Quesada-Moraga 2020). 
Moreover, it has been proposed that entomopatho-
genic fungal endophytes may be important body-
guards having negative effect on polyphagous and 
sucking insect pests (Gange et al. 2019). Entomopath-
ogenic fungi asymptomatically colonize plant tissues 
(Saikkonen et  al. 2006; Arnold and Lutzoni 2007) 
and can even promote growth and protect the plant 
against biotic stresses, pests, and diseases, or abi-
otic ones such as water deficit, nutritional deficien-
cies, etc. (Quesada-Moraga, 2020). The degree of EF 
colonization of the different tissues and organs of the 
plant and fungal persistence over time vary according 
to the plant species and fungal strain, from local to 
systemic colonization of the plant tissues, with even 
vertical transmission detected (Landa et  al. 2013; 
Quesada-Moraga et  al. 2014; Garrido-Jurado et  al. 
2017; Quesada-Moraga, 2020).

The persistence and biological activity of EF are 
also promoted in the rhizosphere (Hu and St Leger 
2002; Pava-Ripoll et  al. 2011; Wyrebek et  al. 2011; 
Barelli et  al. 2016; McKinnon et  al. 2018) (Fig.  1). 
The rhizosphere is the narrow zone of soil that is 
influenced by root secretions that can contain an 

enormous diversity of microbes (Mendes et al. 2011). 
The rhizosphere is an important niche for soil-borne 
fungal entomopathogens in which EF may be devel-
oped both to soil dwelling pest control and to provide 
additional ecosystem services such as plant growth 
promotion and direct disease antagonism (Bruck 
2010). Indeed, an adaptation mechanism as a rhizo-
sphere competent organism has been reported for 
Metarhizium anisopliae (Mets.) Sorokin (Ascomy-
cota: Hypocreales), which expresses a specific subset 
of genes induced by plant root exudates different from 
the one expressed during infection of the arthropod 
hosts (Bruck 2005; Hu and St Leger 2002; Pava-Rip-
oll et al. 2011).

The role of EF on plant-mediated effects, insect 
population dynamics in crop ecosystems and semi-
natural habitats and communities and the ecologi-
cal principles of community interactions have been 
reviewed (Cory and Ericsson 2010; Hesketh et  al. 
2010; Meyling and Hajek 2010). New and notewor-
thy works indicate that EF are entomopathogens to 
insects through direct infection and toxin production 
but also indirectly through metabolite production in 
plants or plant defense activation (Gange et al., 2019). 
However, it is now necessary to expand on this previ-
ous work to examine how the trophic complexity cre-
ated by the close association of EF with plants might 
influence multitrophic insect-plant and insect-natural 
enemy relationships, to take advantage of this EF-
plant association to develop new crop protection and 
crop production strategies (Fig. 1a, b, c).

The aim of this review was to update the relatively 
scant data available on EF-mediated trophic interac-
tions of plants, insect pests, and their natural enemies 
(hereafter natural enemies are predators and para-
sitoids). Trophic interactions are considered as two 
or three trophic levels interactions between EF and 
plants or between EF-infected insects and predators 
or parasitoids while interactions of more than three 
trophic levels are defined as multitrophic, such as the 
one including EF-colonized plants, insect pests, and 
their natural enemies.

Entomopathogenic-fungi-mediated trophic 
interactions between insects and plants

It is known that various host plant species can mod-
ify the susceptibility of insect pests to EF (Santi-
ago-Álvarez et  al. 2006; Cory and Ericsson, 2010; 
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Fig. 1  Increasing 
complexity in the multi-
trophic relationships of 
entomopathogenic fungi 
(EF). a EF-mediated trophic 
interactions between insects 
and plants. b EF-mediated 
trophic interactions between 
insects and their natural 
enemies either predators or 
parasitoids. c Multitrophic 
interactions involving 
entomopathogenic fungi. 
Solid connecting arrows 
represent direct effect while 
stippled connecting arrows 
represent an indirect effect. 
In Fig. 1a, 1 and 2 represent 
respectively a chewing or a 
sap-sucking insect feeding 
on a plant challenged by 
an epiphyte, endophyte, 
or rhizosphere competent 
entomopathogenic fungus. 
In Fig. 1c, 1, 2 and 3 
represent respectively aerial 
chewing, aerial sap-sucking 
and soil dwelling insects 
infected by entomopatho-
genic fungi. Numbers 4, 5 
and 6 represent cadavers of 
the same insects with fungal 
outgrowth
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Ocampo-Hernández et  al. 2019). Even, it has been 
shown that the behavior of insects can be indirectly 
affected by both EF propagule infestation of the 
plant surface or endophytic colonization (Pell and 
Vandenberg 2002; Meyling and Pell 2006; Lam 
et al. 2010; Yanagawa et al. 2011; Davis et al. 2013; 
Mburu et al. 2013; Rashki and Shirvani 2013; Gange 
et  al., 2019). However, this section aims to examine 
in greater depth the possible behavioral responses 
of insects to EF-colonized plants, which might be 
indirectly related to metabolite secretion in plants or 
plant defense activation (Gange et al., 2019) (Fig. 1a). 
Most of the behavioral responses in insects, such as 
foraging, mating, preference for an oviposition site, 
or interaction with natural enemies, are regulated 
by olfactory chemical signals produced by plants, 
insects and natural enemies (Dicke and Grostal 2001; 
Sigsgaard 2005; Bruce et  al. 2005; Xu and Turlings 
2018). In addition, the volatile profile emitted by 
plants can be altered by their colonization by micro-
organisms, which can modify the insect-plant and 
insect-natural enemy relationships (Yue et  al. 2001; 
Hempel et  al. 2009; Shikano et  al. 2017; Contreras-
Cornejo et al. 2018; Tasin et al. 2018) (Fig. 1a). Thus, 
it has been shown that Beauveria bassiana (Balsamo) 
Vuillemin (Ascomycota: Hypocreales) influences the 
choice of host plant by the cotton aphid Aphis gossypii 
Glover (Hemiptera: Aphididae), which selects non-
colonized over B. bassiana-colonized plants (Rashki 
and Shirvani 2013). In this regard, the limited knowl-
edge available on the ability of plant-associated EF to 
influence plant-feeding insects is not conclusive, with 
reports on repellency (Sword et al. 2017; Rondot and 
Reineke 2017) or attraction (Kepler and Bruck 2006). 
Anyhow, unraveling whether endophytic EF coloniza-
tion can cause alterations in the chemical signals pro-
duced by plants, and therefore in insect-plant relation-
ships, or even in those of phytophagous insects with 
their natural enemies, is a key research goal. Hence, 
Lygus hesperus Knight (Hemiptera: Miridae) and 
Nezara viridula (Linnaeus) (Hemiptera: Pentatomi-
dae) bugs can detect and subsequently avoid flowers 
and fruits developed in plants whose tissues are endo-
phytically colonized by B. bassiana and prefer control 
plants in selection experiments (Sword et al. 2017). In 
addition, B. bassiana endophytic colonization led to a 
deterrent effect in adults of the vine weevil Otiorhyn-
chus sulcatus (Fabricius) (Coleoptera: Curculioni-
dae), which preferred the control plants (Rondot and 

Reineke 2017). In contrast, the larvae of this weevil 
were shown to be attracted to pots containing plants 
with M. anisopliae (Kepler and Bruck 2006).

These studies reveal the ability of insects to detect 
EF endophytic colonization of plant tissues, a behav-
ior that could be regulated by variations in the pro-
file of plant volatile compounds (González-Mas et al. 
2021a) (Fig. 1a). It has been noteworthy shown that 
endophytic colonization by B. bassiana influences 
volatile emissions by melon and cotton plants, either 
unharmed or after being damaged by sap-sucking 
aphids or leaf-chewing caterpillars (González-Mas 
et  al. 2021a). Some of the emitted compounds have 
been previously reported to be released in response to 
herbivory and have been implicated in natural enemy 
attraction, or even to have antimicrobial proper-
ties. Hence, colonization by B. bassiana might help 
not only to directly control insect pests but also to 
increase the resistance of plants against agronomi-
cally important pests and phytopathogenic microor-
ganisms (González-Mas et  al. 2021a). By using an 
axenic consortium of B. bassiana and Trichoderma 
asperellum Samuels, Lieckf. & Nirenberg (Asco-
mycota: Hypocreales) against Ostrinia furnacalis 
(Guenée) (Lepidoptera: Crambidae), it has been dem-
onstrated that colonization by EF may have a posi-
tive effect on increasing herbivory-induced defenses 
and restricting pest survival and growth (Batool et al. 
2022). This effect on increasing herbivory-induced 
defenses and restricting pest survival and growth 
has also been observed by Cotes et  al. (2020), who 
demonstrated that root-associated entomopathogenic 
fungi indirectly influence herbivorous insect perfor-
mance by causing an increase in the production of 
jasmonic, ( +)-7-iso-jasmonoyl-l-isoleucine and sali-
cylic acid in certain parts of the host plant. The above 
examples illustrate that EF can influence the chemi-
cal ecology of host-plant selection by insect and mite 
pests.

Entomopathogenic-fungi-mediated trophic 
interactions between insects and their natural enemies

Whilst the use of natural enemies and entomopatho-
genic microorganisms in biological control reduces 
the effects on the environment and non-target 
organisms compared to the use of conventional 
insecticides, it is necessary to evaluate the compat-
ibility between them for developing IPM programs 
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(Roy et al. 2010). In general, it has been found that 
EF treatments can be considered to be of  low-risk 
for predators and parasitoids and therefore compat-
ible with them in the light of the numerous inves-
tigations on the safety and effectiveness of the 
combined use of EF and other biocontrol agents 
(Roy and Pell 2000; Acevedo et  al. 2007; Labbé 
et al. 2009; Ansari et al. 2010; Martins et al. 2014) 
(Fig. 1b). Indeed, infection of phytophagous insects 
by EF, initiated either by direct contact with the 
fungal inoculum or by the insects feeding or devel-
oping in EF endophytically colonized tissues, can 
affect their behavior, and therefore their intra- and 
interspecific relationships (Meyling and Pell 2006; 
Roy et al. 2006) (Fig. 1b). Table 1 summarizes the 
works done so far by different authors on EF-medi-
ated tritrophic interactions. In this section, we high-
light recent advances in the knowledge about direct 
effects of entomopathogenic fungi on predator/para-
sitoid survival and fitness and indirect effects on 
natural enemy behavior/capacity (Fig. 1a).

Direct effects of entomopathogenic fungi on natural 
enemy survival and fitness

In unlikely scenarios in real situations (worst-case 
scenarios), by spraying or immersion of high doses 
of different fungal strains (Castillo et  al. 2009; Da 
Silva et  al. 2016; Miranda-Fuentes et  al. 2021), the 
direct application of EF suspensions to Hymenop-
tera parasitoid braconids and eulophids can decrease 
their longevity (Labbé et  al. 2009; Tamayo-Mejía 
et al. 2015; Miranda-Fuentes et al. 2020) (Table 1). In 
general, the compatibility of EF with parasitoids and 
predators is influenced, among other factors, by the 
species involved, the application technique, the fun-
gal dosage, the degree of prey/host infection, and the 
time interval between the fungal application and the 
release of the predators or parasitoids (Mesquita and 
Lacey 2001; Aqueel and Leather 2013; Ibarra-Cortés 
et  al. 2018). Decreasing the doses and applying the 
natural enemy before EF inoculation minimize the 
possible negative effects on various groups of preda-
tors such as predatory coccinellids (James et al. 1995; 
Pingel and Lewis 1996; Todorova et al. 1996; Smith 
and Krischik 2000; Roy and Pell 2000; Pell and Van-
denberg 2002; Roy et  al. 2008), lacewings (Portilla 
et al. 2017), and several species of aphid parasitoids 
(Brodeur and Rosenheim 2000; Mesquita and Lacey 

2001; Jeong et  al. 2005; Aqueel and Leather 2013; 
Oreste et al. 2016; Shrestha et al. 2017) (Table 1).

Regarding predators, it has also been shown that 
B. bassiana and M. anisopliae are compatible with 
the generalist predator Coccinella septempunctata 
L. (Coleoptera: Coccinellidae) (Rizwan et  al. 2021) 
(Table  1). Neither fungus induced any significant 
changes in the development time (egg-adult), fecun-
dity rate, adult preoviposition period, total preovipo-
sition period, or mean generation time as compared to 
control treatment (Rizwan et al. 2021). When evaluat-
ing B. bassiana and phytoseiid mites that can inde-
pendently contribute to suppressing the two-spotted 
spider mite, Tetranychus urticae Koch (Acari: Tetra-
nychidae), it was demonstrated that although several 
B. bassiana strains displayed a high virulence in T. 
urticae, there was no evident pathogenicity to phyto-
seiid mites (Wu et al. 2016) (Table 1). In worst-case 
scenarios, by direct spraying of Phytoseiulus persi-
milis Athias-Henriot (Acarina: Phytoseiidae) with B. 
bassiana conidia at high dosages, significant nega-
tive effects on fecundity and life table parameters (net 
reproductive rate, intrinsic rate of natural increase, 
mean generation time, finite rate of increase, and dou-
bling time) were found when B. bassiana was applied 
to the adult stage (Ullah and Lim 2017). Indeed, labo-
ratory and potted plant investigations on the predatory 
behavior of the predatory mite P. persimilis against T. 
urticae indicated that P. persimilis showed signifi-
cant aversion behavior to the initial fungal spray, but 
gradually dispersed over the entire bean plants, with 
no significant differences between the treatments in 
the number of T. urticae consumed (Wu et al. 2018). 
Fungal spray did not affect the predation capability of 
P. persimilis and poses a negligible risk to its behav-
ior (Wu et al. 2018) (Table 1).

Regarding parasitoids, some studies have shown 
a high level of compatibility between EF and para-
sitoids (Polanczyk et  al. 2010; Rossoni et  al. 2016; 
Shrestha et  al. 2017; González-Mas et  al. 2019a; 
Miranda-Fuentes et  al. 2020), while others have 
shown antagonistic interactions (Oreste et  al. 2015; 
Tamayo-Mejía et  al. 2015) (Table  1). Despite this, 
most studies have demonstrated that combining 
EF and parasitoids in IPM programs is always ben-
eficial when release times are adjusted appropriately, 
with emphasis on which agent is administered first 
and whether the treatments are timed correctly (Da 
Silva et  al. 2016; Jarrahi and Safavi 2016; Shrestha 
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et al. 2017). Emami et  al. (2013) found that extend-
ing the release interval of the parasitoid Aphidius 
colemani Viereck (Hymenoptera: Braconidae) fol-
lowing B. bassiana application for control of the 
green peach aphid, Myzus persicae (Sulzer) (Hemip-
tera: Aphididae), decreased the quantity of parasi-
toid pupae growing and the percentage emerging as 
adults. It has even been reported that using commer-
cial isolates of EF had no influence on the survival 
rates and enhanced parasitism rates of the parasitoid 
Encarsia formosa Gahan (Hymenoptera: Apheli-
nidae) (Labbé et al. 2009). Mohammed and Hatcher 
(2017) observed that, when M. persicae treated with 
the fungus Lecanicillium muscarium (Petch) Zare & 
W. Gams (Ascomycota: Hypocreales) were offered 
to the parasitoid A. colemani 3–4  days after fun-
gal infection, they were less likely to be parasitized 
than when offered 1–2 days after fungal infection. In 
whiteflies, Labbé et al. (2009) discovered that apply-
ing B. bassiana after parasitism by E. formosa had no 
influence on parasitoid numbers or parasitism rates. 
Furthermore, (Mohammed and Hatcher 2017) found 
that applying the fungus L. muscarium to M. persicae 
3–7  days after A. colemani parasitism had no effect 
on the proportion of aphids parasitized. It should be 
noted that the use of parasitoids as vectors of EF has 
recently been documented, showing that the pres-
ence of Habrobracon hebetor (Hymenoptera: Braco-
nidae) females significantly (1.5–13 fold) increased 
the mycoses level in clusters of Galleria mellonella 
L. (Lepidoptera: Pyralidae) (Kryukov et  al. 2018), 
revealing not only compatibility of EF with natural 
enemies but also a synergistic interaction (Table  1). 
Beauveria bassiana caused no negative effects either 
on the development of the immature stages of the par-
asitoid Coptera haywardi (Ogloblin) (Hymenoptera: 
Diapriidae) or on female fecundity during the first 
18  days of adult life, and it is therefore possible to 
develop management strategies using these two natu-
ral enemies in biological control against Anastrepha 
obliqua (Macquart) (Diptera: Tephritidae) (Martínez-
Barrera et al. 2020) (Table 1).

Hymenopteran eulophid Tamarixia triozae (Burks) 
adults may die prematurely if B. bassiana is used 
to suppress Bactericera cockerelli (Šulc) (Hemip-
tera: Triozidae), without affecting their overall 
reproductive potential (Tamayo-Mejía et  al. 2015). 
Other researchers have found that previous inocu-
lation with EF can impact fitness of the parasitoid Ta
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wasp Trybliographa rapae (Westw.) (Hymenoptera: 
Eucoilidae), shortening its lifetime while raising 
oviposition rates as a response to fungal presence 
(Rännbäck et al. 2015). Under controlled conditions, 
Potrich et  al. (2015) described negligible effects of 
M. anisopliae on the biological parameters of Tricho-
gramma pretiosum Riley (Hymenoptera: Trichogram-
matidae) on Anagasta kuehniella Zeller (Lepidoptera: 
Pyralidae). The potential of M. brunneum applied by 
direct contact and/or as an endophyte to control S. lit-
toralis larvae alone or in combination with the soli-
tary endoparasitoid Hyposoter didymator (Thunberg) 
(Hymenoptera: Ichneumonidae) in melon plants has 
also been investigated (Miranda-Fuentes et  al. 2020, 
2021). In contact treatments, when applied at high 
concentrations, the fungus significantly reduced the 
parasitoid’s longevity, but had no effect on the para-
sitoid female’s reproductive potential during the three 
days after treatment. Indeed, in several simultaneous 
use scenarios (inoculation of S. littoralis larvae with 
the fungus before being exposed to parasitoid females 
and vice versa), the combinations of the two agents 
to control S. littoralis were explored, with additive 
impact in all cases (Miranda-Fuentes et  al. 2020). 
Martínez-Barrera et  al. (2020) found similar results 
when they investigated several techniques for con-
trolling Anastrepha obliqua (Macquart) (Diptera: 
Tephritidae) with B. bassiana and the parasitoid Cop-
tera haywardi Loiácono (Hymenoptera: Diapriidae) 
(Table 1).

Effect of prey or host infection by entomopatho-
genic fungi on natural enemy behavior/capacity.

In the case of predators, it has been detected that 
lacewings quite frequently do not completely con-
sume S. littoralis larvae when they are infected by 
the M. brunneum fungus, either to avoid mycosed 
areas of the body or because the fungal infection 
can reduce the nutritional quality of the prey (Ríos-
Moreno et al. 2018) (Table 1). Other studies also indi-
cate the ability of predators to discriminate between 
healthy and EF-infected prey (Pell and Vandenberg 
2002; Meyling and Pell 2006; Ríos-Moreno et  al. 
2018). Indeed, it should be noted that several preda-
tors have been observed to prefer control prey over B. 
bassiana-infected one, such as Anthocoris nemorum 
(L.) (Hemiptera: Anthocoridae) (Meyling and Pell 
2006) or C. septempunctata (Ormond et  al. 2011), 
although the specific mechanisms that give rise to this 
behavior are as yet unknown (Table 1).

The number of A. gossypii females consumed by 
C. carnea, as well as the consumption time, were 
not significantly affected after direct exposure to a 
B. bassiana conidia suspension, compared to what 
was observed with the control aphids (González-Mas 
et al. 2019a). However, lacewings did not completely 
consume aphids that showed signs of fungal infection, 
as described when C. carnea consumed larvae of S. 
littoralis infected by M. brunneum (Ríos-Moreno 
et al. 2018), in what is presumably a lacewing safety 
mechanism (Table 1).

There are very few studies investigating the para-
sitoid’s influence on host susceptibility to the fungus. 
It has been reported that parasitism by H. didymator 
improved EF infection of S. littoralis larvae, with par-
asitization dramatically reducing the total hemocytes 
in S. littoralis hemolymph, encouraging fungal infec-
tion (Miranda-Fuentes et  al. 2020). Therefore, the 
combined use of EF and predator or parasitoids can 
enhance the effect of the entomopathogen that might 
be relevant for biocontrol in terms of both the direct 
effect of the fungus on the target insect population 
and the dissemination and spread of the fungal inocu-
lum to uninfected insect hosts.

Multitrophic interactions involving entomopathogenic 
fungi

Another question that arises is whether prey or host 
feeding on plants endophytically colonized by EF 
alters predator or parasitoid behavior/capacity in mul-
titrophic systems with a crop plant colonized by an 
entomopathogenic fungus on which a pest is feeding 
and becomes a prey or a host for a predator or para-
sitoid, respectively (Fig.  1c). There are few studies 
investigating whether endophytic colonization of the 
plant by EF can influence natural enemies at the third 
trophic level, and the few that exist have focused on 
its effect on predators or parasitoids. Table  2 sum-
marizes the works done so far by different authors on 
multitrophic interactions involving entomopathogenic 
fungi.

It has been shown that there is no effect on the 
predatory efficacy of C. carnea when feeding on A. 
gossypii aphids that had previously fed on melon 
plants endophytically colonized with B. bassiana, 
although a reduction in the consumption of prey was 
detected and an increase in consumption time com-
pared to the control (González-Mas et  al. 2019a) 
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(Table  2). A significant preference of lacewings 
for A. gossypii aphids that feed on B. bassiana-col-
onized melon plants was observed, compared to the 
control plants. This could be related to compounds 
detected in the plants that were endophytically colo-
nized affecting the behavior of the insects by acting as 
attractants (i.e., beta-ionone) (Obata et al. 1983; Flath 
et  al. 1994; González-Mas et  al., 2019b). In another 
choice assay, the number of aphids parasitized by 
A. colemani and their sex ratio were not influenced 
by whether or not the aphids had been feeding on 
B. bassiana-colonized plants (González-Mas et  al. 
2019a) (Table 2).

In a multitrophic system consisting of the endo-
phytic fungus M. brunneum colonizing the melon 
plant offered to S. littoralis together with the parasi-
toid H. didymator, the presence of the parasitoid had 
a substantial impact on total mortality of S. littora-
lis larvae in all tests (Miranda-Fuentes et  al. 2021). 
Treatments including the parasitoid had the high-
est death rates both in vitro and in planta. The total 
mortality of S. littoralis larvae was not significantly 
increased by simultaneous exposure to the fungus and 
the parasitoid when compared to the parasitoid alone 
(Miranda-Fuentes et al. 2021). Jaber and Araj (2018) 
also report that EF endophytic colonization of plants 
had no effect on A. colemani parasitism rates. Akutse 

Table 2  Multitrophic interactions involving plants, Hypocrealean entomopathogenic fungi, insect and mite pests and their natural 
enemies. References are listed in chronological order

Entomopathogenic 
fungal species

Plant Insect pest Predator Parasitoid Reference

Beauveria bassiana 
(Balsamo) Vuil-
lemin

Broad bean
Vicia faba L

Pea leafminer Liri-
omyza huidobrensis 
Blanchard

– Phaedrotoma 
scabriventris Nixon 
and Diglyphus 
isaea Walker

(Akutse et al., 2014)

Beauveria bassiana 
(Balsamo) Vuil-
lemin and Metarhi-
zium brunneum 
Petch

White cabbage Bras-
sica oleracea

var. capitata f. alba 
cv. Castello

Cabbage root fly, 
Delia radicum L.,

– Trybliographa rapae 
Westwood

(Cotes et al., 2015)

Beauveria bassiana 
(Balsamo) Vuil-
lemin

Common bean Pha-
seolus. vulgaris L. 
var. Red Rose Coco

Pea leafminer Liri-
omyza species [L. 
huidobrensis Blan-
chard, L. sativae

Blanchard and L. 
trifolii (Burgess)]

– Opius dissitus 
Muesebeck, Phae-
drotoma scabrive-
ntris Nixon, Digly-
phus isaea Walker, 
Neochrysocharis 
formosa Westwood, 
Hemiptarsenus 
varicornis Girault 
and Halticoptera 
arduine (Walker)

(Gathage et al., 2016)

Beauveria bassiana 
(Balsamo) Vuil-
lemin and Metarhi-
zium brunneum 
Petch

Sweet pepper Capsi-
cum annum L. cv 
Castro

Green peach aphid 
Myzus persicae 
Sulzer

– Aphidius colemani 
Viereck

(Jaber and Araj, 2018)

Beauveria bassiana 
(Balsamo) Vuil-
lemin

Melon (Cucumis 
melo L. var. Galia)

Cotton aphid Aphis 
gossypii Glover

Chrysoperla 
carnea 
Stephens

Aphidius colemani 
Viereck

(González-Mas et al., 
2019a)

Beauveria bassiana 
(Balsamo) Vuil-
lemin

Broad bean
Vicia faba L. cv. 

Vertigo

Black bean aphid 
Aphis fabae Sco-
poli

– Aphidius colemani 
Viereck

(Jensen et al. 2020)

Metarhizium brun-
neum Petch

Melon (Cucumis 
melo L. cv. Galia)

Cotton leafworm, 
Spodoptera littora-
lis (Boisduval)

– Hyposoter didymator 
(Thun-

berg)

(Miranda-Fuentes 
et al., 2021)
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et  al. (2014) discovered that feeding EF-colonized 
plants to Liriomyza huidobrensis (Blanchard) (Dip-
tera: Agromyzidae) larvae had no effect on the para-
sitoids Phaedrotoma scabriventris (Hymenoptera: 
Braconidae) and Diglyphus isaea (Walker) (Hyme-
noptera: Eulophidae) (Table 2).

Whilst in the M. brunneum–S. littoralis–melon–H. 
didymator system neither the application mode (con-
tact or endophytic) nor the fungal exposure period 
had a significant effect on S. littoralis mortality 
(Miranda-Fuentes et  al. 2020, 2021), other authors 
have reported that fungal exposure time was a signifi-
cant factor affecting performance of the combined use 
of EF with the parasitoid A. colemani against M. per-
sicae (Emami et  al. 2013; Mohammed and Hatcher 
2017). In the M. brunneum–S. littoralis–melon–H. 
didymator system, the parasitoid demonstrated a sub-
stantial preference for larvae fed on control plants 
compared to larvae fed on fungus-colonized plants 
(Miranda-Fuentes et  al. 2021). This preference for 
untreated hosts is thought to be due to the parasitoid’s 
ability to recognize and avoid the fungus. Mesquita 
and Lacey (2001) found that the parasitoid Aphelinus 
asychis Walker (Hymenoptera: Aphelinidae) probed 
the ovipositors of infected aphid hosts for a shorter 
period, followed by rejection and absence of oviposi-
tion, due to strong internal cues. González-Mas et al. 
(2019a) discovered that offering aphids fed on EF-
colonized plants had no effect on the oviposition pref-
erence of the parasitoid A. colemani. It is unknown 
what the preference outcomes would be in a similar 
scenario if EF and H. didymator were used together 
to control S. littoralis in the field. According to Mes-
quita and Lacey (2001), parasitoids will avoid possi-
ble hosts that have been exposed to fungus and will 
look for those that have not, which is good for para-
sitoid survival in the long term. Indeed, the histologi-
cal investigation of S. littoralis larvae simultaneously 
parasitized by H. didymator and infected with M. 
brunneum revealed that both agents coexisted within 
the same host and even parasitoid larvae grew inside 
the host despite fungal invasion (Miranda-Fuentes 
et  al. 2020). Although the fungus may outcompete 
immature parasitoids within the host, there have been 
no reports of the fungus invading parasitoid tissues 
when they are both attacking the same host (Furlong 
and Pell 2005; Miranda-Fuentes et al. 2020, 2021).

There are very few works investigating whether 
endophytic colonisation by EF can change secondary 

metabolites or trigger different plant defense path-
ways that could affect natural enemies. Jensen et  al. 
(2020) investigated how the endophytic colonization 
of broad beans by B. bassiana influences the fitness 
and host-choice of the aphid parasitoid A. colemani, 
as well as differences in the plant defense responses 
to aphid infestation. Their study revealed that there 
are changes in the plants’ initial defense response to 
the aphids in the EF-treated plants compared to non-
fungus treated control plants by measuring changes in 
the expression of the specific marker genes PR1 and 
PR2 involved in the salicylic acid pathway, as well as 
ERF-1, involved in the ethylene pathway (Table 2).

Conclusions and future perspectives

The potential uses of EF are going beyond their con-
ventional function of controlling insect pests due to 
their plant-interacting lifestyles, mainly as plant endo-
phytes and rhizosphere competent microorganisms. 
However, the close association of EF with plants 
incorporates trophic complexity because it can influ-
ence multitrophic relationships. Our comprehensive 
review of the scant data available on multitrophic 
relationships of EF shows that plant associated EF 
can influence the insect-plant interaction mainly 
by altering both the chemical ecology of host-plant 
selection by insect pests and insect pest selection by 
natural enemies, predators and parasitoids. Overall, 
EF treatments directly targeting the insect pest or 
indirectly via endophytism do not compromise preda-
tor and parasitoid fitness and behaviour, an important 
compatibility that should be further explored and uti-
lized in biocontrol strategies for a synergistic appli-
cation in IPM programs. Nonetheless, the fact that 
the available data summarized in the present work is 
mainly based upon short term and small-scale experi-
ments makes necessary much more longer-term farm 
level real-life implementation research to fully under-
stand the biocontrol impact of the multitrophic inter-
actions of EF. Indeed, it remains unknown whether 
the newly described lifestyles of EF can also impact 
other key beneficial arthropods such as pollinators.
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