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Abstract
This study introduces and illustrates the potential of an integrated multi-omics approach in investigating the underlying 
biology of complex traits such as childhood aggressive behavior. In 645 twins (cases = 42%), we trained single- and integra-
tive multi-omics models to identify biomarkers for subclinical aggression and investigated the connections among these 
biomarkers. Our data comprised transmitted and two non-transmitted polygenic scores (PGSs) for 15 traits, 78,772 CpGs, 
and 90 metabolites. The single-omics models selected 31 PGSs, 1614 CpGs, and 90 metabolites, and the multi-omics 
model comprised 44 PGSs, 746 CpGs, and 90 metabolites. The predictive accuracy for these models in the test (N = 277, 
cases = 42%) and independent clinical data (N = 142, cases = 45%) ranged from 43 to 57%. We observed strong connections 
between DNA methylation, amino acids, and parental non-transmitted PGSs for ADHD, Autism Spectrum Disorder, intel-
ligence, smoking initiation, and self-reported health. Aggression-related omics traits link to known and novel risk factors, 
including inflammation, carcinogens, and smoking.
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Introduction

Omics studies can lead to an improved understanding of 
the biological mechanisms contributing to mental health 
and disorders (Jakovljevic and Jakovljevic 2019). Different 

omics technologies, e.g., genomics, epigenomics, tran-
scriptomics, or metabolomics, assess different aspects of 
the development and progression of complex traits and 
disorders. The analysis of a single omics layer provides a 
unique, but likely incomplete, picture of the underlying biol-
ogy, whereas studies combining multiple omics layers may 
lead to more comprehensive insights into human biology, 
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because the different omics layers are interrelated and inter-
act (Wörheide et al. 2021). Multi-omics analyses can aid 
in biomarker discovery, diagnosis, patient classification or 
subtyping, evaluation of treatment response and uncovering 
novel insights into disease biology (Pinu et al. 2019; Subra-
manian et al. 2020).

Here, we present an integrative multi-omics analysis 
of childhood aggressive behavior. Human aggression is a 
complex and heterogenous behavior encompassing hostile, 
destructive, or injurious behavior aimed at causing physical 
or emotional harm to others (Anderson and Bushman 2002; 
Siever 2008). In several disruptive behavioral disorders, such 
as conduct and oppositional defiant disorders or intermittent 
explosive disorder, inappropriate levels of aggressive behav-
ior are observed (Radwan and Coccaro 2020). In humans, 
high co-occurrence with other social, behavioral, and emo-
tional problems is reported (Bartels et al. 2018; Whipp et al. 
2021a). Childhood aggressive behavior puts a burden on 
children and their parents/caretakers, and is predictive of 
multiple adverse outcomes later in life, such as antisocial 
personality disorder (Whipp et al. 2019), criminal convic-
tions (Kassing et al. 2019), lower educational attainment 
(Vuoksimaa et al. 2020), or negative interpersonal relation-
ships (Fergusson et al. 2005).

Large-scale genome-wide association (GWA) stud-
ies on aggression have not yet identified significant single 
nucleotide polymorphisms (SNPs) (Odintsova et al. 2019; 
Ip et al. 2021). Gene-based analysis for childhood aggres-
sion yielded three significantly associated genes (ST3GAL3, 
PCDH7, and IPO13) (Ip et al. 2021). The polygenic score 
for childhood aggression does not only significantly explain 
childhood aggressive behavior at age 7 (Ip et al. 2021), but 
it also associated with aggression at age 12 to 41 in a Dutch 
sample and age 38 to 48 in an Australian sample (van der 
Laan et al. 2021). Small-scale epigenetic studies (sample 
size range: 41–260) showed that DNA methylation differ-
ences in various tissues are associated with aggression and 
related traits in children and adults (Guillemin et al. 2014; 
Cecil et al. 2018b, a; Mitjans et al. 2019). The first large-
scale epigenome-wide association study (EWAS) meta-anal-
ysis across child and adult cohorts (N = 15,324) reported 
13 significant sites in peripheral blood for broad aggression 
across the lifespan (van Dongen et al. 2021). Metabolomics 
studies (sample size range: 77–725) detected plasma and 
serum metabolites associated with aggression and related 
traits in adults (Gulsun et al. 2016; Chen et al. 2020; Whipp 
et al. 2021b). A study in 1347 twins and 183 clinical cases 
found significant associations of urinary metabolites with 
childhood aggression (Hagenbeek et al. 2020). These single 
omics approaches hint at potentially important biological 
pathways for human aggression, with most of these findings 
awaiting replication.

In this study, we aim to integrate multiple omics layers to 
construct a multi-omics biomarker panel for childhood aggres-
sive behavior and explore the correlations among the omics 
traits included in this panel. We collected biological samples in 
a subproject of ACTION (Aggression in Children: Unraveling 
gene-environment interplay to inform Treatment and Interven-
tiON strategies): the ACTION Biomarker Study (Boomsma 
2015; Bartels et  al. 2018; Hagenbeek et  al. 2020). The 
ACTION Biomarker Study comprised a cohort of twins from 
the Netherlands Twin Register (NTR) (Ligthart et al. 2019) 
and a clinical cohort of children referred to a youth psychiatry 
clinic (LUMC-Curium, the Netherlands). The genome-wide 
SNP and DNA methylation (Illumina EPIC 850K array) data, 
and the urinary amines and organic acids as measured in these 
cohorts were previously included in a genome-wide genetic 
and epigenetic association study and a metabolomics study of 
(childhood) aggression (Hagenbeek et al. 2020; van Dongen 
et al. 2021; Ip et al. 2021). We expand on these single-omics 
studies by integrating these data with a third metabolomics 
dataset, focusing on urinary steroid hormones. We calculated 
transmitted and non-transmitted polygenic scores (PGSs) 
for childhood aggression and a series of genetically corre-
lated traits, such as Attention-Deficit Hyperactivity Disorder 
(ADHD), smoking, and intelligence. The non-transmitted 
PGSs assess the indirect effects of genetic variants that were 
not transmitted from parents to offspring, i.e., genetic nurture, 
and capture the effects of the environment created by parents 
beyond the genetic intergeneration transmission (Bates et al. 
2018; Kong et al. 2018). Thus, if alleles not transmitted from 
parents to offspring affect offspring outcomes, this indicates 
that the offspring’s home-environment is influenced by paren-
tental genotypes, and the home-environment in turn affects 
offspring outcomes (Branje et al. 2020).

We employed an analytical design comprising three 
phases: (1) single-omics analyses; (2) pairwise cross-omics 
analyses; and (3) multi-omics analyses (Fig. 1) (Duruflé 
et al. 2020). First, we built single-omics biomarker panels 
in the twin cohort, with 70% of the twin data for model 
training, 30% of the twin data for model testing, and an inde-
pendent clinical cohort for follow-up. Second, we examined 
the pairwise cross-omics connections of those omics traits 
selected by the single-omics models in the training data. 
Third, using the same data split for model training and test-
ing, we compared three multi-omics models, with different 
assumptions on the correlations among the omics traits and 
describe the multi-omics connections of the selected omics 
traits.
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Materials and Methods

Study Population and Procedures

Participants included 1494 twins (747 complete pairs) from 
the Netherlands Twin Register (Ligthart et al. 2019), and 
189 children referred to the LUMC-Curium youth psychia-
try clinic in the Netherlands that took part in the ACTION 
Biomarker Study (Aggression in Children: Unraveling gene-
environment interplay to inform Treatment and InterventiON 
strategies) (Boomsma 2015; Bartels et al. 2018; Hagenbeek 
et al. 2020). Both cohorts collected first-morning urine sam-
ples and buccal-cell swabs with standardized protocols (for 
details, see Online Appendix A). In the twin cohort, we also 
collected buccal-cell swabs from parents and siblings of the 
twins. The current study included participants if they had 
aggression status, complete omics data for all three omics 

layers, and all relevant covariates (Table S1), as the current 
software does not allow for missing data. Parents provided 
written informed consent for their children and twin parents 
provided written informed consent for their own participa-
tion. Study approval was obtained from the Central Ethics 
Committee on Research Involving Human Subjects of the 
VU University Medical Center, Amsterdam (NTR 25th of 
May 2007 and ACTION 2013/41 and 2014.252), an Institu-
tional Review Board certified by the U.S. Office of Human 
Research Protections (IRB number IRB00002991 under 
Federal-wide Assurance- FWA00017598; IRB/institute 
codes), and the Medical Ethical Committee of Leiden Uni-
versity Medical Center (B17.031, B17.032 and B17.040).

Study Phase Analyses

1. Single-omics

Univariate:
• Polygenic score analysis

Mul�variate – model training:
• Principal Component Analysis (PCA)
• Par�al Least Squares Discriminant Analysis (PLS-DA)
• Sparse Par�al Least Squares Discriminant Analysis

(sPLS-DA)

Mul�variate – model tes�ng:
• Predict out-of-sample case-control status
• Receiver Opera�ng Characteris�c (ROC) analysis

Design

Training data:
• 70% twin cohort (N = 645)
• Cases: 271 (42.0%)
• Controls: 374 (58.0%)

Test data:
• 30% twin cohort (N = 277)
• Cases: 117 (42.2%)
• Controls: 160 (57.8%)

Clinical data:
• Clinical cohort (N = 142)
• Cases: 64 (45.1%)
• Controls: 78 (54.9%)

2. Pairwise cross-omics

All omics variables:
• Par�al Least Squares (PLS) analysis
Selected omics variables:
• Par�al Least Squares (PLS) analysis
• Hierarchical clustering

Training data:
• 70% twin cohort (N = 645)

Model training:
• Mul�-block Par�al Least Squares Discriminant 

Analysis (MB-PLS-DA)
• Mul�-block sparse Par�al Least Squares

Discriminant Analysis (MB-sPLS-DA)
3. Mul�-omics

Model tes�ng:
• Predict out-of-sample case-control status
• Receiver Opera�ng Characteris�c (ROC) analysis

Training data:
• 70% twin cohort (N = 645)
• Cases: 271 (42.0%)
• Controls: 374 (58.0%)

Test data:
• 30% twin cohort (N = 277)
• Cases: 117 (42.2%)
• Controls: 160 (57.8%)

Clinical data:
• Clinical cohort (N = 142)
• Cases: 64 (45.1%)
• Controls: 78 (54.9%)

Fig. 1   Overview of the biomarker identification approach for child-
hood aggression—details of statistical analyses and data included in 
each analysis. We employed an analytical design comprising three 
phases: (1) single-omics analyses; (2) pairwise cross-omics analy-
ses; and (3) multi-omics analyses. First, we performed univariate 
polygenic score (PGS) analysis in 70% of the twin data and built 
multivariate single-omics biomarker panels in the twin cohort, with 
70% of the twin data for model training (training data), 30% of the 

twin data and the clinical cohort for model testing (test data). Sec-
ond, we examined the overall pairwise cross-omics correlations and 
the pairwise correlations of those omics variables selected by the 
single-omics models in the training data. Third, using the same data, 
we compared three multi-omics models, with different assumptions 
of the correlations among the omics blocks, and describe the multi-
omics relationships of the selected omics variables. We offer the ana-
lytical details in the “Materials and methods” section
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Aggressive Behavior

Parents and teachers rated aggressive behavior on the 
Aggressive Behavior syndrome scale of the Achenbach 
System of Empirically Based Assessment (ASEBA) Child 
Behavior Checklist (CBCL) or Teacher Report Form 
(TRF) (Achenbach et al. 2017). We have described selec-
tion and definition of aggression cases and controls previ-
ously (Hagenbeek et al. 2020). In brief, we selected twin 
pairs based on concordance (case-case or control-control) 
and discordance (case–control pairs) for mother- (93%) or 
teacher-rated (7%) aggressive behavior at ages 3, 7, and/or 
10 years. We matched concordant control pairs on postal 
code to the case-case and case–control pairs, and collec-
tion of biological samples within regions in the Netherlands 
was around the same time. Cases were defined by mother- 
or teacher-rated sex- and age-specific T-scores of 65 or 
higher (subclinical levels), or on mother-rated age-specific 
thresholds on the item scores at age 3 (≥ 13), age 7 (≥ 5), 
or age 10 (≥ 4) (N = 388, Table S1). We denoted individu-
als with scores below these thresholds as controls (N = 534, 
Table S1). In the clinical cohort, children with a parent-rated 
sex-specific T-score of ≥ 70 (clinical levels) were classified 
as cases (N = 64), and children with T-scores of < 65 were 
classified as low scoring controls (N = 78, Table S1). We 
excluded children with T-scores in the subclinical range 
(T-scores of ≥ 65 and < 70) from this study (N = 35).

Omics Measurements

Detailed information on omics measurements is included in 
Online Appendix B. Genotyping was performed on Affym-
etrix Axiom or Illumina GSA arrays (Ehli et al. 2017; Beck 
et al. 2019), and genome-wide SNP data were available for 
3334 participants, including 1702 parents and siblings of 
twins (AXIOM = 909, GSA = 2,425). Transmitted and two 
non-transmitted polygenetic scores (PGS) were calculated 
for childhood aggression and 14 other traits that showed a 
significant (p < 0.02) genetic correlation of ≤ − 0.40 or ≥ 0.40 
with childhood aggression (Ip et al. 2021) (Table 1). Thus, in 
total we calculated 45 PGSs: a transmitted, non-transmitted 
maternal, and non-transmitted paternal PGS for each trait. 
The effects of sex, age at biological sample collection, geno-
typing platform, and the first 10 genetic principal compo-
nents (PCs) were regressed on the standardized PGSs and 
we included residuals in the analyses.

Genome-wide DNA methylation was measured on the 
Infinium MethylationEPIC BeadChip Kit [Illumina, San 
Diego, CA, USA (Moran et al. 2016)]. Quality Control 
(QC) and normalization were carried out with pipelines 
developed by the Biobank-based Integrative Omics Study 
(BIOS) consortium (Sinke et al. 2019). From the 787,711 
autosomal methylation probes that survived QC, the top 10% 

most variable probes were included in the analyses (Data 
S1). Residual methylation levels were obtained by regressing 
the effects of sex, age, percentages of epithelial and natural 
killer cells, EPIC array row, and bisulfite sample plate, from 
the methylation β-values.

Urinary metabolomics data were generated on: (1) a liq-
uid chromatography mass spectrometry (LC–MS) platform 
targeting amines; (2) a LC–MS platform targeting steroid 
hormones; and (3) a gas chromatography (GC) MS plat-
form targeting organic acids. We excluded metabolites with 
a relative standard deviation of the QC samples larger than 
15% and retain 60 amines, 10 steroids, and 20 organic acids 
in our analyses. After QC, we normalized metabolite levels 
to the sample-median and inverse normal rank transformed. 
We analyzed residuals obtained by regressing the effects 
of sex and age on the normalized and transformed urinary 
metabolites.

Statistical Analyses

To define multi-omics biomarker panels capable of discrimi-
nating between cases and controls and explore the connec-
tions among the omics traits included in these panels, we 
employed an analytical design comprising three phases: (1) 
single-omics analyses; (2) pairwise cross-omics analyses; 
and (3) multi-omics analyses (Fig. 1). To avoid overfitting 
of the single- and multi-omics models, we randomly split the 
twin sample at the twin pair level into two subsets: 70% of 
the data for model training (training data), and 30% of the 
data for model testing (test data; Table 2). The clinical valid-
ity of the final single- and multi-omics models was evaluated 
in the clinical cohort (Table 2). We carried analyses out in 
the mixOmics R package (version 6.12.1) implemented in 
the R programming language 2020 (version 4.0.2) (R Core 
Team; Rohart et al. 2017).

Phase 1: Single‑Omics Analyses

Univariate Polygenic Score Analyses  In the training data, we 
first associated the transmitted- and non-transmitted PGSs 
with childhood aggression through generalized estimating 
equation (GEE) models. GEE models tested the association 
of each transmitted and non-transmitted PGS separately 
on the continuous mother-rated sum scores of the ASEBA 
CBCL Aggressive Behavior syndrome scale as assessed at 
the time of biological sample collection. All models included 
sex, age, genotype array, and the first 10 genetic principal 
components as covariates. We corrected for the correla-
tion structure within families by using the “exchangeable” 
correlation structure, obtaining robust variance estimators 
(Rogers and Stoner 2016). A False Discovery Rate (FDR) 
of 5% for 45 PGSs was used to correct for multiple testing 
(p.adjust function in R), setting the significance threshold to 
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q ≤ 0.05, i.e., 5% of the significant results will be false posi-
tives (Benjamini and Hochberg 1995).

Multivariate Single‑Omics Models  To get a first insight 
into the dimensionality of the metabolomics data (90 vari-

ables), DNA methylation data (78,772 variables), and the 
PGSs (45 variables), we ran Principal Component Analy-
sis (PCA) within each omics block in the training data 
(Table S2). To assess the ability of each of the three omics 
layers to correctly classify aggression status, we applied 

Table 1   Overview of the discovery genome-wide association studies to calculate polygenetic scores

a In the (supplementary) tables and figures childhood aggression is abbreviated as “aggression”, Attention-Deficit Hyperactivity Disorder  as 
"ADHD", Major Depressive Disorder as "MDD, Autism Spectrum Disorder as "Autism", Educational Attainment as "EA", and wellbeing spec-
trum as "wellbeing"

Trait a N discovery GWA​ Reference Source original summary statistics

Childhood aggression 151,741 Ip et al 2021 Summary statistics obtained from 
authors

Attention-deficit hyperactivity 
disorder

20,183 cases & 35,191 controls Demontis et al 2019 http://​ipsych.​au.​dk/​downl​oads/​data-​
downl​oad-​agree​ment-​adhd-​europ​
ean-​ances​try-​gwas-​june-​2017

Major depressive disorder 135,458 cases & 344,901 controls Wray et al 2018 https://​www.​med.​unc.​edu/​pgc/​resul​
ts-​and-​downl​oads/

Autism spectrum disorder 18,381 cases & 27,969 controls Grove et al 2019 https://​www.​med.​unc.​edu/​pgc/​resul​
ts-​and-​downl​oads/

Loneliness 355,583 http://​www.​neale​lab.​is/​uk-​bioba​
nk/

https://​www.​dropb​ox.​com/s/​nf4jl​
3mdpp​u1ng8/​2020.​gwas.​imput​
ed_​v3.​both_​sexes.​tsv.​bgz?​dl=0

Insomnia 1,331,010 Jansen et al 2019 https://​ctg.​cncr.​nl/​docum​ents/​
p1651/​Insom​nia_​sumst​ats_​Janse​
netal.​txt.​gz

Self-reported health 359,681 http://​www.​neale​lab.​is/​uk-​bioba​
nk/

https://​www.​dropb​ox.​com/s/​aawh0​
7hlhl​dbckc/​2178.​gwas.​imput​ed_​
v3.​both_​sexes.​tsv.​bgz?​dl=0

Smoking initiation (Ever/never 
smoked)

1,232,091 Liu et al 2019 https://​conse​rvancy.​umn.​edu/​bitst​
ream/​handle/​11299/​201564/​
Smoki​ngIni​tiati​on.​txt.​gz?​seque​
nce=​27&​isAll​owed=y

Age of smoking initiation 94,891 Watanabe et al 2019 https://​atlas.​ctglab.​nl/​ukb2_​sumst​
ats/f.​2867.0.​0_​res.​EUR.​sumst​ats.​
MACfi​lt.​txt.​gz

Cigarettes per day 37,334 Liu et al 2019 https://​conse​rvancy.​umn.​edu/​bitst​
ream/​handle/​11299/​201564/​Cigar​
ettes​PerDay.​txt.​gz?​seque​nce=​
17&​isAll​owed=y

Childhood IQ 17,989 Benyamin et al 2014 http://​ssgac.​org/​docum​ents/​CHIC_​
Summa​ry_​Benya​min20​14.​txt.​gz

Educational attainment 1,131,881 Lee et al 2018 https://​www.​dropb​ox.​com/s/​ho58e​
9jmyt​mpaf8/​GWAS_​EA_​excl2​
3andMe.​txt?​dl=0

Age at first birth 251,151 Barban et al 2016 http://​socio​genome.​com/​mater​ial/​
GWASr​esults/​AgeFi​rstBi​rth_​
Pooled.​txt.​gz

Wellbeing spectrum 2,370,390 Baselmans et al 2019 https://​surfd​rive.​surf.​nl/​files/​index.​
php/s/​Ow1qC​DpFT4​21ZOO/​
downl​oad?​path=%​2FMul​tivar​
iate_​GWAMA_​sumst​ats%​2FN_​
GWAMA​&​files=N_​GWAMA_​
WBspe​ctrum_​no23a​ndME.​txt.​gz

Intelligence 269,867 Savage et al 2018 https://​ctg.​cncr.​nl/​docum​ents/​
p1651/​Savag​eJans​en_​IntMe​ta_​
sumst​ats.​zip

http://ipsych.au.dk/downloads/data-download-agreement-adhd-european-ancestry-gwas-june-2017
http://ipsych.au.dk/downloads/data-download-agreement-adhd-european-ancestry-gwas-june-2017
http://ipsych.au.dk/downloads/data-download-agreement-adhd-european-ancestry-gwas-june-2017
https://www.med.unc.edu/pgc/results-and-downloads/
https://www.med.unc.edu/pgc/results-and-downloads/
https://www.med.unc.edu/pgc/results-and-downloads/
https://www.med.unc.edu/pgc/results-and-downloads/
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/nf4jl3mdppu1ng8/2020.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/nf4jl3mdppu1ng8/2020.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/nf4jl3mdppu1ng8/2020.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://ctg.cncr.nl/documents/p1651/Insomnia_sumstats_Jansenetal.txt.gz
https://ctg.cncr.nl/documents/p1651/Insomnia_sumstats_Jansenetal.txt.gz
https://ctg.cncr.nl/documents/p1651/Insomnia_sumstats_Jansenetal.txt.gz
http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.dropbox.com/s/aawh07hlhldbckc/2178.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/aawh07hlhldbckc/2178.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://www.dropbox.com/s/aawh07hlhldbckc/2178.gwas.imputed_v3.both_sexes.tsv.bgz?dl=0
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz?sequence=27&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz?sequence=27&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz?sequence=27&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/SmokingInitiation.txt.gz?sequence=27&isAllowed=y
https://atlas.ctglab.nl/ukb2_sumstats/f.2867.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.2867.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://atlas.ctglab.nl/ukb2_sumstats/f.2867.0.0_res.EUR.sumstats.MACfilt.txt.gz
https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.txt.gz?sequence=17&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.txt.gz?sequence=17&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.txt.gz?sequence=17&isAllowed=y
https://conservancy.umn.edu/bitstream/handle/11299/201564/CigarettesPerDay.txt.gz?sequence=17&isAllowed=y
http://ssgac.org/documents/CHIC_Summary_Benyamin2014.txt.gz
http://ssgac.org/documents/CHIC_Summary_Benyamin2014.txt.gz
https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA_excl23andMe.txt?dl=0
https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA_excl23andMe.txt?dl=0
https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA_excl23andMe.txt?dl=0
http://sociogenome.com/material/GWASresults/AgeFirstBirth_Pooled.txt.gz
http://sociogenome.com/material/GWASresults/AgeFirstBirth_Pooled.txt.gz
http://sociogenome.com/material/GWASresults/AgeFirstBirth_Pooled.txt.gz
https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum_no23andME.txt.gz
https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum_no23andME.txt.gz
https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum_no23andME.txt.gz
https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum_no23andME.txt.gz
https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum_no23andME.txt.gz
https://surfdrive.surf.nl/files/index.php/s/Ow1qCDpFT421ZOO/download?path=%2FMultivariate_GWAMA_sumstats%2FN_GWAMA&files=N_GWAMA_WBspectrum_no23andME.txt.gz
https://ctg.cncr.nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip
https://ctg.cncr.nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip
https://ctg.cncr.nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip
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Partial Least Square Discriminant Analysis (PLS-DA) in 
the training data. PLS-DA involves iteratively construct-
ing successive latent components, where each compo-
nent is a linear combination of the included omics vari-
ables (Rohart et al. 2017). For each component, PLS-DA 
aims to maximize the covariance between the residual X 
matrix, containing the omics data, and the Y matrix, con-
taining the sample classification (i.e., case–control status 
coded as a dummy variable). The mixOmics software 
requires a user-defined maximum number of components 
in PLS-DA models. We chose this maximum based on the 
number of PCs as determined by the elbow method in the 
PCA (Fig. S1; Table S2). To find the optimal number of 
components to keep in each PLS-DA model, we employed 
tenfold cross-validation (CV) with 100 repeats (perf func-
tion; Table S3; Fig. S2).

Next, we applied sparse PLS-DA (sPLS-DA) to reduce 
the number of variables in each omics block contributing to 
each component. sPLS-DA includes Least Absolute Shrink-
age and Selection Operator (LASSO) penalization (e.g., L1 
penalization). LASSO shrinks the coefficients of less impor-
tance, often highly correlated, variables to zero, removing 
these variables from the model (Tibshirani 1996). Thus, for 
each component, sPLS-DA finds the maximum covariance 
between the residual X matrix containing a subset of the 
omics data with non-zero coefficients (variable selection) 
and the Y matrix (Lê Cao et al. 2011). We assessed the vari-
able selection via tenfold CV with 100 repeats (tune func-
tion), keeping at least two components in the final model 
(Table S3; Fig. S3). CV again obtained the performance of 
the final sPLS-DA model using the perf function (10 folds, 
100 repeats; Table S3; Fig. S4).

The ability of the final single-omics models to predict 
out-of-sample case–control status was evaluated in the 

test and clinical datasets (predict function). For each new 
observation in the test and clinical datasets, this function 
calculates the predicted class (case/control) by estimating 
their predicted dummy variable (of the case–control status) 
using the maximum, Mahalanobis, or Centroids (Euclidian) 
distance (see Rohart et al. 2017). When using the maximum 
distance, the predicted class of a new observation is the class 
for which we observed the largest predicted dummy value. 
Both the Mahalanobis and centroids distances are centroid-
based distances that predict the class of a new observation, 
so that the distance between its centroid and predicted scores 
is minimal. To predict out-of-sample case–control status, we 
used the best performing prediction distance, as was deter-
mined during model training (see Table S3).

The misclassification rates of the models, that combine 
the number of cases classified as controls (false negative 
rate) and the number of controls classified as cases (false 
positive rate), was used to evaluate how well the final mod-
els predicted case–control status. We employed a balanced 
misclassification rate, the balanced error rate (BER), that 
corrects for imbalances in the number of cases and controls. 
We used a confusion matrix, comparing the true cases and 
controls with the predicted cases and controls, to calculate 
the sensitivity (number of cases correctly classified as cases 
[true positive rate]), specificity (number of controls correctly 
classified as controls [true negative rate]), and accuracy 
(overall correct classification). As an alternative, Receiver 
Operating Characteristic (ROC) analysis assessed the Area 
Under the Curve (AUC) in both the test and clinical data. 
We obtained the ROC curve per component.

Table 2   Demographics of the training, test, and clinical data

MZ monozygotic
a Measured with the mother-rated Aggressive Behavior syndrome scale of the Achenbach System of Empirically Based Assessment (ASEBA) 
Child Behavior Checklist (CBCL). The ASEBA CBCL Aggressive Behavior scores in the clinical cohort include 90% mother report and 10% 
father report

Training data (70% twin cohort) Test data (30% twin cohort) Clinical data (Clinical cohort)

Controls Cases Total Controls Cases Total Controls Cases Total

N (%) 374 (58.0%) 271 (42.0%) 645 (100%) 160 (57.8%) 117 (42.2%) 277 (100%) 78 (54.9%) 64 (45.1%) 142 (100%)
N (%) complete twin 

pairs
128 80 293 56 35 128 – – –

Mean (SD) age 9.4 (1.9) 9.6 (1.8) 9.5 (1.9) 9.6 (1.9) 9.6 (1.9) 9.6 (1.9) 10.8 (1.7) 9.6 (1.7) 10.2 (1.8)
Range age 6.1–12.7 6.1–12.9 6.1–12.9 5.6–12.6 5.8–12.8 5.6–12.8 6.5–13.4 6.3–13.3 6.3–13.4
N (%) females 199 (53.2%) 116 (42.8%) 315 (48.8%) 81 (50.6%) 55 (47.0%) 136 (49.1%) 20 (25.6%) 19 (29.7%) 39 (27.5%)
N (%) MZ twins 299 (80.0%) 228 (84.1%) 527 (81.7%) 118 (73.7%) 108 (92.3%) 226 (81.6%) – – –
Mean (SD) aggres-

sion scorea
3.3 (4.1) 7.3 (5.8) 5.0 (5.3) 3.1 (4.0) 7.6 (6.6) 5.0 (5.7) 6.1 (3.4) 21.1 (4.8) 12.9 (8.5)
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Phase 2: Pairwise Cross‑Omics Analyses

To highlight pairwise cross-omics relationships (i.e., DNA 
methylation-metabolomics, PGSs- metabolomics, and PGSs-
DNA methylation), Partial Least Squares (PLS) regression 
models were constructed in canonical mode in the training 
data. Similar to canonical correlation analysis, canonical 
PLS regression aims to find linear combinations of the vari-
ables (canonical variates) to reduce the dimensionality of the 
data while maximizing the covariance between the variates 
(Rohart et al. 2017). CV has not yet been implemented for 
PLS in canonical mode. Consequently, we kept the smallest 
number of components as kept in either of the respective 
single-omics models (Table S3). Therefore, we included 3 
components for the DNA methylation-metabolomics model, 
and 2 components for the PGS-metabolomics and PGS-DNA 
methylation models.

The PLS models were run with two different sets omics 
variables, (1) a PLS model that included all 45 PGSs, 78,772 
CpGs, and 90 metabolites (model 1), and (2) a PLS model 
that only included the 36 PGSs, 1,614 CpGs, and 90 metabo-
lites that were selected by the single-omics sPLS-DA models 
(model 2; Data S2). Model 1 provides insight into the con-
nections among all omics variables, while model 2 provides 
insight into the connections among those omics variables 
that best contribute to aggression case–control classifica-
tion in the single-omics sPLS-DA models. In the remainder 
of the text we will refer to these connections as ‘correla-
tions’, but note that these are not Pearson correlations among 
omics variables. These connections are the correlations 
between the projected variables onto the space spanned by 
the components as retained in the analysis, i.e., the correla-
tion among the PLS variates (González et al. 2012). On the 
omics variables included in model 2, we performed hierar-
chical clustering with the Ward linkage algorithm on Euclid-
ean distances of the PLS variates and used the ‘dendextend’ 
R-package (Galili 2015) to extract the two largest clusters 
for both of the omics blocks included in the PLS models.

Phase 3: Multi‑Omics Analyses

The multi-omics analysis was conducted through Data Inte-
gration Analysis for Biomarker discovery using Latent cOm-
ponents (DIABLO) in the training data. DIABLO extends 
PLS-DA to multi-block PLS-DA (MB-PLS-DA), that aims 
at identifying correlated variables from multiple omics 
blocks that maximize the sample classification (Singh et al. 
2019). The method requires a user-defined ‘design matrix’, 
that specifies the expected correlations among the omics 
blocks. The symmetric design matrix has the number of rows 
and columns equal to the number of omics blocks (i.e., 3), 
and contains values between 0 and 1. A ‘full’ design matrix 

denotes strong positive correlations among the omics blocks 
and sets the values among omics blocks close to or equal to 
one. A ‘null’ design matrix denotes weak or no correlations 
among omics blocks by setting values close to or equal to 
zero. The full design matrix optimizes correlations among 
the omics blocks, while the null design matrix optimizes 
the discrimination between samples (Rohart et al. 2017; 
Singh et al. 2019; Duruflé et al. 2020). We can also specify 
a design matrix with the empirical correlations among the 
omics blocks.

We compared a multi-omics model with an empirical 
design matrix (based on the correlations obtained from 
the model 1 pairwise cross-omics PLS models; Table S4) 
to models with a null or full design matrix. Based on the 
results of the single-omics sPLS-DA models (Table S5), 
we chose the maximum number of components to include 
in the MB-PLS-DA models. We determined the opti-
mal number of components to keep in the MB-PLS-DA 
model with tenfold CV and 100 repeats (perf function; 
Fig. S5). We assessed the variable selection per com-
ponent per omics block via fivefold CV with 50 repeats 
(tune function; Table S5; Fig. S6). Performance of the final 
MB-sPLS-DA model was assessed with fivefold CV (50 
repeats; Table S5; Fig. S7).

The ability of the final multi-omics models to predict 
out-of-sample case–control status was evaluated in the test 
and independent clinical data (predict function), based on 
the best performing prediction distance as was determined 
during model training (see Table S5). The final multi-
omics models were evaluated by their balanced error rates 
(BER), and the sensitivity, specificity, and accuracy of the 
models were calculated from their confusion matrices. In 
the multi-omics models, we calculated the ROC curves per 
component for each omics block.

Biological Characterization

To facilitate biological interpretation, we describe the con-
nections of the PGSs, CpGs, and metabolites, that were 
selected by the single-omics sPLS-DA models and those 
selected by the multi-omics MB-sPLS-DA models. For 
the multi-omics MB-sPLS-DA models we also identified 
correlation patterns that included high absolute correla-
tions (|r|≥ 0.60) between omics traits of at least two omics 
blocks. As for the pairwise cross-omics models, these cor-
relations comprise the correlations among the PLS vari-
ates. To construct the correlational patterns we denoted 
all instances where multiple omics variables were con-
nected through bi- or trivariate correlations as a pattern. 
An example of a pattern comprising one variable of each 
omics block: high correlation of a PGS with a CpG and a 
high correlation of this CpG with a metabolites.
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To test for enrichment of methylation sites previously 
associated with other traits, we performed trait enrich-
ment analysis for all traits (619) in the EWAS atlas on the 
18th of June 2021 (Xiong et al. 2022). CpGs served as 
input for the trait enrichment analysis if 20 or more unique 
CpGs were selected into the single-omics sPLS-DA model, 
the multi-omics MB-sPLS-DA models, or included in a 

multi-omics MB-sPLS-DA high correlation pattern. When 
fewer than 20 CpGs were selected, we manually retrieved 
the trait associations with the CpGs from the EWAS atlas. 
Similarly, we performed trait enrichment analysis or man-
ual retrieval of the CpGs included in the clusters as iden-
tified for the pairwise cross-omics analyses for all traits 
(618) in the EWAS atlas on the 1st of July 2021.
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Results

Polygenic Prediction

Transmitted and non-transmitted PGSs for childhood 
aggression and 13 other traits were individually not sig-
nificantly associated with aggressive behavior after mul-
tiple testing correction (Data S3). The transmitted PGS 
for ADHD were significantly associated with aggressive 
behavior (β = 1.16, SE = 0.26, q = 0.0003), while the non-
transmitted PGSs were not (mother: β = − 0.22, SE = 0.24, 
q = 0.83; father: β = 0.02, SE = 0.23, q = 0.98), showing 
that genetic liability for ADHD associates with increased 
levels of aggressive behavior.

Single‑Omics Models for Childhood Aggression

We built cross-validated single-omics biomarker panels for 
childhood aggressive behavior based on sPLS-DA models 
including PGSs, DNA methylation, or metabolomics data. 
The final models comprised 11 transmitted and 25 non-trans-
mitted PGSs, 1,614 CpGs, and all 90 metabolites (Table S3; 
Data S2; Fig. S8). The PGSs selected in the sPLS-DA model 
comprised the transmitted PGSs for aggression, ADHD, age 

at first birth, age at smoking initiation, number of cigarettes 
per day, educational attainment (EA), insomnia, loneliness, 
Major Depressive Disorder (MDD), smoking initiation, and 
wellbeing. The non-transmitted maternal PGSs were selected 
for aggression, ADHD, age at first birth, age at smoking ini-
tiation, Autism Spectrum Disorder (ASD), childhood IQ, 
number of cigarettes per day, EA, insomnia, intelligence, 
loneliness, MDD, self-reported health, smoking initiation, 
and wellbeing, and the non-transmitted paternal PGSs were 
selected for aggression, ADHD, ASD, childhood IQ, num-
ber of cigarettes per day, intelligence, MDD, self-reported 
health, smoking initiation, and wellbeing (Data S2). Trait 
enrichment analyses for all 1,614 selected CpGs in the sPLS-
DA model showed the strongest enrichment for glucocorti-
coid exposure (i.e., administration of corticosteroid medica-
tion (Braun et al. 2019); OR = 18.02, p = 5.34 × 10–158), and 
household socioeconomic status in childhood (OR = 9.88, 
p = 1.18 × 10–13; Table S6). All three single-omics models 
showed low classification accuracy in the test and clinical 
data (Table S7; Fig. S9- S10).

Pairwise Cross‑Omics Models

DNA Methylation‑Metabolomics

In the pairwise DNA methylation-metabolomics model, we 
used hierarchical clustering and found two clusters of CpGs 
and of metabolites (Fig. 2a; Data S4). The DNA methyla-
tion cluster 1 contains 1151 (71.3%) of the CpGs selected by 
the sPLS-DA models for childhood aggression, and showed 
the strongest trait enrichments for household socioeconomic 
status in childhood (OR = 12.48, p = 4.20 × 10–14; Table S8). 
The 463 (28.7%) CpGs included in cluster 2 showed the 
strongest trait enrichment for glucocorticoid exposure 
(OR = 51.25, p ≤ 1.00 × 10–308; Table S8). Metabolite clus-
ter 1 contains 69 (76.7%) of the metabolites, including 
55 amines, 7 organic acids and 7 steroids, while metabo-
lite cluster 2 contains 21 metabolites (23.3%), including 5 
amines, 13 organic acids, and 3 steroids. The average cor-
relation between the DNA methylation and metabolomics 
blocks, i.e., the correlation among all PLS variates of all 
components simultaneously, was 0.18 (q = 6.07 × 10–15). We 
observed the highest absolute correlations between metabo-
lites of cluster 1 and CpGs included in cluster 2 (Fig. 2a; 
Data S4-S5). Specifically, the amines 3-methoxytyramine 
(r M = − 0.21, r range: − 0.23–0.20), asymmetric dimethy-
larginine (ADMA, r M = − 0.20, r range: − 0.21–− 0.20), 
L-glutamic acid (r = − 0.20), L-phenylalanine (r M = − 0.20, 
r range: − 0.21–− 0.20), O-acetyl-L-serine (r = − 0.20), and 
symmetric dimethylarginine (SDMA, r M = − 0.21, r range: 
− 0.22–− 0.20) show negative correlations with these CpGs, 
indicating that increased levels of these urinary metabolites 
associated with hypomethylation at cluster 2 CpG sites.

Fig. 2   Clustered heatmaps of the relationships obtained by the pair-
wise cross-omics Partial Least Squares (PLS) regression models 
including only the omics variables as selected by the single-omics 
sparse Partial Least Squares Discriminant Analyses (sPLS-DA). We 
generated the hierarchical clustering using the Ward linkage algo-
rithm on Euclidean distances of the PLS variates. For each dendro-
gram we identified two clusters (cluster 1 = pink, cluster 2 = blue). We 
have depicted positive relationships among the omics variables in red 
and negative relationships in blue. For the polygenic scores (PGSs), 
the ‘_NTm’ suffix denotes non-transmitted maternal PGSs, the ‘_
NTf’ suffix denotes the non-transmitted paternal PGSs, and childhood 
aggression is abbreviated as “aggression”, Attention-Deficit Hyperac-
tivity Disorder as “ADHD”, Major Depressive Disorder as “MDD”, 
Autism Spectrum Disorder as “Autism”, Educational Attainment as 
“EA”, and wellbeing spectrum as “wellbeing”. For the metabolites, 
the ‘amines.’ prefix shows we measured these metabolites on the Liq-
uid Chromatography Mass Spectrometry (LC–MS) amines platform, 
the ‘steroids.’ prefix shows we measured these metabolites on the 
LC–MS steroids platform, and the ‘OA.’ prefix shows we measured 
these metabolites on the Gas Chromatography (GC-) MS organic 
acids platform. a Relationships of the 1,614 CpGs and 90 metabolites 
included in the 3-component DNA methylation-metabolomics PLS 
model, where the selected CpGs are represented in the columns and 
the metabolomics traits in the rows. We included the cluster assign-
ments and the full data matrix in Data S4-S5. b Relationships of the 
36 PGSs and 90 metabolites included in the 2-component PGSs-
metabolomics PLS model, where the selected PGSs are represented 
in the columns and the metabolomics traits in the rows. We included 
the cluster assignments and the full data matrix in Table S9 and Data 
S6, respectively. c Relationships of the 36 PGSs and 1,614 CpGs 
included in the 2-component PGSs-DNA methylation PLS model, 
where the selected PGSs are represented in the columns and the 
CpGs in the rows. We included the cluster assignments and the full 
data matrix in Data S7-S8 (Color figure online)

◂
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PGSs‑Metabolomics

Hierarchical clustering of the pairwise PGSs-metabo-
lomics model identified two clusters of PGSs and two 
clusters of metabolites (Fig.  2b; Table  S9). The PGS 
cluster 1 contains 23 of the PGSs (63.9%) selected by the 
sPLS-DA model for childhood aggression. This cluster 
comprises 8 transmitted PGSs, 9 non-transmitted mater-
nal PGSs, and 6 non-transmitted paternal PGSs. The 13 
PGSs (36.1%) included in cluster 2 comprised 3 trans-
mitted PGSs, 6 non-transmitted maternal PGSs, and 4 
non-transmitted paternal PGSs. The metabolite cluster 
1 contains 46 metabolites (51.1%), all of which were 
amines (76.7% of all amines). The remaining 14 amines, 
as well as all steroids and organic acids, are included in 
metabolite cluster 2 (N = 44, 48.9%). The average cor-
relation between the PGSs and metabolomics block, i.e., 
the correlation among all PLS variates of all components 
simultaneously, was 0.28 (q = 9.57 × 10–24). We observed 
the highest positive correlations between the non-trans-
mitted paternal ADHD (ADHD_NTf) and smoking ini-
tiation PGSs (smokinginitiation_NTf) with both essential 
and non-essential amino acids (ADHD_NTf r M = 0.21, 
r range: 0.21–0.22, smokinginitiation_NTf r M = 0.22, r 
range: 0.20–0.26; Fig. 2b; Data S6; Table S9). Similarly, 
the most negative correlations were observed between 
amino acids and the non-transmitted paternal PGSs for 
intelligence (intelligence_NTf) and self-reported health 
(selfreportedhealth_NTf, intelligence_NTf r M = − 0.21, r 
range: − 0.22–− 0.21, selfreportedhealth_NTf r M = -0.21, 
r range: − 0.22–− 0.20). This shows that characteristics 
tagged by ADHD, smoking initiation, intelligence, and 
self-reported health correlated to paternal construction 
of environments influencing offspring urinary amino acid 
levels.

PGSs‑DNA Methylation

For the pairwise PGSs-DNA methylation model, we again 
applied hierarchical clustering to find two clusters for the 
PGSs and DNA methylation data (Fig. 2c; Data S7). PGS 
cluster 1 contains 22 of the PGSs (61.1%) selected by the 
sPLS-DA model for childhood aggression. This cluster 
contained 6 transmitted PGSs, 9 non-transmitted maternal 
PGSs, and 7 non-transmitted paternal PGSs. The 14 PGSs 
(38.9%) included in cluster 2 comprised 5 transmitted 
PGSs, 6 non-transmitted maternal PGSs, and 3 non-trans-
mitted paternal PGSs. The DNA methylation cluster 1 con-
tained 1142 (70.8%) of the CpGs selected by the sPLS-DA 
models for childhood aggression, and showed the strong-
est trait enrichments for household socioeconomic status 
in childhood (OR = 12.58, p = 3.68 × 10–14; Table S10). 

The 472 (29.2%) CpGs included in cluster 2 showed the 
strongest trait enrichment for glucocorticoid exposure 
(OR = 50.00, p ≤ 1.00 × 10–308; Table S10). The average 
correlation between the PGSs and DNA methylation block, 
i.e., the correlation among all PLS variates of all com-
ponents simultaneously, was 0.28 (q = 9.57 × 10–24). The 
most negative correlations were observed between the non-
transmitted paternal self-reported health PGS with CpGs 
of cluster 2 (r M = − 0.18, r range: − 0.19–− 0.15), and the 
highest positive correlations between the cluster 2 CpGs 
and the non-transmitted paternal ASD PGS (r M = 0.151, r 
range: 0.150–0.154; Fig. 2c; Data S8). This indicates that 
characteristics tagged by ASD and self-reported health 
correlated to paternal construction of environments influ-
encing offspring buccal DNA methylation levels.

Multi‑Omics Model for Childhood Aggression

We built multi-omics panels for childhood aggressive behav-
ior based on multi-block sPLS-DA (MB-sPLS-DA) models, 
including PGSs, DNA methylation, and metabolomics data. 
Here, we report the multi-omics model with an empirical 
design matrix and results for the null and full design matrices 
can be found in Online Appendices C and D, respectively. 
After cross-validation, the optimal 5-component model 
included 14 transmitted and 30 non-transmitted PGSs, 746 
CpGs, and all 90 metabolites (Table S5; Data S9; Fig. S11). 
The multi-omics model selected all 30 non-transmitted PGS, 
and except for the transmitted PGS for childhood IQ, also 
all the transmitted PGSs (Data S9). Out of the 746 CpGs 
selected by the multi-omics model 204 (27.3%) were also 
selected by the single-omics DNA methylation model (Data 
S2; Data S9). Trait enrichment analyses for all selected CpGs 
in the MB-sPLS-DA model showed the strongest enrichment 
for gender (OR = 3.90, p = 3.97 × 10–31), and breast cancer 
risk (OR = 342.60, p = 1.44 × 10–21; Table S11). Multi-omics 
prediction of aggression case–control status in the test data 
showed an improvement in the prediction (BER = 0.47–0.52; 
Table S12; Fig. S12) as compared to single-omics models 
including only the PGSs or metabolomics data, but not as 
compared to the model including only the DNA methylation 
data (Table S7). In contrast, in the clinical cohort, the aver-
age classification accuracy was poorer in the multi-omics 
model (BER = 0.53–0.57; Table S12) than for the single-
omics models (Table S7; Fig. S13).

The average correlations between each omics block 
in the multi-omics model, i.e., the correlation among 
all PLS variates of all components simultaneously, 
were r = 0.19 (q = 2.13 × 10–27) for PGSs-DNA methyla-
tion, r = 0.13 (q = 1.78 × 10–12) for PGSs-metabolomics, 
and r = 0.15 (q = 3.76 × 10–16) for DNA methylation-
metabolomics. We observed high absolute correlations 
(|r|≥ 0.60) between 2 selected PGSs, 14 CpGs, and 13 
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metabolite, that we summarize in five sets of correla-
tional patterns (Fig. 3; Data S10; Table S13). Correlation 
pattern 1 comprises high negative correlations of citric 
and fumaric acid with cg12886033 (chr1:65,449,013), 
cg14508705 (chr1:172,360,182), and cg11710553 
(chr4:105,892,960), and high negative correlations 
of fumaric acid with cg21432062 (chr3:4,908,643), 
cg22848658 (chr6:135,354,586), and cg15841349 
(chr12:129,348,564). The second correlational pat-
tern is characterized by high negative correlations 

between isocitrate with cg05056638 (chr8:24,800,824), 
c g 0 8 4 1 5 5 8 2  ( ch r 8 : 5 7 , 0 3 0 , 5 2 3 ) ,  c g 1 1 2 0 6 1 6 7 
(chr5:42,924,367), and cg20704654 (chr20:30,072,118). 
Correlation pattern 3 contains the high positive correlation 
of homocysteine with cg13784456 (chr10:132,970,405) 
and cg06144718 (chr10:133,048,392). The fourth correla-
tional pattern includes high positive correlations between 
cg03469862 (chr11:68,924,853) with the transmitted PGS 
for ADHD, 3-methoxytyrosin, L-isoleucine, L-leucine, 
L-phenylalanine, L-tryptophan, L-valine, L-glutamine, 

Fig. 3   Strong cross-omics connections of the multi-omics traits iden-
tified in the 5-component multi-block sparse Partial Least Squares 
Discriminant Analysis (MB-sPLS-DA) model including the empirical 
design matrix. The outer ring depicts the PGSs, CpGs, and metabo-
lites in yellow, pink, and green, respectively. For the polygenic scores 
(PGSs), Attention-Deficit Hyperactivity Disorder is abbreviated as 
“ADHD”, and Educational Attainment as “EA”, and the ‘_NTf’ suf-
fix denotes the non-transmitted paternal PGSs. For the metabolites, 
the ‘amines.’ prefix shows we measured these metabolites on the 
Liquid Chromatography Mass Spectrometry (LC–MS) amines plat-

form, and the ‘OA.’ prefix shows we measured these metabolites on 
the Gas Chromatography (GC-) MS organic acids platform. The inner 
plot depicts the connetions among the omics variables. Here, we 
depict only high absolute correlations of the PLS variates (|r|≥ 0.60) 
between variables of at least two omics blocks, with blue lines reflect-
ing negative correlations and red lines positive correlations. We aver-
aged correlations of the PLS variates across all components in the 
MB-sPLS-DA model. We included the full data matrix in Data S10 
and the patterns in Table S15 (Color figure online)
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L-tyrosine, and L-serine. The final correlation pat-
tern comprises a high negative correlation between the 
non-transmitted by father PGS for EA and cg09674340 
(chr1:202,509,286).

Discussion

This study comprised an integrative multi-omics analy-
sis of childhood aggressive behavior to identify a multi-
omics biomarker panel and to investigate the correlations 
among the omics blocks included in this panel. In our 
training data comprising 645 twins (cases = 42.0%, con-
trols = 58.0%) we applied multivariate statistical meth-
ods to analyze and integrate transmitted and paternal and 
maternal non-transmitted PGSs for childhood aggression 
and for 14 traits genetically correlated with aggression (45 
PGSs total), 78,772 CpGs, and 90 metabolites (Fig. 1). 
We build single-omics biomarker panels for each of the 
omics blocks, that selected 31 PGSs, 1614 CpGs, and 
90 metabolites to discriminate between aggression cases 
and controls. The markers selected in single-omics mod-
els had poor predictive performance in our test (N = 277, 
cases = 42.2%, controls = 57.8%) and clinical datasets 
(N = 142, cases = 45.1%, controls = 54.9%). We explored 
the pairwise correlations of the omics variables selected 
by the single-omics models and found that indirect genetic 
effects for ADHD, ASD, intelligence, smoking initiation, 
and self-reported health, connected most strongly with 
buccal DNA methylation and urinary amino acid levels in 
children and that higher amino acid levels associate with 
hypomethylation in a cluster of CpG sites.

The cross-omics analyses generally showed stronger 
connections among non-transmitted polygenic scores and 
DNA methylation or metabolite levels. We consider this a 
noteworthy finding which may suggest that parents shape 
environments that impact on offspring DNA methylation and 
metabolites and that these processes can be detected when 
adding non-transmitted polygenic scores in a multi-omics 
approach. The stronger connections for non-transmitted 
PGSs may thus imply that the CpGs selected by our model 
not merely capture environmental effects but are more sen-
sitive to genetic nurturing on aggression-related traits. For 
future understanding of ‘environmental’ mechanisms, stud-
ies of aggression and other childhood phenotypes and disor-
ders would benefit from an exploration of the associations of 
large numbers of non-transmitted PGSs, based on multiple 
discovery GWASs and CpG sites.

The multi-omics panel selected 44 PGSs, 746 CpGs, 
and 90 metabolites, which also had poor predictive perfor-
mance in our test and clinical datasets. We described five 
sets of correlational patterns with high absolute correlations 
(|r|≥ 0.60) of aggression-related omics variables selected by 

the multi-omics model. Correlation patterns 1 and 3 likely 
capture the DNA methylation process itself, as homocyst-
eine is involved in the methionine cycle that transfers the 
methionine methyl group to DNA methyltransferase (Selhub 
1999), and tricarboxylic acid (TCA) cycle metabolites, such 
as citric and fumaric acid, play a role in histone acetylation, 
and histone and DNA demethylation (Martínez-Reyes and 
Chandel 2020). The CpGs and their connected metabolites 
included in patterns 1, 2, and 4 were previously associ-
ated with numerous traits, including ageing, inflammatory 
bowel disease (IBD), prostate cancer, and Myelodysplastic 
Syndrome (Ooi et al. 2011; Schicho et al. 2012; Dawiskiba 
et al. 2014; Rist et al. 2017; Lima et al. 2021; Yuan et al. 
2021; Xiong et al. 2022). Pattern 5 links a smoking and low 
birth weight-associated CpG to indirect genetic effects for 
EA. The negative association of a smoking-associated CpG 
with indirect genetic effects for EA may indicate that rearing 
environment influences smoking-related DNA methylation. 
Pattern 5 may be regarded as being in line with a previous 
study that reported significant negative correlations of indi-
rect parental EA effect with offspring smoking initiation, 
number of cigarettes per day, and smoking cessation (Wu 
et al. 2021), and the well-established phenotypic association 
of low paternal educational attainment with low offspring 
birth weight (e.g., Meng and Groth 2018). Overall, the 
multi-omics correlational patterns associated with a range of 
traits that link aggression-related omics variables to biologi-
cal processes related to inflammation, carcinogens, ageing, 
sex differentiation, intelligence, and smoking.

We explored how sensitive our results are to different 
specifications of the design matrices and found that these 
resulted in similar predictive abilities, but selected differ-
ent numbers of only partially overlapping PGSs and CpGs 
(Online Appendices C and D). In line with expectations, 
the predictive ability of the null design matrix was slightly 
better than for the empirical design matrix, reflecting that 
such a model focuses on selecting discriminatory variables 
(Singh et al. 2019; Duruflé et al. 2020). We expected that 
the model with the full design model sacrificed predictive 
accuracy to select discriminatory variables that are also 
highly correlated, but this model had the lowest classifica-
tion error rate as compared to the models with an empirical 
or null design matrix in the test and clinical data. We note 
that, regardless of the design matrix, our predictive accuracy 
was poor, which included observed Balanced Error Rates 
(BERs) below chance level (≤ 0.50). This indicates that the 
identified biological signals are not strongly predictive of 
childhood aggression. Nevertheless, as GWAS have clearly 
demonstrated, even very small effects may generate novel 
biological insights. Here, we show that multi-omics models 
with differently specified design matrices differed not only 
in how many and which PGSs and CpGs were selected, but 
each multi-omics model provided unique insight into the 
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correlations among the omics variables selected for their 
association with childhood aggression. In the current study, 
we relied on the cross-validation results to select the number 
of variables and components in the model. However, to aid 
in biological interpretation, other choices can be made.

The single- and multi-omics models selected nearly all 
the PGSs, with only the transmitted PGSs for ASD, intel-
ligence, childhood IQ, and self-reported health, and the non-
transmitted paternal PGSs for age at first birth, EA, insom-
nia, and loneliness not selected to the single-omics model, 
and the transmitted PGS for childhood IQ not selected to 
the multi-omics model (empirical design matrix). The high 
selection of transmitted PGSs to the biomarker panels likely 
reflect the genetic correlations of these traits with childhood 
aggression on which basis we included them in the current 
study (Ip et al. 2021). The parental non-transmitted PGSs in 
the genomics block capture the effect of parental genotypes 
on their offspring’s rearing environment, without confound-
ing by genetic transmission. The non-transmitted PGSs for 
various traits, including childhood aggression, were consist-
ently retained in the single- and multi-omics models, which 
is in line with research that shows associations of parenting 
styles with childhood aggression (Masud et al. 2019).

The CpGs in the single- or multi-omics models did not 
overlap with the top differentially methylated CpGs for 
physical aggression as observed in buccal-cells (Cecil et al. 
2018b), and were not significantly associated with aggres-
sion in a recent blood-based EWAS meta-analysis (van Don-
gen et al. 2021). That our models selected no CpGs over-
lapping with these studies was unsurprising, since it was 
previously shown that the top CpGs from these studies were 
not associated with aggressive behavior in the buccal DNA 
methylation data in the NTR and LUMC-Curium cohorts 
(van Dongen et al. 2021). Trait enrichment of the CpGs 
selected by the single- and multi-omics models reported 
enrichment of known aggression risk factors, such as socio-
economic status (Miller and Tolan 2019; Bellair et al. 2019; 
Hendriks et al. 2020), childhood malnutrition (Liu 2004; 
Vaughn et al. 2016), and pre- and perinatal risk factors 
(Van Adrichem et al. 2020). Moreover, we observed trait 
enrichment for several syndromes, e.g., Down syndrome, 
that are characterized by intellectual disability, developmen-
tal delay, and sometimes by aggressive behaviors among 
affected individuals. Several of these syndromes, includ-
ing Klinefelter and Claes-Jensen syndrome, are linked to 
genetic abnormalities of the sex chromosomes, and CpGs 
in the single- and mult-omics models are enriched for ster-
oid hormone-related traits, such as glucocorticoid exposure. 
Together, these results suggest that the CpGs in the single- 
and multi-omics models reflect the well-established gender 
differences in aggressive behavior. We note that trait enrich-
ment analyses might be less sensitive to EPIC array-specific 
CpG sites as less than 20% of the current version of the 

EWAS atlas is comprised of EPIC studies (October 2022; 
Xiong et al. 2022). In addition to the enrichment of glu-
cocorticoid exposure in CpGs selected by the single-omics 
model, we observed a high correlation between cortisol 
and cg05153029 (chr20:19,769,815, r = 0.61), that associ-
ates with glucocorticoid exposure in the EWAS atlas (full 
design matrix MB-sPLS-DA model). Cortisol and other 
hypothalamus–pituitary–adrenal (HPA)-axis molecules 
have been implicated in aggressive behavior, suggesting a 
role of the stress response system in aggressive behavior 
(Hagenbeek et al. 2016). Epigenetic programming of the 
HPA-axis is influenced by pre- and perinatal factors, such as 
maternal behavior as observed in rats (Weaver et al. 2004), 
and maternal stress and early life adversity (Mulligan et al. 
2012; Hompes et al. 2013; Jiang et al. 2019), and lower aver-
age global DNA methylation levels were reported in patients 
with Cushing’s Syndrome (CS) in remission, a model for 
long-standing excessive glucocorticoid (cortisol) exposure 
(Glad et al. 2017). Thus, epigenetic mechanisms may medi-
ate the association between cortisol and childhood aggres-
sion, similarly as the DNA methylation mediates the associa-
tion between cortisol stress reactivity and childhood trauma 
(Wrigglesworth et al. 2019). A highly promising approach 
to investigate whether epigenetic mechanisms mediate the 
association between steroid hormones and childhood aggres-
sion would be Mendelian Randomization (Sanderson 2021; 
Carter et al. 2021).

The single- and multi-omics models selected all 90 LC- 
and GC–MS metabolites for inclusion, which might be 
explained by the low expression differences between aggres-
sion cases and controls of the urinary amines and organic 
acids in this sample (Hagenbeek et al. 2020). Another plausi-
ble explanation regards the fact that we generated the metab-
olomics data on three targeted platforms, chosen because 
they cover relevant metabolites involved in neurotransmitter, 
inflammation, and steroid hormone pathways that associ-
ate with aggression (Hagenbeek et al. 2016). To date, no 
metabolomics platform can capture the entire metabolome. 
In addition, within a platform, technical challenges may 
cause compounds becoming undetectable or not quantifiable. 
This was the case for the steroid platform being less suc-
cessful in quantifying (conjugated) sex hormones. Coverage 
could also be extended to include other metabolite classes, 
preferably in a hypothesis-free manner by employing non-
targeted metabolomics platforms. The five sets of omics 
variables with high cross-omics correlations in the multi-
omics model contained 13 metabolites. These metabolites 
comprised 8 amino acids, 3 metabolites involved in the TCA 
cycle, the dopaminergic trace amine 3-methoxytyrosine, and 
homocysteine, which is involved in cysteine and methionine 
metabolism. This is in line with previous studies reporting 
association of metabolites with aggressive behavior (Gulsun 
et al. 2016; Hagenbeek et al. 2016, 2020; Chen et al. 2020).
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This is the first multi-omics study that includes DNA meth-
ylation profiles from buccal and metabolomics in urine. Most 
of the earlier large-scale omics studies were conducted in 
blood samples. By obtaining omics measurements in easily 
accessible peripheral tissues (urine and buccal-cells) we could 
obtain multi-omics data in a substantially larger (~ tenfold) 
sample compared to most previous multi-omics studies for 
psychiatric traits, such as depression and suicide risk (Bhak 
et al. 2019) or post-traumatic stress disorder (Dean et al. 2019), 
that relied on small training samples (range: 126–165). In the 
current study, we corrected the omics data for sex, age, and 
technical covariates, which can be considered as a minimal 
set of covariates. Future studies may consider including other 
confounding factors, such as parental smoking, dietary factors, 
or body mass index. In evaluating the validity of the PGS and 
multi-omics models in the clinical cohort, the non-transmitted 
PGSs could not be assessed, as no parental genotypes were 
available in the clinical cohort. Additional validation in cohorts 
with complete omics data that applied the same metabolomics 
and DNA methylation platforms are of large interest, but cur-
rently do not exist. We corrected the omics data for sex and 
selected children for inclusion into the study before the onset 
of puberty (Hagenbeek et al., 2020). Ideally, however, future 
multi-omics studies in children would also allow for sex-strat-
ified analyses as the predictive accuracy of our models might 
have been impacted by the inclusion of a smaller number of 
girls (~ 25%) in the clinical cohort compared to the twin cohort 
(~ 50%). Our design is optimal in nearly all other aspects. The 
twin and clinical cohorts collected all data, including biomark-
ers, at the same time, using the same arrays and platforms and 
with similar protocols, thus decreasing unwanted sources of 
heterogeneity that are often present in sequential multi-omics 
designs (Wörheide et al. 2021).

By adding a fourth broad exposome block, capturing 
known risk factors for childhood aggression, such as neigh-
borhood variables (Miller and Tolan 2019), to the multi-
omics model, the influence of environmental influences can 
be explored. Inclusion of other omics layers, such as the 
transcriptome, proteome, or a microbiome, may give other 
insights into the biological mechanisms of complex traits 
like childhood aggression. It should be noted that with the 
current method, inclusion of additional omics layers will 
cause an increase in the computational burden. Therefore, 
reduction of the computational burden might need to be 
considered in future studies. Parameter reduction may be 
achieved by including a smaller number of CpGs, by for 
example including only the top 1% or 5% most variable 
probes, or by selecting CpGs based on their known associa-
tion with aggressive behavior, such as the top CpGs from the 
EWAS meta-analysis for aggressive behavior (van Dongen 
et al. 2021). While these suggestions, as well as increasing 
the sample size of training datasets, will benefit future multi-
omics investigations into childhood aggression, one of the 

first steps in aggression research also concerns increasing 
the sample size of future genome-wide association stud-
ies. To understand the underlying biological mechanisms 
of complex traits we should not put all our efforts into a 
single approach. By exploring and optimizing various meth-
odologies and merging information from these different 
approaches we stand the best chance of identifying robust 
mechanisms.

Conclusions

Our work entails one of the first applications of multi-omics 
approaches to childhood psychopathology. The approach we 
used was developed for dichotomous traits and classification 
purposes but also gives insight into the how different omics 
blocks associate with each other. Classification was poor, 
whereas the multi-omics associations confirm well known 
associations between childhood aggression and known 
risk factors as well as provide novel insight into the cor-
relational structure among omics variables from different 
omics blocks.
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