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improved oral glucose clearance, and increased all 
limb grip strength in 10- and 18-month-old mice. Glu-
cose clearance in ad libitum fed 26- and 28-month-old 
mice is enhanced relative to younger mice but was not 
further improved by CR. CR decreased basal insulin 
concentrations in all age groups and improved insu-
lin sensitivity and rotarod time to fall in 28-month-
old mice. The results of our study demonstrate that 
even a modest reduction (15%) in caloric intake may 
improve metabolic and physical health. Thus, moder-
ate calorie restriction may be a dietary intervention to 
promote healthy aging with improved likelihood for 
adherence in human populations.

Keywords Calorie restriction · Liver fat · Glucose 
homeostasis · Insulin sensitivity · Healthspan

Introduction

The incidence of age-related metabolic disease, 
driven by fat accumulation in the liver, nearly 
doubles from 45 to 65  years of age (Harris et  al. 
1998; Cowie et  al. 2009; CDC 2014, 2017). The 
prevalence of nonalcoholic fatty liver disease 
(NAFLD) rises from young adulthood to middle 
age, with a prevalence exceeding 40% in people 
over 70  years of age (Frith et  al. 2009; Wang 
et  al. 2013; Bertolotti et  al. 2014). Excess hepatic 
lipid content is associated with impaired glucose 
tolerance (Borel et  al. 2015) and an increased risk 
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of developing Type II diabetes mellitus (T2DM) 
(Li et  al. 2015; Mantovani et  al. 2018) and insulin 
resistance (Fabbrini et al. 2009). Calorie restriction 
(CR), without malnutrition, is the most robust non-
genetic intervention that promotes longevity and 
metabolic improvements to delay aging in multiple 
strains of laboratory rodents and non-human 
primates (Weindruch and Walford 1982; Weindruch 
et al. 1986; Anderson et al. 2009). Ten years of 30% 
CR in rhesus monkeys decreases body fat, improves 
insulin sensitivity, and decreases circulating insulin 
(Gresl et al. 2003). Lifelong 40% CR decreases liver 
fat and the expression of lipogenic genes at the liver 
in 18-month-old mice (Kuhla et al. 2014). Lifelong 
30% CR decreases liver fat, improves glucose 
clearance, and lowers circulating insulin levels in 
12-month-old mice (Rusli et al. 2015).

The majority of CR studies in rodents impose 
a degree of caloric restriction (~ 30–40%) (Kuhla 
et  al. 2014; Karunadharma et  al. 2015; Gutierrez-
Casado et  al. 2019; Mezhnina et  al. 2020) that 
would be difficult to maintain. A major challenge in 
translating CR studies in rodents to humans is the 
severity of CR. In fact, although human participants 
in the 2-years CALERIE™ (Comprehensive 
Assessment of Long-Term Effects of Reducing 
Intake of Energy) phase 1 trial were asked to restrict 
caloric intake by 25% for the 2-years duration of the 
study, in practice the participants actually achieved 
less than half that level of restriction (11.9%) in 
daily caloric intake (Kraus et  al. 2019). For the 
aging field to make strides in translating studies 
of CR in model organisms to that of humans, it 
is critical to evaluate the effect of a more modest 
calorie restriction regimen in promoting healthy 
aging. As a species that shares the majority of its 
protein-coding genes with humans, the mouse 
serves as an excellent model to study interventions 
that may affect human aging and disease (Yue 
et  al. 2014). We evaluated the metabolic effects of 
lifelong moderate (15%) calorie restriction, initiated 
at 4 months of age, in 10-, 18-, 26-, and 28-month-
old mice. Studying mice at these ages allows us to 
examine the effects of moderate CR at ages that are 
equivalent to middle age (10  months), the lower 
(18  months) and upper limits (26- and 28-months) 
of old age in humans (Flurkey et al. 2007).

Materials and methods

Animals

All animal procedures in this study were approved 
by the Institutional Animal Care and Use Commit-
tee of the University of Arizona College of Medi-
cine (IACUC protocol 18-478). All experimen-
tal procedures were performed according to NIH 
guidelines. Male C57BL/6NCrl mice were obtained 
from the National Institute on Aging caloric restric-
tion colony (Charles River, Wilmington, MA). 
Mice were singly housed and maintained on a 14-h 
light/10-h dark cycle. Ad  libitum-fed mice had 
unlimited access to food (NIH-31), while calorie-
restricted mice received 85% (3  g of NIH-31) of 
their ad libitum food intake in tablet form (LabDiet 
Cat# 1819591-300) once daily at 6 p.m., the onset 
of the dark cycle. The level of CR was calculated as 
a function of daily food intake assessed in ad  libi-
tum mice (Fig. 1D).

Oral glucose tolerance test

10-, 18-, 26-, and 28-month-old mice were fasted 
for 4  h prior to oral gavage of D-glucose (2.5  g/
kg; Fisher). Blood was collected by tail nick, and 
blood glucose was assessed at baseline and 15, 
30, 60, 90, and 120  min after oral glucose was 
administered with a glucometer (9556c, Bayer, 
Leverkusen, Germany). Blood was collected at 
baseline and 15 min after gavage to assess basal and 
oral glucose-stimulated serum insulin.

Insulin tolerance test

To assess differences in insulin sensitivity in 
advanced age, 28-months ad  libitum and calorie 
restricted mice were injected intraperitoneally 
with insulin (0.25  IU/kg body weight) after a 4-h 
fast. Blood glucose concentration was assessed 
using glucometer at baseline and 15, 30, 60, 90, 
and 120  min after insulin injection. Tail blood 
was collected at baseline and 15  min after insulin 
injection to assess hypoglycemia-stimulated 
glucagon secretion.
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In vivo assessment of physical function

To assess the impact of aging and caloric restriction 
on forelimb and all limb grip strength (Justice et  al. 
2014), we allowed each mouse to grip a metal 
wired pad attached to a force transducer (San Diego 
Instruments, San Diego, CA) with forepaws only or 
forepaws and hind paws. We then pulled the mouse 
horizontally and measured force until its grip was 
released. Forelimb and all limb grip strength was 
tested in 5 trials/day. The minimum and maximum 
force values were omitted, then the remaining three 
measures were used to calculate average grip strength. 
Average grip strength was normalized to body weight 
to account for differences in body weight with calorie 
restriction.

To assess balance and coordination in 26- and 
28-month-old mice, we performed a rotarod task 
using a continuous-acceleration apparatus (Columbus 
Instruments, Columbus, OH) Mice were placed on a 
stationary rod and were given the chance to stabilize 
their posture before each trial, which consisted of 
incremental rod acceleration starting at 4 rotations 
per minute (rpm) and increasing by 0.5  rpm every 
5  s. The main outcome measured was time to fall 
(seconds). Each mouse was tested in 3 trials/day and 
each data point represents the average time to fall per 
mouse (Justice et al. 2014).

10 18 26 28
0

5

10

15

20

25

Age (Months)

%
Fa

tm
as

s

Fat Mass

a a

abc
abc

bc

ab

c c

10 18 26 28
0

10

20

30

40

Age (Months)

B
od

y
W

ei
gh

t(
g)

Ad Libitum
Calorie Restricted

Body Weight

a
ab

bc
ccccc

10 18 26 28
0

50
60

70

80

90

100

Age (Months)

%
Le

an
m

as
s

Lean Mass

a a ab abc
bcbccc

A B

C

12 25 27
0

1

2

3

4

5

Age (Months)

Fo
od

in
ta

ke
(g

)

Ad Libitum
Daily Food Intake

---------------NS---------------

D

Fig. 1  Body weight, body composition, and ad  libitum food 
intake. Body weight (A) of ad  libitum and calorie-restricted 
mice at 10 (n = 15–25), 18 (n = 23–25), 26 (n = 12–34), and 
28  months of age (n = 7–9). Fat mass percentage (B) and 
lean mass percentage (C) of 10- (n = 10), 18- (n = 8–10), 26- 
(n = 14–26), and 28-month-old AL and CR mice (n = 8–10). 
Ad  libitum daily food intake (D) was measured for 7 con-
secutive days in 12- (n = 5), 25- (n = 8), and 27-month-old 

mice (n = 9). Each data point represents the average daily 
food intake of one mouse. Data presented as Mean ± SEM; 
a,b,cSuperscript letters that differ indicate differences, P < 0.05; 
Figures A–C: two-way ANOVA with Tukey’s adjustment for 
multiple comparisons. Figure D: One-way ANOVA with Tuk-
ey’s adjustment for multiple comparisons, NS (not significant)
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Body weight and body composition

Body weights were measured after a 4 h fast. Fat mass 
and lean mass was assessed via NMR (EchoMRI™, 
Houston, TX). Percent of fat mass or lean mass was 
based off total body weight.

Tissue collection

Mice were sacrificed at 10, 18, 26, and 28-months of 
age. Mice were fasted for four hours, (9 a.m.–1 p.m.) 
then anesthetized by bell jar isoflurane exposure and 
immediately decapitated. We collected trunk blood 
and allowed the blood to clot on ice for 30 min. We 
collected serum after centrifugation at 3000×g for 
20 min at 4 °C. Aliquots were stored at − 80 °C until 
analysis. Tissues were snap frozen on dry ice and 
stored at − 80 °C until analysis.

Hepatic lipid content

We powdered the livers using a liquid nitrogen cooled 
mortar and pestle. 10–15  mg of frozen, powdered 
liver was weighed and sonicated in 100 µL PBS, then 
1  mL of 100% ethanol was added to each sample. 
Samples were vortexed for 20 min then centrifuged at 
16,000×g at 4 °C (Geisler et al. 2019; Vasileva et al. 
2022). Supernatant was transferred to a fresh tube for 
analysis of liver triglycerides (TAG) (Cat. # T7531, 
Pointe Scientific Inc., Canton, MI) and non-esterified 
fatty acids (NEFA) (FUJIFILM Wako Pure Chemical 
Corporation). Total hepatic triglyceride content was 
calculated as mg/g tissue and total hepatic NEFA 
content was calculated as µmol/g tissue.

RNA isolation and RT-qPCR

RNA was extracted from powdered livers using 
TRIzol™ Reagent. (Thermo Fisher Scientific, 
Waltham, MA). Extracted RNA was washed with 

water-saturated butanol and ether to eliminate 
phenol (Krebs et  al. 2009). Reverse transcription 
was performed using Verso cDNA synthesis kits 
(Thermo Fisher Scientific, Waltham, MA), and 
RT-qPCR was performed using SsoAdvanced 
Universal  SYBR® Green Supermix (Bio-Rad 
Laboratories, Hercules, CA) on the Applied 
Biosystems QuantStudio 6 Flex Real-Time PCR 
System (Applied Biosystems™, Foster City, 
CA). Raw Ct values were analyzed using LinReg 
PCR analysis software to determine amplification 
efficiency (Ramakers et al. 2003). Genes of interest 
were normalized to β-actin expression and the fold 
change in gene expression was calculated using 
the  efficiency∆∆Ct method (Livak and Schmittgen 
2001). Fold change for all age and diet groups was 
calculated against the ad  libitum-fed 10-month-
old group. Mouse primer sequences for all genes 
analyzed with real-time PCR are presented in 
Table 1.

Serum analyses

We measured serum insulin and glucagon 
concentrations using commercially available 
enzyme-linked immunosorbent assays (Insulin: Cat. 
# 80-INSMSU-E10, Alpco, Salem, NH; Glucagon: 
Cat. # 10-1281-01, Mercodia, Uppsala, Sweden). 
HOMA-IR index was calculated according to the 
formula: HOMA-IR = fasting glucose in mmol/
l*fasting insulin in μU/mL/22.5 (Sarafidis et  al. 
2007).

We assessed serum triglyceride (TAG), non-
esterified fatty acids (NEFA), and glucose 
concentrations using colorimetric assays (Glucose: 
Cat. # G7521, Pointe Scientific Inc., Canton 
MI; NEFA: FUJIFILM Wako Pure Chemical 
Corporation; TAG: Cat. # T7532, Pointe Scientific 
Inc., Canton, MI).

Table 1  List of primer sequences for RT-PCR

Gene Forward primer (5′–3′) Reverse primer (5′–3′) Gene ID

Mouse Actb TCG GTG ACA TCA AAG AGA AG GAT GCC ACA GGA TTC CAT A 11461
Mouse Acaca ATG GGC GGA ATG GTC TCT TTC TGG GGA CCT TGT CTT CAT CAT 107476
Mouse Acly CAG CCA AGG CAA TTT CAG AGC CTC GAC GTT TGA TTA ACT GGTCT 104112
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Statistical analyses

We performed statistical analyses in SAS Enterprise 
Guide 7.1 (SAS Institute Inc., Cary, NC) and 
GraphPad Prism Version 9.4.0 (GraphPad Software, 
San Diego, California, USA). We used two-way 
ANOVA to assess the effect of aging and 15% 
caloric restriction on all dependent variables. The 
probability of difference between means was assessed 
after a Tukey’s adjustment for multiple comparisons. 
Glucose-stimulated serum insulin and hypoglycemia 
stimulated serum glucagon were analyzed using 
paired t-tests to assess the change in serum hormone 
concentration between two timepoints within each 
mouse. Raw data were plotted in GraphPad Prism 
Version 9.4.0 for Windows (GraphPad software). All 
data are presented as mean ± SEM.

Results

Lifelong moderate CR decreases body weight and fat 
mass in 10- and 18-month-old mice

We first sought to assess how a moderate calorie 
restriction affects body weight and body composition 
in middle-aged and old-aged mice. We found that in 
10- and 18-month-old mice, 15% calorie restriction 
resulted in significantly lower body weight compared 
to ad  libitum controls (Fig.  1A , P < 0.0001). At 
26 and 28  months of age, there was no significant 
difference in body weight between ad  libitum and 
calorie restricted mice. In ad  libitum fed mice, body 
weight did not differ from 10 and 18 months of age 
but was decreased in 26- and 28-month-old mice.

We assessed body composition using EchoMRI 
and found that CR decreased percent fat mass in 
18-month-old mice (Fig. 1B, P < 0.01). CR increased 
percent lean mass at 10- and 18-months of age 
(Fig. 1C, P < 0.001).

Lifelong moderate CR decreases serum insulin 
without affecting serum TAG or NEFA

We next assessed circulating glucose, insulin, TAG, 
and NEFA concentrations after a 4 h fast. Neither age, 
nor CR had an effect on blood glucose concentration 
(Fig. 2A). Despite similar glucose concentrations, CR 
decreased serum insulin concentration in 10-, 18-, 

and 26-month-old mice (P < 0.001, Fig. 2B), sugges-
tive of improved insulin sensitivity. In line with this 
finding, HOMA-IR, an indicator of insulin resistance 
(Sarafidis et  al. 2007), decreased in response to CR 
across mice of all ages (P < 0.001, Fig. 2C). Because 
serum insulin and insulin resistance are often cor-
related with elevated circulating NEFA and TAG in 
adults (Frohnert et al. 2013), we assessed the effects 
of both age and CR on serum NEFA and TAG. While 
neither age, nor CR affected serum NEFA, we found 
that serum TAG concentration was lower only in 
ad libitum fed 26-month-old mice compared to 10- or 
18-month-old ad libitum fed mice. CR did not affect 
serum TAG, regardless of age (Fig. 2D, E, P  < 0.05).

Lifelong moderate CR decreases hepatic triglyceride 
at 10 and 18 months of age

We next assessed the impact of 15% CR on hepatic 
lipid content in 10-, 18-, 26-, and 28-month-old mice. 
We found that this moderate level of CR decreased 
liver TAG and NEFA content in 10- and 18-month-
old mice (P < 0.01), but not at 26 or 28  months of 
age. Hepatic TAG concentrations decreased with 
advanced age (26- and 28-months of age, P < 0.05) 
in ad libitum fed mice. We observed no age effect on 
liver NEFA (Fig. 3A, B).

As a first step to better understand the CR and 
age effects on hepatic lipid content, we next assessed 
liver ATP citrate lyase (ACLY) and acetyl CoA 
carboxylase (ACC) mRNA expression. These are two 
key enzymes involved in hepatic de novo lipogenesis 
(Thampy and Wakil 1988; Kim et al. 2017). CR did 
not affect mRNA expression of ACC or ACLY at 10-, 
18-, or 26- months of age (Fig. 3C, D). However, CR 
decreased ACC mRNA expression at 28  months of 
age (Fig. 3D, P  < 0.01).

Lifelong moderate CR improves glucose clearance at 
10 and 18 months of age

Because hepatic lipid accumulation is tightly coupled 
to glucose homeostasis (Borel et al. 2015; Lomonaco 
et al. 2016), we next performed oral glucose tolerance 
tests (OGTT) to assess the effects of calorie restric-
tion on glucose clearance and oral glucose-stimu-
lated insulin. Moderate calorie restriction improved 
oral glucose clearance in 10- and 18-month-old 
mice, the same mice in whom calorie restriction had 
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lowered liver lipid concentration (Fig. 4A, C and I, P 
< 0.0001). Interestingly, coinciding with decreased 
liver triglycerides, glucose clearance was improved 
in ad libitum fed 26- and 28-month-old mice relative 
to 10- and 18-month-old mice. CR did not further 
improve glucose clearance in 26- and 28-month-old 
mice compared to ad  libitum fed age-matched con-
trols (Fig. 4E, G and I).

Having demonstrated that CR improves glucose 
clearance in 10- and 18-month-old mice and that 
glucose clearance improves in advanced age, we 
sought out to determine if these improvements 
were a result of changes in oral glucose stimulated 
insulin secretion (OGSIS). We assessed serum 
insulin concentrations at baseline and 15  min after 
oral glucose was administered. In each age and 
diet group, oral glucose gavage increased serum 
insulin concentrations 15  min after administration 
(Fig. 4B, D, F, H). CR decreased OGSIS only at 18 
and 28 months of age. Of note, aging increases oral 

glucose stimulated serum insulin in both ad  libitum 
and CR mice (P < 0.001, Fig. 4J).

Lifelong moderate CR increases insulin sensitivity in 
28-month-old mice

Having established the effect of aging and CR on 
glucose clearance and OGSIS, we sought out to 
assess the effect of CR on insulin sensitivity in mice 
of advance age (28  months of age). Although basal 
glucose was nearly identical in both groups of mice, 
insulin more severely decreased blood glucose con-
centration in calorie restricted mice (Fig. 5A and B). 
We next collected tail blood at 0 and 15  min dur-
ing the ITT to assess the effect of calorie restriction 
on hypoglycemia-stimulated glucagon secretion. 
Glucagon, the counterregulatory hormone to insulin, 
increases in response to hypoglycemia and extended 
fasting to promote hepatic glycogenolysis and 
increase blood glucose (Stern et  al. 2019; Vasileva 

10 18 26 28
0

50

100

150

200

Age (Months)

G
lu

co
se

(m
g/

dL
)

Ad LibitumBlood Glucose
Calorie Restricted

-------------------NS-------------------

10 18 26 28
0.0

0.5

1.0

1.5

2.0

2.5

Age (Months)

In
su

lin
(n

g/
m

L)

Serum Insulin

ab

a

ab
ab

bc
c c c

10 18 26 28
0

20

40

60

80

100

Age (Months)

Tr
ig

ly
ce

rid
e

(m
g/

dL
)

Serum TAG

a

a

ab ab
ab

ab
b

b

10 18 26 28
0.0

0.6

1.2

Age (Months)

N
EF

A
(m

m
ol

/L
)

Serum NEFA
-------------------NS-------------------

10 18 26 28
0

5

10

15

20

25

Age (Months)

H
O

M
A

IR

HOMA-IR

a

ab ab
ab

bccc
c

A B

D E

C

Fig. 2  4-h fasted blood glucose, serum insulin, Homeostatic 
Model Assessment of Insulin Resistance (HOMA-IR), serum 
triglyceride (TAG), and non-esterified fatty acids (NEFA) 
in ad  libitum-fed compared to 15% Calorie Restricted (CR) 
mice. Blood glucose (A) at 10 (n = 15), 18 (n = 24–25), 26 
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et  al. 2022). While serum glucagon did not change 
from 0 to 15 min after insulin injection in ad libitum 
mice, we observed a robust rise in serum glucagon 
in the calorie restricted group (P = 0.004, Fig.  5C). 
This more robust rise in serum glucagon would be 
expected to limit the apparent insulin sensitivity 
measured by ITT. In turn, the CR induced improve-
ment in insulin sensitivity is likely more robust than 
suggested by the ITT.

Lifelong moderate CR improves physical function

Because metabolic health correlates with physical 
function (Fritschi et  al. 2017), we next assessed the 
effects of caloric restriction and aging on measures 
of physical function. We performed grip strength 
tests and found that calorie restriction improved all 
limb grip strength at 10- and 18-months of age and 

forelimb grip strength at 18-months of age (Fig. 6A  
and B, P < 0.001 and P < 0.0001, respectively), but 
we saw no effect of CR on grip strength at 26 or 
28 months of age. To assess balance and coordination, 
we performed the rotarod test in 26- and 28-month-
old mice. Calorie restriction tended to increase the 
time to fall in 26-month-old mice (P = 0.07, Fig. 6C) 
and significantly increased time to fall in 28-month-
old mice (Fig. 6C, P = 0.004).

Discussion

In the present study, we sought to investigate 
the effects of lifelong moderate (15% initiated at 
4 months of age) CR on hepatic lipid accumulation, 
glucose homeostasis, and physical function at 
timepoints that include stages representative of 
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Fig. 4  Oral glucose clear-
ance and oral glucose-
stimulated insulin secretion 
(OGSIS). Blood glucose 
curves (A, C, E, and G) and 
the area-under-the-curve (I) 
from oral glucose tolerance 
tests in ad libitum fed and 
15% Calorie Restricted 
(CR) mice at 10 (n = 15), 18 
(n = 24–25), 26 (n = 13–26), 
and 28 months of age 
(n = 9–10). a,b,cLetters that 
differ indicate differences, 
P < 0.05; two-way ANOVA 
with Tukey’s adjustment for 
multiple comparisons. Oral 
glucose-stimulated insulin 
secretion (OGSIS) (B, D, F, 
H) from baseline to 15 min 
after oral glucose (2.5 g/kg 
BW) gavage (10 months: 
n = 15; 18 months: 
n = 21–24; 26 months: 
n = 12–25; 28 months: 
n = 6–9). P values reflect 
results of paired samples t 
tests to assess the change in 
serum insulin concentration 
between timepoints within 
each mouse (B, D, F, H). 
Effect of aging on OGSIS 
15-min-post oral glucose 
gavage (J); a,b,cLetters that 
differ indicate differences, 
P < 0.05; two-way ANOVA 
with Tukey’s adjustment for 
multiple comparisons. Data 
presented as Mean ± SEM
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middle to advanced age (10-, 18-, 26, and 28-months) 
in mice. A more severe (30–40%) level of restriction 
has been the focus of most studies that aim to assess 
CR’s effect on metabolic function in animal models 
of aging. Still, few studies have investigated the 
metabolic impact of this restriction in advanced 
age. Lifelong 30% CR decreases liver fat, improves 
glucose clearance, and lowers circulating insulin 
levels in 12-month-old mice (Rusli et al. 2015). 40% 
CR initiated at 3 months decreases liver fat at 12- and 
15-months of age (Ogrodnik et  al. 2017). Similarly, 

74 weeks of 40% CR (fed at 8 A.M.) decreases liver 
fat at 19 months of age (Kuhla et al. 2014).

We found that a modest lifelong 15% CR decreased 
body mass and fat mass in 10- and 18-month-old 
mice, but not at 26 and 28 months of age (advanced 
age). Our observation that CR did not further decrease 
body weight or fat mass compared to age-matched 
ad  libitum fed mice is likely due to the decrease in 
body weight commonly seen during advanced age 
in ad  libitum fed C57Bl/6 mice, preventing us from 
observing a further decrease in body weight or 

Fig. 5  Lifelong 15% 
calorie restriction 
improves insulin sensitiv-
ity in advanced age. Blood 
glucose curves (A) and 
area-under-the-curve (B) 
from insulin tolerance 
tests in 28-month-old 
ad libitum fed and 15% 
calorie restricted (CR) 
mice (n = 7–8); P values 
reflect results of unpaired 
t-tests to assess difference 
between diet groups. C 
Serum glucagon concentra-
tions at baseline and 15 min 
after intraperitoneal insulin 
injection (0.25 IU/kg BW) 
(n = 6–8); P values reflect 
results of paired samples t 
tests to assess the change in 
serum insulin concentration 
between timepoints within 
each mouse. Data presented 
as Mean ± SEM
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Fig. 6  In vivo measures of physical function. All limb (A) and 
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differences, P < 0.05; two-way ANOVA with Tukey’s adjust-

ment for multiple comparisons (A, B). Rotarod task was per-
formed in 26- (n = 6–10) and 28-month-old mice (n = 9); P 
values reflect results of unpaired t-tests to assess difference 
between diet groups. Data presented as Mean ± SEM
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fat mass. Supporting these findings, Turturro and 
colleagues also observed an age-related decrease in 
body mass beginning at approximately 25 months of 
age, which continued to decline throughout advanced 
age (Turturro et al. 2002).

CR decreased liver triglyceride content in 10- 
and 18-month-old mice and, accordingly, improved 
glucose tolerance at these ages. In advanced aged 
(26 and 28  months) mice, liver fat was decreased 
compared to 10- and 18-month-old mice, and CR did 
not further decrease liver triglyceride, liver NEFA, 
or affect glucose clearance at these ages (Figs. 3A, B 
and 4I). Despite the key role of hepatic lipid content 
on metabolic flux, few studies have extended beyond 
22 months of age to investigate the effect of aging on 
hepatic lipid concentration. Fontana and colleagues 
showed that liver triglyceride content was similar in 
6-, 12-, and 22-month-old C57BL/6 mice fed either 
a low-fat chow or high fat diet (Fontana et al. 2013). 
Our observation that hepatic lipid accumulation 
decreases in advanced age is likely secondary to the 
age-related decrease in body weight and fat mass. The 
age dependent decrease in hepatic lipid accumulation 
in 26- and 28-month-old mice likely prevents us from 
observing any benefits from CR, a treatment aiming 
to decrease liver lipid and improve metabolic health.

Given the decrease in liver triglyceride content 
that we observed with both calorie restriction and 
aging, we performed qPCR to evaluate the mRNA 
expression of two crucial enzymes in the de novo 
lipogenesis pathway, ATP-citrate lyase (Acly or 
ACLY) and acetyl CoA carboxylase (Acaca or ACC). 
ACLY generates acetyl CoA, which is the substrate 
for ACC, the rate limiting and first committed step 
in de novo lipogenesis (Thampy and Wakil 1988). 
Pharmacologic and genetic inhibition of both ACLY 
(Wang et  al. 2009) and ACC (Kim et  al. 2017) 
decreases hepatic lipid accumulation. We did not 
observe robust changes in liver ACC or ACLY gene 
expression in response to either aging or calorie 
restriction, suggesting that transcriptional regulation 
of these genes is not robustly affecting hepatic lipid 
changes that result from calorie restriction or aging 
(Fig.  3C, D). Still, post-translational modification 
does robustly affect activity of acetyl CoA 
carboxylase. The activity of acetyl CoA carboxylase 
is inhibited by phosphorylation via AMP-activated 
protein kinase (AMPK) (Garcia et  al. 2019; Lally 
et  al. 2019) in response to a rise in the AMP:ATP 

ratio when cellular energy levels are low. Acetyl 
CoA carboxylase is regulated by the glucoregulatory 
hormones insulin and glucagon, encouraging lipid 
production when food is available and inhibiting 
lipid production when food is scarce. Hepatic insulin 
resistance in response to aging may decrease liver 
lipid content (Brown and Goldstein 2008).

Interestingly, we found that glucose tolerance 
improved with advanced age (26 and 28 months old; 
Fig.  4I). Yet, there was no further improvement in 
glucose clearance with CR in mice of advanced age. 
This observation is in stark contrast with what has 
been observed in aging humans (Shimokata et  al. 
1991; Ehrhardt et  al. 2019). Typically, as humans 
age from middle to advanced age, glucose tolerance 
decreases. In fact, analyses from over 700 participants 
in the Baltimore Longitudinal Study of Aging, show 
that glucose tolerance declines from 60 to 92  years 
of age, independent of changes in body composition 
and activity levels (Shimokata et  al. 1991). We 
found that OGSIS increases in advanced age in mice 
(Fig.  4J), possibly explaining the improved glucose 
clearance. Thus, aged mice secreted higher levels of 
insulin in order to clear blood glucose. In line with 
our findings, Oh and colleagues (2016), studying 
mice from 4 to 20 months of age, found that aging did 
not affect blood glucose concentrations, but improved 
glucose tolerance while decreasing insulin sensitivity 
(Oh et  al. 2016). They similarly showed that aging 
(20  months) increased glucose-stimulated serum 
insulin (Oh et  al. 2016). Using HOMA-IR to assess 
insulin resistance, we found that insulin sensitivity 
was similar at all ages 10–28 months of age (Fig. 2C). 
Importantly, 15% calorie restriction decreased 
HOMA-IR across mice of all ages (Fig. 2C).

Dysregulated glucose and lipid homeostasis 
increases the risk of developing limitations in 
physical function in older persons (Penninx et  al. 
2009). Aging causes a decline in physical function 
that can be delayed by caloric restriction. Similar 
to studies that implement a more severe level of 
restriction (Orenduff et  al. 2022), the 15% calorie 
restriction we implemented improved forelimb and all 
limb grip strength in most age groups and improved 
balance and coordination in 26- and 28-month-old 
mice, as measured by time to fall during the Rotarod 
task. Grip strength measurements were normalized to 
body weight, and calorie restricted mice had a higher 
percentage of lean mass per gram body weight, 
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thus it is reasonable that calorie restricted mice had 
a greater normalized grip strength than ad  libitum 
mice. However, the increased time to fall during the 
Rotarod task is not corrected by body mass.

We must be judicious in raising the limitations 
of translating data from rodent models of caloric 
restriction to human aging and metabolic health. 
Observational studies of humans that involuntarily 
restrict caloric intake propose that there may be 
maintainable beneficial effects of modest calorie 
restriction. Based on six decades of archived 
dietary intake data, Willcox and colleagues (2007) 
estimated that residents of Okinawa self-impose 
approximately an 11% caloric restriction. This 
correlated with a life-long low BMI, decreased 
mortality from age-associated diseases, and extended 
mean and maximum lifespan (Willcox et  al. 2007). 
Although promising, these correlative findings do 
not demonstrate direct causation between modest 
caloric restriction and increased lifespan in humans. 
Long term clinical trials are first required to assess 
the efficacy of moderate CR in preventing age-
related disease and improving healthspan. While 
few controlled human trials have examined the 
physiological effects of long-term CR, data generated 
from the CALERIE trial (Comprehensive Assessment 
of Long-Term Effects of Reducing Intake of Energy) 
supports the hypothesis that there are substantial 
beneficial effects of modest CR. A 12% calorie 
restriction decreased body weight, fat mass (Das 
et  al. 2017), and reduced multiple cardiometabolic 
risk factors, including LDL cholesterol, total: HDL 
cholesterol, and insulin sensitivity, independent of 
weight loss (Kraus et  al. 2019). These encouraging 
findings from the CALERIE™ trial and our data from 
similarly calorie restricted (15%) mice support the 
need for future research aimed at understanding the 
metabolic impact of moderate caloric restriction in 
both human populations and animal models of aging.

There are some limitations of our study that 
must be considered when interpreting results. One 
potential limitation of our study is the variable 
fasting durations between our ad  libitum and calorie 
restricted mice for in  vivo metabolic studies and 
tissue collections. Ad  libitum fed mice would have 
been imposed with a 4  h fast (likely ate very little 
for 8 h, since lights on), while calorie restricted mice 
likely fasted for 14–16  h. This limitation is hard to 
overcome, as feeding the daily food allotment hours 

prior to sacrifice would potentially have a greater 
impact on our measures of metabolic health. Ideally, 
we would have performed insulin tolerance tests on 
all ages of mice. However, HOMA-IR does provide 
a measure of insulin resistance, establishing that 
calorie restriction improves insulin sensitivity across 
all ages of mice. We recognize that the number of 
mice in the 28-month-old age group is low, relative to 
younger age groups in this study. The median lifespan 
of ad  libitum fed C57Bl/6 mice is approximately 
28  months (Turturro et  al. 2002). Hence this 
discrepancy in the number of mice per age group was 
unavoidable due to mortality at this advanced age. 
Another limitation is that our studies are limited to 
male mice. Hormonal changes that occur in midlife 
in women are associated with dysregulation of lipid 
(Fan and Dwyer 2007; Derby et  al. 2009; Woodard 
et al. 2011) and glucose (Lindheim et al. 1994; Ryan 
et al. 2002; Rossi et al. 2004) homeostasis. Similarly, 
mouse models of menopause exhibit weight gain, 
elevated fasting insulin, and insulin resistance 
(Romero-Aleshire et al. 2009). Given these metabolic 
consequences that occur during midlife that are 
unique to women, studies examining the effects of 
moderate caloric restriction in female mice across 
the lifespan is essential to understand potential sex 
differences in the metabolic response to caloric 
restriction.

Our findings indicate that a moderate, 
maintainable level of calorie restriction beginning 
at early adulthood can limit the decline in metabolic 
and physical (strength, balance, and coordination) 
function with aging in mice. In conclusion, 15% 
calorie restriction may cause comparable metabolic 
and physical benefits to the typical higher percentage 
CR, with the added benefit of increased likelihood 
of compliance in human populations. These findings 
support the need for future research aimed at 
understanding the physiological impact of modest 
caloric restriction in animal models of aging.
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