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shows that health behaviors spread through social networks, 
including dyadic ties such as between partners (Christa-
kis and Fowler 2007, 2008, 2013; Rosenquist et al. 2010). 
However, it is notoriously difficult even in longitudinal 
research designs to establish causality because of assorta-
tive mating (‘like seeks like’) and contextual confounding 
(VanderWeele 2011). Although natural experiments have 
been used to examine social contagion effects (e.g., student 
dorms; Guo et al. 2015; Li and Guo 2016), they are rare, and 
we know of no such experiment for partners (fortunately by 
the way).

In this paper, we offer a novel approach to studying social 
contagion for health behaviors in long-term partnerships 
by utilizing longitudinal data on health behaviors and out-
comes of both partners in married/cohabiting couples com-
bined with their genetic profiles. Genetics offers a unique 
angle to examine the partner’s influence because genes are 
randomly assigned at conception given parental genotypes, 
are not directly visible, can be measured, and have an ongo-
ing influence on the phenotype. This means that the part-
ner’s genotype, as opposed to his/her phenotype, is immune 
to influences from the couple environment and reverse 
causality through influences from ego after partner selec-
tion. In selecting partners, people may still have an indirect 

Introduction

The partner’s lifestyle has considerable associations with 
one’s own lifestyle across a variety of domains, includ-
ing obesity, physical activity, eating, alcohol consumption, 
weight loss, and smoking (Meyler et al. 2007; Richmond-
Rakerd and Belsky 2017). Partners share resources and 
they may exert a positive influence by promoting a healthy 
lifestyle and by sanctioning unhealthy behavior (Franks et 
al. 2002; Conklin et al. 2014; Jackson et al. 2015; Margolis 
and Wright 2016; Umberson et al. 2018), although partners 
may also reinforce unhealthy behaviors. These findings 
align with the ‘social contagion’ strand of research, which 
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health outcomes and genotypes for both partners. Results show that changes over time in BMI, smoking, and drinking 
depend on the partner’s genetic predispositions to these traits. These findings underline the importance of people’s social 
surroundings for their health and highlight the potential of targeting health interventions at couples.
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influence on their partner’s genotype through selecting on 
similar phenotypes. This is why we use longitudinal data to 
control for phenotypes earlier in the relationship and assess 
whether a partner’s genotype influences the change in ego’s 
phenotype over time. The impacts of genotypes of others in 
our direct environment on our own phenotypes have been 
referred to as social genetic effects or indirect genetic effects 
(Baud et al. 2017; Domingue and Belsky 2017). We study 
social genetic effects for probably the most important rela-
tionship in adulthood; the partner. Despite the importance 
of the partner for our health and well-being and decades of 
research, our understanding of its role is still limited (Mey-
ler et al. 2007; Carr and Springer 2010). This study exam-
ines the influence of the partners’ genotype for one’s health 
behaviors and outcomes among married/cohabiting couples.

Although social genetic effects have been established for 
numerous types of animals (Ellen et al. 2014; Nielsen et al. 
2014; Baud et al. 2017), trees (Brotherstone et al. 2011), 
and bacteria (Lee et al. 2010), and are sometimes found 
to be even stronger than direct genetic effects (Baud et al. 
2017), they were until recently virtually ignored in studies 
on human genetics (but see these recent studies; Brunello 
et al. 2020; Das 2019; Harris et al. 2018; Kong et al. 2018; 
Laidley et al. 2019; Liu 2018; Salvatore et al. 2020; Sotou-
deh et al. 2019; Xia et al. 2021). Because married/cohab-
iting people are exposed to their partner’s behavior (ego’s 
environment), which is partly driven by the partner’s genes, 
we may be able to detect social genetic effects. For instance, 
having a partner who is genetically predisposed to alcohol 
dependence may increase one’s own alcohol consumption 
because the partner ensures there is alcohol available at 
home. What is more, social genetic effects may be particu-
larly likely for partners compared to other social ties because 
partners face large costs to leaving their relationship and are 
typically exposed to each other on a daily basis, which may 
increase incentives to influence the partner’s behavior and 
also the willingness to conform.

Previous research examined social genetic effects by 
estimating polygenic indexes (PGI; the aggregation of 
many small genetic effects scattered across the genome on 
a phenotype) for both partners and testing whether ego’s 
phenotype is associated with the PGI of ego’s partner while 
controlling for ego’s own PGI. However, this approach is 
known to suffer from confounding by assortative mating 
(Xia et al. 2021). A PGI is a noisy estimate of the genetic 
component of a trait, and does not capture the full genetic 
component. Controlling for ego’s own PGI therefore only 
controls for a small fraction of ego’s own genetic compo-
nent. Furthermore, even if one could control for one’s full 
genetic component, this would not remove the influence of 
assortative mating because people mate on the basis of phe-
notypes that are not completely heritable. For these reasons, 

a gene-environment (GxE) correlation (Abdellaoui et al. 
2022) between the PGI of the partner and the phenotype of 
ego is expected even after controlling for ego’s full genetic 
component. Such GxE correlations have also been referred 
to as “social genetic correlations” (Harris et al. 2018) and 
have to be distinguished from social genetic effects in 
which the partner’s genotype influences ego’s behavior (in 
line with the partner social contagion hypothesis). Indeed, 
a recent study on social genetic effects in humans suggests 
that the biggest remaining challenge is to account for assor-
tative mating and calls for future research using longitudi-
nal analysis (Xia et al. 2021). We use longitudinal data on 
phenotypes to control for phenotypes earlier in the relation-
ship and assess whether a partner’s genotype influences the 
change in ego’s phenotype over time. We believe we are the 
first to provide estimates for social genetic effects in health 
behaviors and outcomes while explicitly accounting for 
assortative mating.

We use data from the Health and Retirement Study (HRS) 
and the English Longitudinal Study of Ageing (ELSA). 
Both studies follow a nationally representative sample of 
adults aged 50 and older every two years. HRS does this for 
people in the United States since 1992 and ELSA for people 
in England since 2002. DNA samples have been collected 
in both studies, and if a participant has a partner, this part-
ner is automatically selected to participate in the study as 
well, even if he or she is younger than 50 years. We examine 
three outcomes for which extensive information on genetics 
is available and that are important indicators of a healthy 
lifestyle; namely BMI (Yengo et al. 2018b), as a measure 
of adiposity, and two measures of health behavior: smoking 
(cigarettes per day, CPD) (Liu et al. 2019), and the level 
of alcohol consumption (natural log of drinks per week left 
anchored at 1, DPW) (Liu et al. 2019). We start by examin-
ing partner similarity on a phenotypic and genotypic level 
for these outcomes. Recent findings show weak genetic 
similarity between partners for education, height, and BMI 
(Sebro et al. 2010; Domingue et al. 2014; Guo et al. 2014; 
Abdellaoui et al. 2015; Zoua et al. 2015; Conley et al. 2016; 
Hugh-jones et al. 2016; Robinson et al. 2017; Yengo et al. 
2018a), but to our knowledge no research examined similar-
ity in drinking and smoking behavior across the genome. 
We then build on the strength of the longitudinal design of 
the HRS and ELSA to achieve a strict control for assortative 
mating by conditioning on initial observed levels of health 
behavior of ego. Because men and women differ in healthy 
lifestyle and the social and genetic influences on health may 
be different for men and women (Short et al. 2013), we also 
include sex-stratified analyses.
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Methods and Materials

Data

The Health and Retirement Study (HRS) is a longitudinal 
household study that follows a nationally representative 
sample of adults aged 50 and older in the United States 
every two years since 1992 (Sonnega et al. 2014). The Eng-
lish Longitudinal Study of Ageing (ELSA) is a longitudi-
nal household study that follows a nationally representative 
sample of adults aged 50 and older in England every two 
years since 2002 (Steptoe et al. 2013). If a participant had a 
partner, this partner is automatically selected to participate 
in the study as well. We limited the sample to different-sex 
married/cohabiting couples of European descent where both 
partners had valid genomic data and excluded proxy inter-
views. Only couples of whom both partners were of Euro-
pean descent are included in the analysis because polygenic 
indexes were based on European GWAS and have reduced 
predictive power in other ancestries. We further excluded 
observations of couples in case one or both partners was no 
longer living independently, but for instance in a nursing 
home. We used listwise deletion of missing values on the 
main variables of interest (BMI/drinks per week/smoking, 
sex, age and educational level for both spouses). The HRS 
sample comprises years 1992–2018 and the ELSA sample 
years 2002–2019. For BMI, the analytical sample comprised 
59,325 observations from 9522 persons in 5879 couples in 
the HRS and 11,728 observations from 4311 persons in 2729 
couples in the ELSA. For drinks per week, the analytical 
sample comprised 52,023 observations from 9140 persons 
in 5584 couples in the HRS and 24,179 observations from 
4911 persons in 3264 couples in the ELSA. For smoking, 
the analytical sample comprised 60,029 observations from 
9546 persons in 5885 couples in the HRS and 25,740 obser-
vations from 4943 persons in 3311 couples in the ELSA. 
Note that the sample differs somewhat between outcomes 
(see Tables S1 and S2 in the supplementary material for 
details). This study was conducted with institutional review 
board approval from Utrecht University, the Netherlands.

Measures

All measurements are made for ego and partner. BMI (Body 
Mass Index) is measured by dividing weight in kilograms 
by length in meters squared. Drinking is measured by the 
number of alcoholic drinks per week (DPW). Smoking was 
measured by the number of cigarettes per day (CPD) and 
non-smokers were set to zero. We take the natural logarithm 
for DPW, left anchored at 1 (ln(y + 1)).

Genetic propensity for BMI/DPW/CPD is measured by 
the use of polygenic indexes (PGI). A PGI is the aggregation 

of many small genetic effects scattered across the genome 
on a phenotype. It is computed by weighting the alleles at 
the different loci across the genome with their association to 
the phenotype of interest, and then summing these weighted 
alleles. Information on the association between alleles and 
phenotypes is derived from recent large-scale publicly 
available GWAS (Yengo et al. 2018b; Liu et al. 2019) that 
did not overlap with the HRS/ELSA.

We used the polygenic index (PGI) for each outcome 
that was available in the public domain and that was created 
in an identical way for both HRS and ELSA to facilitate 
reproducibility and to maximize comparability. The PGIs 
were available through the Polygenic Index Repository or 
the HRS and/or ELSA studies (Ajnakina and Steptoe 2019; 
Banks et al. 2021; Becker et al. 2021; Ware et al. 2021). 
For BMI and DPW we used the single-trait PGIs from the 
repository (Becker et al. 2021). For CPD we used the PGI 
(Ajnakina and Steptoe 2019; Ware et al. 2021) based on 
the GSCAN GWAS (Genome-Wide Association Study) 
of smoking behavior (Liu et al. 2019), as it proved to be 
more predictive than the repository’s PGI in our analytical 
samples. The derivation of all the polygenic indices in the 
HRS and ELSA was identical. We used the first 20 principal 
components (PCs) for the partner to account for population 
stratification (Price et al. 2006; Becker et al. 2021; Ware et 
al. 2021). We also include analyses where we additionally 
control for the first 20 principal components of ego.

Analyses

We examine social genetic effects by estimating the effect 
of the partner’s PGI on ego’s phenotype (BMI/CPD/DPW) 
using random effect regression models controlling for ego’s 
first observed scores for each phenotype in the partnership 
(BMI/CPD/DPW respectively). For example, if ego’s phe-
notype is first observed in wave 2, then this first phenotype 
will be controlled for in the subsequent waves and ego will 
only be included in the analyses after wave 2. In addition, 
the analyses control for PCs of the partner, which provides a 
broad control for genetic similarity between partners. Indi-
viduals can occur as both ego and partner in the data, so 
each couple can occur twice at each wave (directed dyads). 
We adjust for repeated observations within individuals/cou-
ples over time by estimating a random intercept for dyads 
(directed). We use robust standard errors clustered on the 
household level based on sandwich estimators (White 1982) 
because husband and wife can both be ego and the part-
ner and some individuals have had more than 1 partner in 
the course of the study. We furthermore control for ego’s 
sex (which also captures the sex of the partner because we 
only include different-sex couples), both ego’s and partner’s 
age (linear and squared), sex-by-age interactions, and year 
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Results

How Similar are Partners?

Figure 1 shows there is considerable similarity at the phe-
notypic level in health behavior but there is a much lower 
similarity at the genetic level. Correlations for observed 
health behaviors between married/cohabiting partners 
were modest to large (HRS, BMI r = 0.23, DPW r = 0.48, 
and CPD r = 0.33; ELSA, BMI r = 0.20, DPW r = 0.50, and 
CPD r = 0.25). To examine genetic similarity, we examine 
the correlation between ego’s and partner’s PGIs for each 
of these three health behaviors and outcomes, controlling 
for partner’s and ego’s age and sex and ego’s 20 first prin-
cipal components. We first confirmed that the PGI were 
associated with their corresponding phenotypes. Standard-
ized estimates of ego’s PGI were largest for BMI (HRS, 
r = 0.35, p < 0.001; ELSA, r = 0.36, p < 0.001), then DWP 
(HRS, r = 0.11, p < 0.001; ELSA, r = 0.16, p < 0.001), 
and then CPD (HRS, r = 0.06, p < 0.001; ELSA, r = 0.06, 
p < 0.001; see also supplementary material). The genetic 
correlation between partners is insignificant for all three 
health outcomes in the ELSA, but is significant for BMI and 
CPD in the HRS (BMI, r = 0.06, p < 0.001; CPD, r = 0.04, 
p = 0.001). What is more, the estimates for these two genetic 
similarities are significantly different from what would be 
expected under phenotypic assortative mating (see theo-
retical genetic in Fig. 1). Hence, we find some evidence for 
genetic assortative mating in BMI and CPD, but only in the 
HRS (US) and not in the ELSA (UK).

Is the Partner’s Genome Associated with Health 
Behavior?

Estimates of social genetic effects of the partner are sum-
marized in Fig. 2 (detailed estimates are reported in supple-
mentary material Table S3). We show estimates separately 
for HRS and ELSA and we report combined meta-analytic 
estimates (inverse variance method) that maximize the 
statistical power. We report the effects of the partner PGI 
controlling for ego’s first observed scores for a phenotype 
(BMI/CPD/DPW respectively), thereby directly controlling 
for observed phenotypic selection. This approach should 
be seen as a conservative test of our hypothesis of social 
genetic effects. By conditioning on previous behavior, we 
are effectively examining inter-individual change in health 
behavior during the period of observation. And by using the 
HRS and ELSA data, we examine change for relatively old 
samples of couples who are in long-lasting relationships. 
Nevertheless, we observe positive social genetic effects of 
the partner on ego’s behavior for each of the three health 
outcomes.

of observation dummies and relationship length to capture 
secular trends and main demographic differences in health 
behavior. For each model, we include a version with and 
without controlling for ego’s own PGI and PCs. All models 
were also estimated for husbands and wives separately to 
investigate whether results were mainly driven by husbands 
influencing wives or vice versa.

We conducted sensitivity analyses to evaluate whether 
findings are affected by outliers in BMI (< 20 or > 40), 
heavy smokers (≥ 20 CPD), or heavy drinkers (≥ 28 drinks/
week in the ELSA and > 14 in the HRS, which is equiva-
lent to the top ~ 5% in the ELSA/HRS), and by excluding 
non-drinkers and non-smokers. In addition, we performed 
analyses in which we control for the baseline difference 
between partners in the phenotype of interest (BMI, drink-
ing, or smoking). The results of these analyses were not 
substantially different from the main analyses (see Figure 
S3 and Table S11 in the supplementary material for details). 
We also conducted analyses in which we interact the social 
genetic effects with the number of years between the first 
and the current ego phenotype. We find that this interaction 
is insignificant for all outcomes (Table S10 in the supple-
mentary material).

We repeat our social genetic effects analysis but for 
height as phenotype, as a negative control. We should not 
expect a social genetic effect for height because height is 
largely fixed at the time of partner choice, but there is assor-
tative mating on height (Stulp et al. 2017). Hence, if our 
analyses are successful at ruling out assortative mating – by 
conditioning on ego’s first observed phenotype – we should 
obtain a null result for height. The social genetic effect 
analysis for height thus presents a negative control to assess 
the validity of the results obtained for the other phenotypes 
(BMI/CPD/DPW). The results of this negative control anal-
ysis are reported in the supplementary material (Figure S4 
and Table S7) and indeed show a null result for height.

Our analyses on the association between the partner’s 
polygenic index and ego’s phenotype do not assume that the 
effect goes directly and only through the partner’s pheno-
type. At the same time, the partner’s phenotype is plausibly 
a main mechanism through which the partner’s polygenic 
index has an effect. We examine this via instrumental vari-
able (IV) analyses, in which the partner’s polygenic index 
(for smoking, drinking, and BMI) acts as an instrumental 
variable for the partner’s actual health behavior or outcome 
(smoking, drinking, and BMI). We also conduct multilevel 
multivariate analyses, in which data from the three differ-
ent phenotypes (smoking, drinking, and BMI) are com-
bined into one analysis per data source (HRS and ELSA). 
Finally, we conduct analyses using change scores, where 
the outcome variable is the difference between ego’s current 
behavior and the behavior at baseline.
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Fig. 2  Social genetic effects 
of the partner conditioning on 
initial behavior of ego. Effect 
of partner PGI net of one’s own 
initial level of each outcome for 
BMI (body mass index), DPW 
(drinks per week), and CPD 
(cigarettes per day) on associated 
outcomes (time-varying) with 
socio-demographic controls and 
PCs of the partner. We also show 
estimates additionally control-
ling for ego’s PGI and PCs. 
Outcomes are standardized as 
are the PGIs. The figures show 
the effect per data source (HRS 
and ELSA) and a meta-analytic 
effect that combines both data 
sources. CIs (95%) are robust to 
clustering within individuals and 
households

 

Fig. 1  Phenotypic and genetic similarity between partners.  Estimates 
and corresponding CIs (95%) of phenotypic and genetic similarity 
between partners for BMI (body mass index), DPW (drinks per week), 
and CPD (cigarettes per day). Phenotypic similarity is examined by the 
effect of partner phenotype on ego’s phenotype controlling for part-
ner’s and ego’s age and sex. Genetic similarity is examined by the 
effect of partner’s PGI on ego’s PGI controlling for partner’s and ego’s 
age and sex and ego’s 20 PCs. Outcomes are standardized as are the 

PGIs. Results are separated by dataset: HRS and ELSA. Meta-esti-
mates combing the results from HRS and ELSA are also included. The 
observed genetic similarity is compared to a theoretical genetic simi-
larity that can be expected based on the heritability of the outcome, the 
phenotypic similarity, and the ‘quality’ of the predictor (phenotypic 
correlation × squared effect of own PGI on own phenotype). Pheno-
typic CIs are robust to clustering within households
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IV analyses where the partner’s behavior is instrumented by 
the partner’s polygenic index. The results of the multilevel 
multivariate analyses (Table S12) and change score analyses 
(Table S9) corroborate our main analyses; we find evidence 
for social genetic effects, with generally larger effect sizes 
and smaller standard errors in the HRS than in the ELSA.

To put some perspective on the effect sizes of the esti-
mated social genetic effects, we compare the effect of 
partner’s PGI to the effect of ego’s own PGI and to ego’s 
and partner’s education level. Again, we use random effect 
regression models controlling for ego’s first observed scores 
for each phenotype (BMI/CPD/DPW respectively) and sex, 
age and age2 of both partners, sex interacted with age and 
age2, and relationship duration (Fig. 3, full details in supple-
mentary material Table S6). Previous research shows that 
education is strongly linked to BMI, CPD, and DPW (more 
educated people tend to be less overweight, to smoke less, 
but to drink more; Cutler and Lleras-Muney 2010; Dupre 
2008; Monden 2007; Nilsen et al. 2012; Pampel et al. 
2015), making it a useful additional benchmark for assess-
ing (absolute) effect sizes. For BMI, we find that the social 
genetic effect is about one-third of the direct effect of one’s 
own PGI on BMI. The social genetic effect is about two-
thirds of the estimate for ego’s and the partner’s education 
level. For CPD, the social genetic effect is on par with the 
direct effect of one’s own PGI and similar to the estimate 
for one’s own and partner’s education. For DPW, the social 
genetic effect is about one-half of the direct effect of one’s 
own PGI. The size of the social genetic effect is about a 
quarter of the effect of ego’s and partner’s education level. 

When we examine effects per data source (HRS and 
ELSA), we see that the point estimates are very similar 
between the HRS and ELSA, but the confidence intervals 
are much narrower in the HRS than in the ELSA. The HRS 
has more participants and a longer period of observation 
compared to ELSA (see supplementary material for details), 
which increases statistical power compared to ELSA. In 
all but one model (CPD without controlling for ego PGI), 
the social genetic effects are significant in the HRS. In the 
ELSA, all effects are also in the expected positive direction, 
although the smaller number of participants and shorter 
observation window leads to lower power to detect signifi-
cant effects. Most importantly, the meta-analytic estimates 
combining the data from the HRS and ELSA show that the 
social genetic effects are significant for all three health out-
comes, regardless of whether we control for ego’s PGI or 
not. Hence, we find robust evidence for social genetic effects 
when we combine data sources to obtain sufficient power. In 
contrast, our negative control – the social genetic effect for 
height – shows a null effect even when we combine data 
sources (Figure S4). Sex-stratified analyses are provided 
in the supplementary material (Figure S2 and Table S4-5). 
They provide little evidence for differences in social genetic 
effects by sex. Only for CPD, there is some evidence sug-
gesting stronger social genetic effects for men than women.

The results of the IV analyses suggest that the partner’s 
health behaviors and outcomes are a plausible mechanism 
for our observed social genetic effects (Table S8). That is, 
whenever we observe a significant social genetic effect in 
our main analyses, we also observe a significant effect in the 

Fig. 3  Effect size comparison 
of social genetic effects, direct 
genetic effects, and education 
effects. Estimates of direct 
genetic (PGI ego), social genetic 
(PGI spouse), and education 
effects of ego (Edu ego) and 
partner (Edu spouse) on BMI 
(body mass index), DPW (drinks 
per week), and CPD (cigarettes 
per day). Each effect is estimated 
from a separate model control-
ling for ego’s initial level of each 
outcome and socio-demographic 
controls. Note that the PGI 
spousal estimates are identical 
to those of Fig. 2 (PGI spouse, 
not controlled for ego’s PGI). 
Outcomes are standardized as 
are the PGIs. The figure shows 
the effects per data source (HRS 
and ELSA) and a meta-analytic 
effect that combines both data 
sources (inverse variance 
method). CIs (95%) are robust to 
clustering within individuals and 
households
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contrast to prior research on social genetic effects, we used 
longitudinal data to control for phenotypic assortative mat-
ing and assess whether a partner’s genotype influences the 
change in ego’s phenotype over time. In doing so, we pro-
vided estimates for social genetic effects in health behaviors 
and outcomes while explicitly accounting for assortative 
mating.

Our paper revealed genetic evidence of social contagion 
within couples, but has some limitations that we hope future 
research will confront. First, the analyses were based on the 
HRS and ELSA, which are samples of older adults who may 
be set in their ways and hard to influence in their behavior. 
Indeed, evidence suggests that convergence between part-
ners in smoking and drinking is most evident during the 
period before marriage/cohabitation, although convergence 
in physical activity is observed throughout life (Ask et al. 
2012). We suspect that social genetic effects will be larger 
for younger populations, but this remains to be studied. 
Our results may thus be seen as conservative estimates for 
social genetic effects. Although inter-partner influences are 
potentially weakened among older adults, they are still often 
present and detectable. Studies find that health behaviors 
of one partner still influence changes in health behaviors 
of the other partner among middle-aged and older adults 
(Hoppmann and Gerstorf 2009; Windle and Windle 2014; 
Cobb et al. 2016; Ukai et al. 2022). In this regard, our results 
are consistent with the literature showing small but ongoing 
inter-partner health influences in older adults who have been 
together for relatively long periods of time.

Indeed, aging brings particular and new health issues 
that can lead to ongoing partner influence. For example, if 
a partner develops lung problems due to prolonged smok-
ing and has to stop smoking on doctor’s orders, this might 
affect the smoking behavior of the other partner (e.g., out 
of consideration for one’s partner’s lung problems). Similar 
mechanisms can be thought of for BMI and drinking. For 
example, if one partner stops drinking because of liver dam-
age accumulated over the years, this might cause the other 
partner to stop as well; and if one partner starts exercising 
because of weight gained over the years, this might induce 
the other partner to start exercising. Moreover, nowadays 
there is more information on, and awareness of, the nega-
tive effects of unhealthy lifestyles compared to the previous 
decades (Stead et al. 2019). This means that older couples 
(some of whom entered the sample in the 90s) over the years 
may have become more aware of the potential negative con-
sequences of unhealthy lifestyles, giving them potential rea-
sons to change their behavior even at an older age.

Over time, couples whose lifestyles deviate from one 
another may be more likely to separate/divorce (Torvik et al. 
2013, 2015) and were less likely to enter our sample. More-
over, partners who are less aligned with each other may be 

In sum, the relative effect size of the social genetic effect is 
highest for CPD, but is also meaningful for BMI and DPW. 
For all comparisons we find that the social genetic effect 
is substantial; ranging from a quarter in absolute size as a 
minimum to being of equal size as that of the direct effect 
of one’s own genes, one’s own education, or the partner’s 
education.

Discussion

We examined genetic similarity and social genetic effects 
among married and cohabiting partners for three widely 
studied health behaviors and outcomes (BMI, drinking, and 
smoking) using genome-wide data of couples in the HRS 
and ELSA, large nationally representative samples of the 
American population (HRS) and the English population 
(ELSA) aged 50 and older. We confirm previous research 
showing the existence of limited genetic similarity between 
partners for BMI (Conley et al. 2016) and we provide novel 
estimates of partner genetic similarity for drinking and 
smoking behavior. As expected, phenotypic similarity is 
much higher than genetic similarity. We find some evidence 
for genetic assortative mating in BMI and CPD, but only 
in the HRS. For drinking, we find no evidence for genetic 
assortative mating neither in the HRS nor in the ELSA. 
We do observe robust social genetic effects, which offers 
an alternative genetically rooted explanation for the large 
phenotypic partner similarity in healthy lifestyle. People are 
more overweight, drink more, and smoke more, if they have 
partners with higher polygenic indexes for these behaviors 
and outcomes.

Social genetic effects are generally lower in magnitude 
than direct genetic effects and education effects based on 
similar statistical models, but not much lower. For smoking, 
social genetic effects are on par with direct genetic effects. 
In general, the difference between direct genetic effects and 
social genetic effects is smaller for smoking and drinking 
than for BMI, which provides some suggestive evidence 
that substance use is driven relatively more so by social con-
tagion than BMI. This is in line with studies suggesting that 
substance use is often a social activity with strong influences 
from one’s social network and partners in particular (Coo-
per et al. 2015; Votaw and Witkiewitz 2021). Altogether, our 
results suggest an important role for the partner’s genome.

Social genetic effects form a novel way to study the part-
ner’s influence and the couple environment for health. This 
approach improves upon the reflection problem and reverse 
causality that hampers studies of social influence because 
the partner’s genotype, as opposed to his/her phenotype, 
is immune to influences from the couple environment and 
direct influences of ego once a partnership has formed. In 
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indirect measure of parental genotypes, so the social genetic 
effects of the partner may also reflect possible social genetic 
effects of parents-in-law (through socialization). However, 
maybe such effects should not be ruled out, because inter-
preting social genetic effects as the effects of fixed predispo-
sitions of a partner on ego would include such socialization 
effects. Finally, we studied the three health behaviors in iso-
lation and did not examine cross-trait effects. It is plausible 
that there may be cross-trait social genetic effects given 
large phenotypic and genotypic correlations between BMI, 
drinking, and smoking (Liu et al. 2019) and the possibil-
ity that genes have ‘pleiotropic effects’ (having effects on 
multiple phenotypes; Lee et al. 2012; Visscher et al. 2017). 
A suggestion to study social influence effects using genes 
as instrumental variables forms another approach that may 
give insight here, but suffers from stricter assumptions 
(O’Malley et al. 2014).

We focused on health behavior in married and cohabiting 
relationships. There is no reason why social genetic effects 
would be limited to this tie only. The environments (work-
sites, neighborhoods, schools, households, etc.) we navigate 
in life are populated by others who shape and mold these 
environments. These environments can be seen as genetic 
landscapes, which may give insights into the role of col-
leagues (Christakis and Fowler 2013), neighbors (Daw et 
al. 2014), and other household members (Guo et al. 2015; 
Rauscher et al. 2015). Moreover, besides health behaviors, 
other phenotypes could be susceptible to social genetic 
effects, for instance, related to mental health and well-being 
(Okbay et al. 2016).

The results contribute to a broader understanding of how 
health behaviors are molded and highlight the importance 
of people’s social surroundings. Why do some people keep 
smoking despite widespread knowledge of its harmful 
effects? The partner is likely important, but is that because 
of health selection which clusters health and wealth, 
because of shared environmental influences that affect both 
partners, or because partners reinforce each other and keep 
unhealthy behavior locked in place? Our results suggest 
that this last reason is likely, and suggests an important role 
of the partner. Furthermore, this study has illustrated how 
genetic variation within and between couples can help to 
overcome difficulties in making causal inferences regarding 
the role of the partner for health. Future applications could 
widen the evidential base of health prevention programs 
and/or medical care, as positive partner influence may lead 
to (unintended) positive spill-over effects on partners. These 
findings highlight the potential of targeting health interven-
tions at couples, at partners of people who have already 
been identified as being at high risk, and at people most sus-
ceptible to social influence of the partner.

less likely to both (continue to) participate in long-running 
studies like the HRS and ELSA, and as such cannot be 
included in analyses of partner influence. These are inherent 
difficulties in studying inter-partner influence. Two of our 
results shed light on the severity of this issue to some extent. 
First, we can compare the analyses with and without con-
trolling for ego’s own polygenic index. By including ego’s 
own polygenic index, we require couples in which both 
partners participated in the genetic part of the study. With-
out including ego’s own polygenic index, we can include 
couples in which only one of the two partners participated 
in the genetic part of the study. In Fig. 2, we see that the 
significance and magnitude of our observed social genetic 
effects do not appreciably differ between analyses with and 
without controls for ego’s polygenic index. This provides 
some suggestive indication that we still find evidence for 
social genetic effects in potentially less aligned couples (in 
which only one partner participated in the genetic part of 
the study). Second, we found that observed social genetic 
effects remain when controlling for the baseline difference 
between partners in the phenotype of interest (BMI, drink-
ing, or smoking). Although these analyses cannot conclu-
sively show that social genetic effects would still appear in 
less aligned couples who were left out due to missing data, 
they provide some reassurance.

In addition, the results may refer to a relatively healthy 
subset of couples (Domingue et al. 2017), as we limited 
the sample to couples where at least one individual was 
genotyped, but genotyping took place took after the stud-
ies commenced. This means that the individuals (and the 
partnership) had to survive till that time. Second, we used 
the most up-to-date GWAS to create polygenic indexes for 
BMI, drinking, and smoking (Yengo et al. 2018b; Liu et al. 
2019; Becker et al. 2021). These captured a large fraction of 
the SNP-based heritability for the studied health behaviors, 
but still a part is missing. PGIs are likely to become more 
predictive as larger GWAS come out and so the potential to 
detect social genetic effects will increase.

We find positive social genetic effects for all three dif-
ferent health behaviors, which supports the notion of social 
contagion of healthy lifestyle among couples, but we largely 
refrained from making statements about differences in the 
partner’s influence between specific behaviors. It would be 
difficult to do so, as the size of a social genetic effect not 
only depends on social factors, but also on the heritability 
of an outcome and how well we can estimate the genetic 
influences and how these differ among the three outcomes. 
Third, we limited the analyses to individuals of European 
descent because the polygenic indexes were based on 
GWAS of people of European descent and are therefore less 
predictive in other ancestries. This choice limits the general-
izability of our findings. Fourth, one’s PGI can be seen as an 
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as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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