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Abstract
This study aims to disentangle the contribution of genetic liability, educational attainment (EA), and their overlap and inter-
action in lifetime smoking. We conducted genome-wide association studies (GWASs) in UK Biobank (N = 394,718) to (i) 
capture variants for lifetime smoking, (ii) variants for EA, and (iii) variants that contribute to lifetime smoking independently 
from EA (‘smoking-without-EA’). Based on the GWASs, three polygenic scores (PGSs) were created for individuals from the 
Netherlands Twin Register (NTR, N = 17,805) and the Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2, 
N = 3090). We tested gene–environment (G × E) interactions between each PGS, neighborhood socioeconomic status (SES) 
and EA on lifetime smoking. To assess if the PGS effects were specific to smoking or had broader implications, we repeated 
the analyses with measures of mental health. After subtracting EA effects from the smoking GWAS, the SNP-based herit-
ability decreased from 9.2 to 7.2%. The genetic correlation between smoking and SES characteristics was reduced, whereas 
overlap with smoking traits was less affected by subtracting EA. The PGSs for smoking, EA, and smoking-without-EA all 
predicted smoking. For mental health, only the PGS for EA was a reliable predictor. There were suggestions for G × E for 
some relationships, but there were no clear patterns per PGS type. This study showed that the genetic architecture of smoking 
has an EA component in addition to other, possibly more direct components. PGSs based on EA and smoking-without-EA 
had distinct predictive profiles. This study shows how disentangling different models of genetic liability and interplay can 
contribute to our understanding of the etiology of smoking.
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Introduction

Despite well-known health risks and a worldwide increase 
of discouragement policies, large proportions of the 
world’s population continue to smoke (World Health 
Organization 2019). In the Netherlands, the promising 
decline in smoking seen in the past decades now seems to 
level off, especially among young adults (Bommelé and 
Willemsen 2020). Research into the etiology of smoking 
could shed new light on possible avenues for prevention 
and intervention. Both environmental and genetic factors 
play a role in smoking behavior (Sullivan and Kendler 
1999).

Characteristics related to socioeconomic status (SES), 
with educational attainment (EA) as its core component, 
are important predictors for smoking (Hiscock et al. 2012). 
Individuals with lower SES (income and EA) are more 
likely to get exposed to tobacco smoke, start smoking in 
adolescence, smoke more heavily, and continue smoking. 
Such effects can be observed at the level of neighborhoods, 
with people living in more disadvantaged areas being 
more likely to smoke (Cambron et al. 2018; Karriker-
Jaffe 2013). Reported effects are quite large for specific 
groups. For example, men have been reported to be two 
times more likely to smoke in a neighborhood marked by 
visible signs of disorder (e.g., vandalism and litter) than 
in a neighborhood low on these signs (Miles 2006). White 
residents of poor neighborhoods are 72% more likely to 
initiate smoking before age 25 than white residents in an 
affluent neighborhood (even after controlling for income 
and parental education; Kravitz-Wirtz 2016). However, 
estimated effect sizes vary widely and seem to be moder-
ated by many individual-level SES and group attributes 
(Cohen et al. 2011; Karriker-Jaffe et al. 2016; Kravitz-
Wirtz 2016; Mathur et al. 2013; Miles 2006).

Twin studies estimated that almost half of the individual 
differences in the population in smoking initiation can be 
attributed to genetic factors. The heritability estimate is 
even higher (around 75%) for nicotine dependence (Vink 
et al. 2005). As the prevalence of smoking seems to be 
declining and it has become less socially acceptable, herit-
ability estimates have become somewhat higher (Board-
man et al. 2010; Vink and Boomsma 2011; Wedow et al. 
2018). Genome-wide association studies (GWASs) have 
identified specific genetic variants underlying smoking 
behavior (The Tobacco and Genetics Consortium 2010). 
The most recent smoking GWAS included more than a 
million participants, and all measured genetic variants 
could explain 8% of the variation in smoking initiation 
and 8% in the number of cigarettes smoked per day (Liu 
et al. 2019). Thus, part of the heritability as estimated by 
twin studies could not be traced back to common variation 

tested in this GWAS. There are several possible reasons 
for this commonly observed ‘missing heritability’, one 
of which might be interplay with environmental circum-
stances (Eichler et al. 2010).

Mixed Findings on Gene–Environment Interaction 
in Smoking

It seems likely that socioeconomic and genetic factors do 
not operate in isolation in increasing risk for smoking. In the 
case of gene–environment interaction (G × E), the likelihood 
that genetic risk (G) for smoking leads to smoking depends 
on environmental circumstances (E). Such G × E effects 
could contribute to the missing heritability phenomenon in 
two ways (Manolio et al. 2009). First, G × E could contribute 
to inflated heritability estimates in twin research (Verhulst 
and Hatemi 2013), meaning that the gap between twin and 
SNP-heritability is actually smaller than it seems. Second, 
G × E could deflate associations if the total effect of a SNP is 
canceled out due to different effects in different subgroups, 
meaning that it ‘hides’ part of the SNP heritability (Manolio 
et al. 2009). Thus, testing G × E could help us gain a fuller 
understanding of the genetic etiology of traits.

Twin studies have suggested that G × E effects exist for 
smoking (e.g., Boardman et  al. 2011, 2008; Dick et  al. 
2007; Timberlake et al. 2006). For example, EA was found 
to moderate the heritability of smoking initiation (although 
the exact direction was difficult to establish due to strong 
gene–environment correlation effects; McCaffery et  al. 
2008). However, such studies do not provide any insight 
as to what genetic variants drive these G × E effects. More 
recently, studies have used smoking GWASs to create poly-
genic scores (PGSs) as a measure of genetic risk, and tested 
interaction between PGSs and environmental factors on 
smoking. For example, it was shown that a PGS for smok-
ing initiation was associated with smoking heaviness only 
in individuals who had been exposed to tobacco smoke in 
childhood (Treur et al. 2018). Another study showed that a 
smoking PGS was more likely to contribute to smoking risk 
in individuals that had experienced trauma than in individu-
als who had not (Meyers et al. 2013). Similarly, it was found 
that a PGS for smoking predicted smoking more strongly in 
sample of war veterans than in non-veterans (Schmitz and 
Conley 2016). On the other hand, living in a neighborhood 
with high social cohesion buffered for genetic risk, such that 
the effect of the PGS on smoking was less strong for indi-
viduals living in such neighborhoods (Meyers et al. 2013). 
However, a recent study did not detect G × E with neighbor-
hood-level SES and metropolitanism on smoking (Pasman 
et al. 2020). Overall, the evidence for G × E in PGS studies 
is somewhat mixed for smoking (Pasman et al. 2019). Also, 
given the small effect sizes of PGSs in general and the even 
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smaller G × E effects, these studies have done little to solve 
the missing heritability.

Gene–Environment Correlation and Other Types 
of G–E Interplay in Smoking

G × E research has often been framed in terms of environ-
mental exposures that moderate genetic risk factors. How-
ever, the distinction between ‘environmental’ exposures 
and other characteristics is often quite difficult to make. For 
instance, an interaction with sex could indicate biological 
differences in the chance that some genetic factor will come 
to expression or could indicate an environmental effect of 
gender roles. Moreover, many factors that are thought of as 
environmental (e.g., the parenting and social environment, 
Vinkhuyzen et al. 2010) are actually heritable themselves, so 
that the environment and the genetic make-up become asso-
ciated. This phenomenon is often referred to as gene–envi-
ronment correlation (rGE). There are various mechanisms 
by which associations between an environmental exposure 
and genetic predisposition can arise. For example, given that 
parents and offspring share part of their genetic make-up, 
a correlation could arise between parenting behavior and 
offspring genes (passive rGE, Kong et al. 2018; Pasman 
et al. 2021; Plomin et al. 1977). Alternatively, a correlation 
between an individual’s risk for smoking and the environ-
ment could arise because smoking elicits some response 
in other people (reactive rGE) or because smokers select 
different environments for themselves (active rGE; Plomin 
et al. 1977). Such rGE effects may also exist for EA, which 
has a substantial genetic component. Both cognitive abilities 
(at the core of EA) as well as non-cognitive EA-traits and 
socioeconomic characteristics have been shown to be herit-
able traits (Demange et al. 2020; Marioni et al. 2014). Given 
the strong association between EA and smoking, down the 
line rGE associations could arise between genetic risk for 
smoking and EA.

Such rGE effects influence the interpretation of other 
genetic findings. First, rGE effects (with shared environ-
ment) could inflate heritability estimates in twin research 
when not explicitly modeled (Verhulst and Hatemi 2013). 
Second, they can lead to the detection of environmental 
signal in GWASs (Manolio et al. 2009; Shen and Feldman 
2020). For example, GWASs will probably pick up on dif-
ferent variants for smoking in an environment that highly 
sanctions smoking (e.g., variants associated with risk tak-
ing and addiction-proneness) than in an environment where 
smoking is the norm (e.g., variants associated with social 
behavior), giving rise to rGE between smoking variants 
and social norms. Third, if there are rGE effects, this can 
change the interpretation of G × E effects, lower the chance 
that G × E will be detected, or lead to spurious G × E findings 
(Dudbridge and Fletcher 2014; Rathouz et al. 2008).

The plausibility that rGE exists in substance use has 
been widely acknowledged (Gage et al. 2016; Kong et al. 
2018) and there are indications for the existence of rGE in 
the smoking literature. Some twin studies have shown that 
peer behavior is associated with genetic risk for smoking 
in adolescents (Cleveland et al. 2005; Harden et al. 2008; 
Wills and Carey 2013). This has commonly been inter-
preted as showing that genetic risk for smoking somehow 
influences which friends adolescents select for themselves. 
One study using PGS to test rGE showed overlap between 
the parenting environment and a smoking PGS (Pasman 
accepted). Another study showed rGE between a smoking 
PGS and neighborhood ‘physical disorder’ (i.e., disrepair 
and vacancy; Meyers et al. 2013). A last study went a step 
further and showed not only strong rGE between genetic risk 
for smoking and EA, but showed that this rGE relationship 
depended on birth cohort (Wedow et al. 2018). rGE was 
stronger in younger cohorts, where smoking had become 
rarer and was more strongly influenced by genetic factors, 
than in older cohorts, where smoking was a more common 
social phenomenon. This moderated rGE effect implies that 
genetic relationships can be mediated through environmental 
exposures and adds a layer of complexity to thinking about 
gene–environment interplay. Together, these findings sug-
gest that genetic associations from smoking genetics studies 
must be interpreted strictly within the environmental context 
of the samples. Still, studies reporting rGE, especially those 
using PGS, are scarce.

Partitioning Genetic Vulnerability to Smoking in EA 
and Non‑EA Components

The first aim of this study is to disentangle genetic effects 
that influence smoking through (rGE with) EA from other, 
more direct genetic components. That is to say, we model 
the genetic predisposition for EA and subtract it from the 
total genetic liability for smoking. This way, we can assess 
the contribution of EA (with its rGE components) in the 
etiology of smoking, and compare it to a ‘cleaner’ genetic 
component of smoking effects that are independent from EA. 
Second, we aim to test if the PGS based on either these more 
direct smoking variants (PGSsmok-noEA) or the EA variants 
(PGSEA) pick up better on G × E effects, as compared to a 
general PGS based on all smoking variants taken together 
(PGSallsmok). We test interactions with neighborhood qual-
ity and affluence. The G × E effects per PGS could go in 
different directions. On the one hand, if it is true that rGE 
effects dilute G × E effects (and we have taken some of them 
out of the equation by regressing out EA), the PGS assess-
ing the more direct smoking effects could be more sensitive 
for picking up G × E. In this case, individuals with a high 
PGSsmok-noEA may react more strongly to an unfavorable 
neighborhood environment and have a higher chance to start 
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smoking. On the other hand, it is also possible that individu-
als who are genetically liable for a high-risk environment 
react differently to that environment than people who are 
not. That is to say, individuals with a high PGSEA may be 
vulnerable to the environment, whereas people with a high 
genetic risk for smoking (high PGSsmok-noEA) have a higher 
chance to start smoking regardless of the environment. 
Comparing G × E effects between PGSs for all-smoking, 
smoking-without-EA, and EA could contribute to formu-
lating such competing hypotheses and shed more light on 
interplay between genetic and environmental vulnerability 
for smoking.

Methods

First, GWA analyses were performed to estimate SNP effects 
on smoking and EA. Second, using the results from these 
GWASs, EA effects were subtracted from smoking effects 
to capture smoking-without-EA. Third, polygenic scores 
were created to conduct follow-up tests of G × E effects with 
measures of EA and neighborhood SES. The first two steps 
were conducted using data from the UK Biobank, the third 
step was conducted in two independent samples from the 
Netherlands Mental Health Survey and Incidence Study-2 
(NEMESIS-2) and the Netherlands Twin Register (NTR).

Samples and Measures: UK Biobank

The GWA analyses on smoking, EA, and smoking-without-
EA were conducted in a sample from the UK Biobank. The 
UK Biobank contains phenotypic and genetic information 
from up to 500,000 inhabitants of the United Kingdom. 
It has received ethical approval from the National Health 
Service North West Center for Research Ethics Committee 
(reference: 11/NW/0382). Researchers can apply for access 
to this rich data set to conduct health-related studies. This 
study was conducted under project number 40310. For our 
analyses we selected N = 394,718 individuals from European 
ancestry for whom there was complete phenotypic and geno-
typic information. Mean age was M = 56.8 (range 39–73, 
SD = 8.0) and 54.2% of the sample was female.

To measure lifetime smoking in the UK Biobank we 
extracted information from all measurement instances of 
data fields 2867 and 2897 (age at smoking initiation), 2887 
and 3456 (cigarettes per day), and 20,116 (smoking initia-
tion yes/no). People indicating on field 2887 or 3456 to 
(have) smoke(d) one or more cigarettes per day were classi-
fied as smokers. People indicating on field 20,116 to never 
have been a smoker were classified as non-smokers. If field 
2887 and 3456 were unavailable, but people indicated on 
field 20,116, 2867, or 2897 to be an (ex-) smoker, they were 
classified as smokers. There were data for 272,943 (54.60%) 

never smokers and 226,795 lifetime smokers. To capture 
EA, we used the ISCED classification to transform reported 
educational levels from field 6138 to a standardized num-
ber of educational years (UNESCO Institute for Statistics 
2011). We selected the highest reported completed educa-
tional level and classified ‘none of the above’ (N = 90,360) 
as primary school only. Average years of education was 
M = 14.93, SD = 5.12, range = 7–20, N = 451,800.

Samples and Measures: NTR

In the second part of the study, we use data from two inde-
pendent samples from the Netherlands. The Netherlands 
Twin Register (NTR) is an ongoing longitudinal study of 
twins and their families which has been described in detail 
elsewhere (refer to Ligthart et al. 2019, also for a descrip-
tion of the genetic data). We included all available meas-
ures of smoking initiation that were collected between 1991 
and 2019 (from 15 different surveys, see Supplementary 
Table S1). Part of the sample is followed longitudinally, 
and new participants have been recruited continuously. In 
order to maximize sample size, we selected the most recent 
available measurement of smoking status for all participants. 
For N = 14,618 European ancestry adult individuals, there 
were genome-wide SNP and complete phenotypic data. For 
most participants, smoking data were collected between 
2013–2016 (N = 9426) or in 2009 (N = 1361; see Table S1). 
At the time of phenotype measurement, mean age was 
M = 43.31 (SD = 17.12, range = 18–94). Lifetime smoking 
was defined similarly as in the UK Biobank. Current and 
ex-smokers that (previously) smoked more than occasion-
ally (1 cigarette per day or 7 per week) were classified as 
smokers. Occasional and never smokers were classified as 
non-smokers. The sample consisted of 63.1% females and 
43.1% lifetime smokers.

To measure neighborhood SES (E in the G × E analysis) 
we focused on the average household income in the neigh-
borhood of residence. We identified the first four digits of the 
postal code of the participant at the time of measurement of 
the smoking phenotype, corresponding to the residential area 
at the level of neighborhoods. These digits were coupled 
to governmental registration data on neighborhood-level 
income (Centraal Bureau voor de Statistiek (CBS) 2012). 
The CBS determined average monthly income per household 
before tax (rounded at hundreds) in 2004 and 2010. We used 
the neighborhood data that were closest in time to survey 
used to assess lifetime smoking. Data were available for 
N = 12,584 participants, who on average lived in neighbor-
hoods with a per-household monthly income of M = 2678.64 
(SD = 934.40, winsorized at min = 500 and max = 10,000).

In the follow-up analyses we focused on satisfaction 
with life, which was available in 4 different surveys. It was 
measured using the translated Satisfaction with Life Scale 
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(Arrindell et al. 1999; Diener et al. 1985), a survey with five 
7-point Likert items on how happy people are with their 
life. The sum score on this scale was coupled to contem-
poraneous neighborhood income using similar procedures 
as before, prioritizing the measurements closest in time to 
the measure of neighborhood income. Average satisfaction 
with life was M = 26.97 (SD = 5.23, range = 5–35, N = 9257).

Samples and Measures: NEMESIS‑2

The Netherlands Mental Health Survey and Incidence 
(NEMESIS-2) is a population sample of more than 6500 
individuals that were followed in four measurement waves 
spaced out between 2007 and 2018. The aim was to moni-
tor the occurrence and course of common mental disorders 
in the general population (De Graaf et al. 2010). For this 
study, we used data from the second wave (conducted in 
2010–2012), where a measure of neighborhood quality was 
available. For a sub sample of N = 3090 European-ancestry 
individuals genetic and phenotypic data were available. 
About half of the sample was female (56.1%), and mean 
age at wave 2 was 47.2 (SD = 12.5, range = 21–71).

To assess smoking we used questionnaire items on smok-
ing status. People were classified as smokers if they self-
identified as current or ex-smokers; (former) occasional 
smokers were classified as never-smokers. A third of the 
sample classified as lifetime smokers (30.2%). To measure 
neighborhood quality, we used a sum score of 5 standard-
ized Likert scale survey items, including appreciation of the 
neighborhood, frequency of noise from neighbors, traffic, 
or other sources in the neighborhood, frequency of feeling 
unsafe if walking alone in the neighborhood during the day, 
frequency of feeling unsafe if walking alone in the neighbor-
hood during the night, and frequency of observing vandal-
ism. Items were re-coded in the positive direction, such that 
a higher score means a higher neighborhood quality.

Since neighborhood quality was not measured at base-
line, we used wave 2 data. There was some attrition from 
baseline (N = 319), which incited us to employ the auto-
matic multiple imputation procedure from SPSS to sup-
plement wave 2 neighborhood quality. We used 32 unique 
sociodemographic measures as predictors (see Supple-
mentary Table S2). Because each imputed value is subject 
to some random variation, we imputed 25 datasets and 
interpret the pooled results. In total, 10.3% of the neigh-
borhood quality data were imputed using this procedure. 
Across analyses, we compared the pooled results with the 
results using the original data, and saw that differences 
were negligible. For the smoking outcome, we carried for-
ward baseline data in case they were missing at wave 2. In 
follow-up analysis we looked at mental health as outcome. 
To measure this, we used a clinical rating if someone had 
met criteria for any DSM-IV axis-I disorder since the 

baseline measurement. If wave 2 data were unavailable 
while someone had met criteria for a disorder at baseline, 
we carried forward the baseline data (N = 92 individuals). 
Remaining missingness (N = 227) was imputed using the 
same baseline predictors as before. DSM-IV contains 
18 disorder categories (including for example mood and 
psychotic disorders) with in total almost 300 different 
diagnoses. Diagnoses were made based on the Composite 
International Diagnostic Interview (CIDI) 3.0 by a trained 
professional (De Graaf et al. 2010). In total, 541 of the 
participants (17.5%) had recently met criteria for any dis-
order at wave 2 (since the last interview or in the past year 
for individuals who only had wave 1 data).

GWAS in UK Biobank to Model EA and Non‑EA 
Effects on Smoking

In the first step, we ran GWASs to capture genetic associa-
tions for lifetime smoking and EA (yellow panel in Fig. 1). 
We used the fast-GWA package from GCTA (Yang et al. 
2011). GCTA makes use of a genetic relatedness matrix 
to account for relatedness in the sample. To reduce com-
putational demand for subsequent analyses we limited the 
GWASs to 1.3 million HapMap3 SNPs (International Hap-
Map 3 Consortium 2010). We filtered out SNPs with minor 
allele frequency below 1%, divergence from Hardy–Wein-
berg disequilibrium with pHWE < 10–10, and call rate below 
95%. We included genetic sex, standardized age, standard-
ized year of birth, and 25 principal components (PCs) for 
genetic ancestry as covariates. These PCs were determined 
using PCA, as described in more detail in Abdellaoui et al. 
(2019).

In the next step, we used the summary statistics to fit a 
mediation model capturing genetic effects on smoking, EA, 
and smoking-without-EA in Genomic Structural Equation 
Modeling (Genomic SEM, Grotzinger et al. 2018). To obtain 
a smoking-without-EA GWAS, we regressed smoking on all 
genetic variants as well as on EA (blue panel, Fig. 1). The 
model yielded two sets of GWAS results, one for SNP effects 
on smoking independent from EA (‘smoking-without-EA’, 
grey path) and one for SNP effects on EA (red path from 
SNP to EA). We inspected the GWAS results and performed 
post-processing analyses using FUMA on default settings to 
inspect the genetic architecture of the different traits (version 
v1.3.6a, Watanabe et al. 2017). We used LDscore regression 
(Bulik-Sullivan et al. 2015) to assess SNP-based heritability 
(the variance explained in the traits by all SNPs concur-
rently) and genetic correlations with other traits. SNPs and 
genes that were genome-wide significantly associated with 
one of our traits were looked up in the GWAS catalog from 
EMB-EBI (Buniello et al. 2019) to examine whether they 
were previously associated with other phenotypes.
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Polygenic Score Analysis to Test Genetic and SES 
Influences on Smoking

PGS were created in NTR and NEMESIS-2 based on the 
total smoking GWAS, EA, and smoking-without-EA sum-
mary statistics from the Genomic SEM model. A PGS 
can be created in a new sample by weighting variants by 
their GWAS effect size and aggregating them in a single 

score per individual. We used GCTA-SBLUP to take into 
account the linkage disequilibrium (LD) structure in the 
European population before creating the PGS, as this 
improves prediction accuracy (Robinson et al. 2017; Yang 
et al. 2011). An additional advantage of SBLUP is that no 
p-value threshold needs to be established for including 
SNPs in the PGS (as is the case for some other PGS com-
putation methods); rather, the whole genome is weighted 

Fig. 1   Flow-chart of the different analysis phases, with each phase 
in a different colour. In the Genomic SEM model, path (a) denotes 
the EA GWAS (direct SNP-EA associations), path (b) the smok-
ing GWAS (direct SNP-smoking associations), and path (c’) the 
SNP-smoking association remaining after controlling for mediation 
through EA, capturing SNP effects on smoking-without-EA. In the 

NEMESIS-2 sample we used multiple imputation, such that N was 
constant (N = 3090) for all analyses. PGS PolyGenic Score, EA edu-
cational attainment, PGSEA  PGS for EA, PGSsmok-noEA  PGS for smok-
ing-without-EA, PGSallsmk  PGS for lifetime smoking (Color figure 
online)
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and integrated in the score. Using the SBLUP weighting 
scheme, the actual individual-level scores were computed 
with PLINK (Purcell et al. 2007) and merged to the phe-
notypical data in SPSS.

We tested the associations between these PGSs and life-
time smoking in NTR and NEMESIS-2. In order to compare 
the different PGS components, we first regressed the smok-
ing outcome on the ‘all smoking’ PGS (PGSallsmok; model 
1a), and then on the PGS for EA (PGSEA) and the PGS for 
smoking-without-EA (PGSsmok-noEA) together to assess their 
relative contribution (model 1b). All continuous variables 
were standardized. Covariates included in the model were 
age, sex, and the first ten principal components for genetic 
ancestry (PCs). In addition, in NTR we controlled for the 
genotyping batch, as several different SNP arrays have been 
used over the course of data collection. Also, because of 
the family structure in NTR, we used generalized estimating 
equations (GEE) to correct for clustering in this sample, 
whereas standard logistic regression could be employed in 
NEMESIS-2. Secondly, we included a measure of neighbor-
hood quality to test its effect on smoking in the two different 
PGS models (model 2a and 2b). Third, we added neigh-
borhood quality x PGS terms, comparing a model with the 
PGSallsmok (model 3a) with a model with the PGSSES and 
the PGSsmok-noSES (model 3b). In models 3a-b, we added the 
interaction terms between the PCs, the PGSs, and the neigh-
borhood predictor (Keller 2014). Finally, we repeated these 
analyses with a measure of satisfaction with life (in NTR) 
and mental health (in NEMESIS-2) to see if the effects of 
PGSEA and PGSsmok-noEA are specific to smoking, or have 
a wider impact. If the PGSsmok-noEA shows no relationship 
to mental health, this would be in support of our effort to 
‘regress out’ EA effects, indicating that it captures genetic 
effects specific to smoking. To correct for multiple testing, 
we divided a conventional 0.05 p-value threshold by eight 
independent tests (2 samples, 2 outcomes, 1 group of inter-
dependent genetic predictors, and 2 neighborhood predic-
tors) resulting in a threshold of p < 0.006. To compute R2 
of the individual PGSs, we regressed the outcomes on the 
PGS and the genetic covariates (genotyping batch and PCs; 
the genetic covariates hardly added any explained variance, 
data not shown). As R2 is not provided in GEE analyses, we 
were unable to control for family structure here.

Results

The results of the GWASs for smoking and EA in UK 
Biobank can be found in the supplement. Supplementary 
Tables S3-4 show the independent genome-wide significant 
risk loci for the traits (at R2 < 0.1 and distance > 250 kb). 
In Supplementary Figures S1-2 Manhattan plots are pre-
sented. There were 112 independent variants identified 

for lifetime smoking, with the strongest association with 
a SNP in NCAM1 on chromosome 11. SNP-based herit-
ability (h2) for lifetime smoking was 9.2% (SE = 0.29). The 
GWAS of EA identified 276 independent significant loci 
(h2 = 14.2%, SE = 0.42), with the strongest SNP rs9372625 
in AL589740.1 on chromosome 6. The SNP h2 for EA was 
14.2%.

Modeling Direct Genetic Effects and EA Effects 
on Smoking

Using Genomic SEM, we fitted the model represented in 
Fig. 1 (blue panel) based on the genetic correlations between 
traits as measured by the summary statistics from the con-
ducted GWASs. We tested a mediation model with the SNPs 
as the predictors, smoking as the outcome, and EA as the 
mediator. We were interested in path c’, representing the 
genetic effects on smoking that remained after taking into 
account the effects that were mediated by EA. The summary 
statistics for c’ thus constitute smoking-without-EA.

The GWAS for smoking-without-EA identified 47 genetic 
loci (Table S5 and Fig. 2) and yielded a SNP-based herit-
ability of 7.2% (SE = 0.28). The top SNP was rs10891487, 
an intron variant in the NCAM1 gene. This SNP and its LD 
partners have been associated with traits related to risk tak-
ing, substance use, cognitive ability, and socioeconomic sta-
tus (Table S6). The strongest associations on the gene-level 
were found for NCAM1 on chromosome 11 and CADM2 on 
chromosome 3 (Table S7; Figure S3). NCAM1 was already a 
top-gene for smoking before controlling for shared effects on 
EA (Figure S1), whereas the effect of CADM2 was boosted 
after controlling for EA. Both genes have been implicated 
in numerous risk and substance use behaviors (Table S6), 
are highly brain expressed, and play a role in neuronal cell 
adhesion.

We performed sensitivity analyses to check if the 
Genomic SEM model succeeded in capturing smoking-
without-EA by computing genetic correlations between 
smoking-without-EA and other traits (Table S8). Results 
are summarized in Fig. 3. The genetic correlation between 
smoking-without-EA and the original smoking trait was 
rg = 0.97, suggesting that the genetic architecture of smoking 
was only mildly affected by subtracting EA effects. The cor-
relations with EA (UK Biobank summary statistics as well 
as GWAS summary statistics from an external, independent 
sample; see Supplementary Table S8 for the source of the 
used summary statistics) were greatly reduced as compared 
to the original association (original: rg =  − 0.35; after sub-
traction: rg =  − 0.09), suggesting that we largely succeeded 
at subtracting EA effects. Genetic correlations between 
smoking-without-EA with other SES-indicators (neighbor-
hood deprivation and income) were similarly attenuated. The 
correlation between smoking and intelligence disappeared 
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after subtracting EA, showing that both cognitive and SES-
related components of EA were partialled out. The correla-
tions with smoking-related traits (age at initiation, cigarettes 
per day, nicotine dependence, cessation, cannabis initiation, 
and risk-taking behavior) were also attenuated, but less so; 
this attenuation likely represents some signal loss resulting 
from the subtraction. The correlation between smoking and 
psychopathology (‘cross disorder,’ the genetic vulnerability 
across different disorders) remains virtually unchanged after 
subtracting EA, suggesting that this association is not (com-
pletely) driven by overlap of psychopathology and smoking 
with EA.

Polygenic Scores

Table 1 presents the results of the PGS analyses in NTR 
and NEMESIS-2, showing the association of the PGSs based 
on the EA and smoking-without-EA GWAS with lifetime 
smoking (parameter estimates for the full results including 
genetic covariates can be found in Tables S9a and S10a). In 
all models, all PGSs significantly predicted lifetime smok-
ing. Individually, the PGSallsmok, PGSEA, and PGSsmok-noEA 
explained respectively 3.1%, 2.2%, and 0.5% of the variance 
in smoking in NTR, and 4.4%, 2.3%, and 0.8% in NEM-
ESIS-2. Combined into the same model, the PGSs explained 
at total of 6.3% of the variance in smoking in NTR and 4.5% 
in NEMESIS-2. The effect of PGSEA on smoking was nega-
tive, such that having a genetic predisposition for a higher 
EA was associated with lower chances of being a smoker.

In NTR, higher neighborhood income was associated 
with lower chances of smoking (R2 = 1.9% for neighbor-
hood only). There were no significant G × E interactions 

after correction for multiple testing, although the interac-
tions did add a small amount of explained variance (about 
0.2%; neighborhood-by- PGSallsmok p = 0.034, neighbor-
hood-by-PGSEA p = 0.014, neighborhood-by-PGSsmok-EA 
p = 0.141). In all cases the directions were such that the 
effect of the PGS was stronger for people living in a lower 
income neighborhood. The model with all effects combined 
(main, interactions and covariates) explained 18.9% of the 
variance in lifetime smoking. In NEMESIS-2, neighborhood 
quality was not a significant predictor of smoking. There 
were no interactions between neighborhood quality and any 
PGS. All effects combined explained 8.1% of the variance 
in lifetime smoking.

One of the aims of the PGSsmok-noEA was to capture 
genetic variation that was less diluted by rGE with EA. 
As a crucial first sensitivity analysis to test if this goal was 
achieved, we regressed EA and neighborhood-SES on the 
different PGSs (controlling for genetic covariates and sex 
and age; see Table 2). The PGSallsmok and PGSEA signifi-
cantly predicted EA in both NTR and NEMESIS-2. In NTR, 
PGSallsmok and PGSEA also showed rGE with neighborhood 
income. Crucially, the relationship between PGSsmok-noEA 
and EA was greatly reduced in both samples, and there was 
no rGE between the PGSsmok-noEA and neighborhood-SES. 
Thus, it seems that we largely succeeded in excluding rGE 
with neighborhood-SES by subtracting EA effects from the 
smoking PGS. Even if partialling out EA effects is unlikely 
to remove all rGE from smoking, our approach was effective 
for targeting the rGE with neighborhood-SES.

Because in NEMESIS-2 there was no main effect of 
neighborhood quality, it was not to be expected that it would 
augment PGS effects in a G × E. As a second sensitivity 

Fig. 2   Manhattan plot for the GWAS on smoking-without-EA, where EA effects were subtracted from the smoking GWAS in Genomic SEM. 
The red line denotes the genome-wide significance threshold of p = 5E−08 (Color figure online)
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analysis, we therefore repeated the PGS tests with baseline 
EA (low, medium, high) as an alternative measure of SES 
(replacing neighborhood quality). We found a significant, 
negative association between EA and lifetime smoking, but 
there were no significant G × E effects (p = 0.072–0.242). 
The interactions did explain some variance in smoking 
(0.7–0.9%; Supplemental Table S11a), and followed a pat-
tern such that PRSEA only had effects on low to medium 
levels of education, whereas the effect of PRSsmok-noEA and 
PRSallsmok were stronger at higher levels of education.

As a final sensitivity analysis, we repeated the analyses 
for measures of mental health and wellbeing (see Supple-
mentary Table S9b, S10b and S11b). In NTR, higher PGSEA 
and higher neighborhood income significantly predicted 
more satisfaction with life (R2 = 1.0% and 2.0%, respec-
tively); the effects of PGSallsmok and PGSsmok-noEA were not 
significant (R2 = 0.4% and 0.1%). There were patterns for 
G × E between neighborhood income and PGSallsmok and 
PGSsmok-EA, but these did not survive correction for multiple 
testing. The direction was such that the smoking PGSs had 
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Fig. 3   Heat map of genetic correlations between the smoking-
without-EA GWAS and SES- and smoking related traits. Below 
the diagonal are the correlation estimates, with colors indicat-
ing the direction (red = negative; blue = positive) and strength 
(dark = strong; light = weak) of the association. Above the diagonal 
corresponding p-values are reported, with in grey those that were 

not significant after correcting for multiple testing with 15 traits 
(p = 0.05/15 = 0.002). Trait description and sources can be found in 
Supplementary Table S8 (note: deprivation and income summary sta-
tistics were derived from our own GWAS analysis of the UK-Biobank 
sample) (EA educational attainment, extern same trait but from inde-
pendent GWAS source, inf infinitesimal) (Color figure online)
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Table 1   Results of the 
polygenic score (PGS) analyses 
in the NTR and NEMESIS-2 
sample with lifetime smoking as 
outcome

Models include the effects of the PGS based on EA and the PGS based on smoking-without-EA, main 
effects of neighborhood environment (income in NTR; quality in NEMESIS-2), and interaction between 
PGSs and neighborhood. Covariates in all models 0-3b included age, sex, and the first 10 principal com-
ponents (PCs) for genetic ancestry; in models 3a-b we also added the interaction terms between the PGSs, 
PCs, and neighborhood (parameters estimates for all predictors can be found in Supplementary Tables S9a 
and S10a). Effects with p < 0.006 (corrected for 8 independent tests) are bold-faced. Explained variance (R2 
of the total model is given, with the difference to the null model (Δ)
PGS polygenic score, allsmok all smoking, EA educational attainment, smok-noEA effects on smoking 
independent from EA, Neighborhood (neigh) neighborhood characteristics, in NTR neighborhood-level 
income, in NEMESIS-2 neighborhood quality

Lifetime smoking NTR (N = 12,584–14,618)a Lifetime smoking NEMESIS-2 (N = 3090)

b SE OR p b SE OR p

0
 Age 0.706 0.021 2.03 1.46E − 252  − 0.125 0.083 0.883 0.133
 Sexb  − 0.291 0.036 0.748 9.46E − 16  − 0.158 0.042 0.854 2.07E − 4

R2 = 11.7% R2 = 1.9%
1a
 PGSallsmok 0.389 0.019 1.476  < 1E − 320 0.354 0.042 1.424  < 1E − 320
 Age 0.652 0.022 1.919  < 1E − 320  − 0.165 0.043 0.848 1.38E − 04
 Sex  − 0.273 0.037 1.314 1.41E − 13  − 0.141 0.084 0.869 0.095

R2 = 16.3% (Δ = 4.6%) R2 = 5.4% (Δ = 3.5%)
1b
 PGSEA  − 0.223 0.020 0.800  < 1E − 320  − 0.462 0.059 0.630 5.33E − 15
 PGSsmok-noEA 0.347 0.019 1.415  < 1E − 320 0.335 0.058 1.398 8.36E − 09
 Age 0.663 0.022 1.941  < 1E − 320  − 0.169 0.043 0.845 9.49E − 05
 Sex  − 0.272 0.037 1.313 1.84E − 13  − 0.138 0.084 0.871 0.100

R2 = 16.8% (Δ = 5.1%) R2 = 4.9% (Δ = 3.0%)
2a
 PGSallsmok 0.396 0.022 1.486  < 1E − 320 0.354 0.042 1.425  < 1E − 320
 Neighborhood  − 0.158 0.023 0.854 1.77E − 11 0.071 0.042 1.073 0.091

Age 0.798 0.028 2.222  < 1E − 320  − 0.167 0.043 0.846 1.19E − 04
 Sex  − 0.273 0.043 1.314 1.89E − 10  − 0.148 0.084 0.863 0.080

R2 = 18.2% (Δ = 6.5%) R2 = 5.6% (Δ = 3.7%)
2b
 PGSEA  − 0.196 0.022 0.822  < 1E − 320  − 0.461 0.059 0.631 6.44E − 15
 PGSsmok-noEA 0.359 0.022 1.432  < 1E − 320 0.336 0.058 1.399 7.91E − 9
 Neighborhood  − 0.145 0.023 0.865 5.32E − 10 0.064 0.042 1.067 0.123
 Age 0.804 0.028 2.235  < 1E − 320  − 0.171 0.043 0.843 8.40E − 05
 Sex  − 0.272 0.043 1.312 2.56E − 10  − 0.145 0.084 0.865 0.086

R2 = 18.4% (Δ = 6.7%) R2 = 5.2% (Δ = 3.3%)
3a
 PGSallsmok 0.398 0.022 1.489  < 1E320 0.361 0.043 1.435  < 1E320
 Neighborhood  − 0.171 0.024 0.843  < 1E320 0.027 0.054 1.028 0.616
 PGSallsmok × neigh  − 0.046 0.022 0.955 0.034  − 0.028 0.050 0.972 0.571
 Age 0.801 0.028 2.228  < 1E320  − 0.171 0.044 0.843  < 1E320
 Sex 0.278 0.043 1.320  < 1E320  − 0.135 0.087 0.874 0.122

R2 = 18.5% (Δ = 6.8%) R2 = 6.5% (Δ = 4.6%)
3b
 PGSEA  − 0.190 0.023 0.827  < 1E320  − 0.257 0.044 0.774  < 1E320
 PGSsmok-noEA 0.360 0.022 1.433  < 1E320 0.289 0.043 1.335  < 1E320
 Neighborhood  − 0.163 0.024 0.850  < 1E320 0.037 0.056 1.038 0.504
 PGSEA × neigh 0.053 0.022 1.054 0.014 0.009 0.049 1.009 0.852
 PGSsmok-noEA × neigh  − 0.031 0.021 0.969 0.141  − 0.024 0.050 0.976 0.629
 Age 0.809 0.028 2.246  < 1E320  − 0.174 0.044 0.840  < 1E320
 Sex 0.277 0.043 1.319  < 1E320  − 0.145 0.088 0.865 0.098

R2 = 18.9% (Δ = 7.2%) R2 = 8.1% (Δ = 6.2%)
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a negative effect on satisfaction with life only at high neigh-
borhood income (both R2 < 0.1%, p = 0.026 and p = 0.025, 
respectively). In NEMESIS-2, PGSEA was significantly 
negatively related to the risk of having a recent diagnosis 
of a psychiatric disorder (R2 = 1.2%), as was neighborhood 
quality (1.1%). The PGSallsmok predicted mental health less 
strongly than the PGSEA (only reaching significance in the 
models including neighborhood quality, R2 = 0.6%), and the 
effect of the PGSsmok-noEA on mental health did not reach 
significance (R2 = 0.4%). There were no G × E patterns for 
mental health in NEMESIS-2.

Discussion

This study showed that the genetic signatures for educational 
attainment (EA) and smoking overlap substantially, but EA 
effects can be disentangled to some extent from smoking. 
After ‘subtracting’ EA effects from the genetic architecture 
of smoking, still 7.2% of the variance in smoking could be 
explained by SNP effects (as compared to 9.2% before sub-
tracting). This suggests that the more ‘direct’ component 
of the genetic variance is important, and not all variance 
in smoking can be explained through gene–environment 
correlation (rGE) with EA. We showed that the genetic 

correlations of smoking with EA and SES-related traits were 
reduced after subtracting EA, whereas the correlations with 
smoking traits were less affected. Thus, our approach to sub-
tracting the EA component from the genetic architecture of 
smoking was successful.

Polygenic scores (PGS) based on the regular smoking 
GWAS (‘all-smoking’), the EA GWAS, and the GWAS for 
smoking independent from overlap with EA (‘smoking-
without-EA’) all significantly predicted smoking in two 
independent samples. The PGS for all-smoking explained 
the largest amount of variance in smoking, followed by 
the PGS for EA. Thus, the ‘smoking-without-EA’ effects 
had lower predictive power, in spite of its substantial SNP-
heritability and cleaner signal. This lower predictive ability 
could be simply due to loss of statistical power, or might 
indicate that genetic predisposition for EA actually con-
tributes more strongly to smoking than comparatively more 
‘direct’ genetic smoking effects. This suggestion aligns with 
research showing that genetic risk factors for smoking initia-
tion are often of a more general behavioral nature, including 
for example genes associated with risk taking proneness, as 
compared to risk factors for smoking quantity and nicotine 
dependence, that are more related to the biological effects of 
smoking (Karlsson Linnér et al. 2019; Liu et al. 2019; Wang 
and Li 2010). However, it should be noted that it is likely 

a Due to missingness in the neighborhood measure, model 2 and 3 had a sample size of N = 12,584
b Sex was coded 1 = male, 2 = female

Table 1   (continued)

Table 2   Relationships between 
the PGSs and measures of 
educational attainment and 
neighborhood-SES, controlled 
for genetic covariates (10 PCs 
in both samples as well as 
genotyping batch in NTR) and 
sex and age

The relationships were tested in separate models, so that these models do not control for overlap between 
the PGSs
a Educational attainment. In NTR, 4-level variable with 1 = primary school, 2 = lower vocational/ lower sec-
ondary school, 3 = intermediate vocational/intermediate and high secondary school, and 4 = higher voca-
tional/ university; in NEMESIS-2, 3-level variable with 1 = primary/lower secondary, 2 = higher secondary, 
3 = higher professional education
b In NTR, a measure of neighborhood-level income; in NEMESIS-2, a survey-based measure of neighbor-
hood quality
*R2 is given for the model excluding age and sex

NTR (N = 8989 for EA and N = 12,584 for 
neighborhood)

NEMESIS-2 (N = 3090)

PGSallsmok PGSEA PGSsmok-noEA PGSallsmok PGSEA PGSsmok-noEA

EAa

 b  − 0.059 0.221  − 0.016  − 0.08 0.228  − 0.031
 SE 0.009 0.008 0.009 0.015 0.014 0.014
 p 6.24E − 12 2.12E − 144 0.070 4.80E − 08 2.28E − 59 0.030
 R2* 2.3% 7.7% 1.8% 1.0% 8.1% 0.2%

Neighborhoodb

 b  − 0.039 0.126  − 0.011 0.027 0.001 0.025
 SE 0.010 0.0116 0.0104 0.08 0.019 0.018
 p 1.63E − 04  < 5E − 300 0.281 0.147 0.950 0.177
 R2 0.6% 2.0% 0.5% 0.3% 0.2% 0.3%
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that we also subtracted some ‘real’ smoking effects in our 
smoking-without-EA factor. For example, if a variant causes 
lifetime smoking, and smoking in turn causes lower EA (or 
vice versa; Gage et al. 2018, 2020), subtracting EA would 
eliminate the effect of that smoking variant. Such mecha-
nisms may have contributed to the lower genetic signal in 
the smoking-without-EA GWAS, and the lower predictive 
power of its PGS.

For mental health and wellbeing we observed a contribu-
tion of genetic effects for EA, but no effects of the smok-
ing-without-EA PGS, suggesting that these PGSs indeed 
captured what was purported. The variance explained by 
the EA PGS was higher than the variance explained by the 
all-smoking PGS, which captured both EA and smoking 
effects, which shows that taking into account genetic smok-
ing effects diluted rather than strengthened the predictive 
power. This could indicate that previously observed (genetic) 
associations between smoking and mental health/ wellbeing 
outcomes (Jang et al. 2020; Okbay et al. 2016) could be 
explained in part through genetic overlap between smoking 
and EA on the one hand and mental health and EA on the 
other. Overall, it seems that pleiotropy of genetic variants 
associated with EA play an important role in both smoking 
and mental health (Marees et al. 2020).

We further investigated the possibility that the different 
PGSs would show different profiles of G × E with environ-
mental risk for smoking. If rGE between genetic effects on 
smoking and EA decreases the chance for detecting G × E, 
the PGS for smoking-without-EA (PGSsmok-noEA) should be 
more sensitive to detect G × E. Alternatively, there was a pos-
sibility that people with a genetic susceptibility for a lower 
EA (PGSEA) would be more susceptible to environmental 
risk for smoking. Thus, we tested G × E of the PGSsmok-noEA 
and PGSEA with neighborhood quality. None of the interac-
tions survived correction for multiple testing, but there were 
suggestive effects that contributed some explained variance. 
Specifically, in NTR, a high PGSallsmok was more likely to 
lead to smoking in lower-income neighborhoods, and a high 
PGSEA was more likely to buffer against smoking in such 
neighborhoods. In NEMESIS-2, neighborhood quality had 
no main or interaction effects, so we used educational attain-
ment as a proxy for SES. Here, a high PGSsmok-noEA was 
more likely to result in smoking for people with a higher 
educational attainment, whereas there were no differences 
between smokers and non-smokers in PGSsmok-noEA at low 
educational attainment. If neighborhood income and EA are 
regarded as aspects of the same underlying construct of SES, 
the G × E patterns in NTR and NEMESIS-2 are incongruent 
(low SES amplified the PGS effects in NTR whereas high 
SES amplified PGS effects in NEMESIS-2). Furthermore, in 
NTR both smoking PGSs only had an effect on satisfaction 
with life at high neighborhood income, whereas no such 
G × E effects on mental health were observed in NEMESIS-2. 

These inconsistencies could suggest that G × E effects are 
specific to different aspects of the same environmental expo-
sure (although alternative explanations, such as sample dif-
ferences, are also possible). There were no clear patterns 
that could be discerned across samples and outcomes; the 
results did not clearly align with general models of differen-
tial susceptibility (Belsky and Pluess 2009) and did not show 
consistent differences between the type of PGS.

Important limitations of this study include the focus on 
smoking status rather than smoking quantity or nicotine 
dependence, which are more in-depth measures of smoking 
behavior and have been shown to be more heritable (Vink 
et al. 2005). However, given the need for statistical power we 
chose not to limit our analyses to sub samples of smokers, 
but rather used a general phenotype that was available for 
larger groups. Our use of the maximum sample size from 
the discovery sample (UK Biobank) and two independ-
ent target samples (NTR and NEMESIS-2) resulted in high 
power levels. We caution that the UK Biobank has been 
criticized based on its low representativeness and response 
rate which may affect (genetic) relationships between traits, 
although the extent of this seems small (Fry et al. 2017). 
While acknowledging this limitation, there is no more valu-
able resource in terms of sheer size, comprehensiveness, 
and accessibility than the UK Biobank. Although the NEM-
ESIS-2 sample size was limited, it included high-quality 
measures (especially of mental health), making it a valuable 
addition. The self-reported neighborhood quality measure 
did not predict smoking, which is not in line with previ-
ous literature. This could suggest that this measure does not 
reliably capture the neighborhood quality construct. Poten-
tially, feelings toward the neighborhood constitute some-
thing inherently different than actual affluence (de Vries 
et al. 2020; Wen et al. 2006). Our use of different measures 
across the samples for SES (neighborhood-level income, 
self-reported neighborhood quality, and individual-level 
EA) and mental health (satisfaction with life and mental 
disorders) could be viewed as a limitation. It has certainly 
complicated the interpretation of the diverse G × E patterns 
that were observed. On the other hand, the use of differ-
ent measures gives a more complete picture of the differ-
ent aspects of the constructs of interest. It has alerted us 
to the presence of potential differences for specific (G × E) 
relationships tested. Another limitation includes the small 
effect sizes of the PGSs, which is a common limitation of 
the PGS method resulting from GWAS-identified genetic 
effects explaining only part of the trait. As a final limita-
tion, our Genomic SEM model could not separate genetic 
effects on smoking that went via EA (i.e., were mediated by 
EA) from the total genetic effects for EA. Such ‘mediation’ 
variants might constitute a measure of vulnerability to EA 
circumstances, capturing the risk that a low EA would result 
in smoking behavior. A PGS based on such variants might be 
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more likely to show interaction with environmental circum-
stances. Future research could aim to capture variants that 
increase vulnerability to an environmental exposure, rather 
than variants that simply increase the chance of being in 
such an environment.

The findings from this study have some important impli-
cations. We showed that, to some extent, genetic effects 
on EA could be subtracted from genetic effects on smok-
ing, implying that besides overlap, there is also specific-
ity in the genetic risk for EA and smoking. Focusing on 
specific genetic risk for smoking could improve precision 
of genetic prediction models and provide information on 
EA-independent etiological processes. This study has shown 
the feasibility and potential usefulness of dividing genetic 
predisposition in sub components, given that the compo-
nents showed diverging patterns of overlap and their PGSs 
showed different main and interaction effects. This approach 
may be useful in other frameworks where it is important to 
tease apart pleiotropic and rGE effects, such as in Mende-
lian Randomization. The inconclusive G × E findings add to 
the mixed body of literature on G × E effects in substance 
use (Pasman et al. 2019). The fact that G × E effects did 
not reach significance and followed no clear pattern across 
different PGSs could be taken to suggest that G × E effects 
are small and specific to the individual relationships tested. 
The possibility that G × E effects are specific to the exact 
components that are in the PGS and in the environmental 
exposure opens up new lines for future research. Instead of 
reasoning from an overarching theoretical model (such as 
diathesis-stress or differential susceptibility) research could 
return to the drawing table and focus on testing interaction 
between specific genetic factors (e.g., ‘clean’ genetic risk 
factors, controlled for environmental covariates) and specific 
environmental factors (e.g., housing value). Furthermore, 
given the evidence for rGE, it seems hardly accurate to con-
tinue speaking of interaction with the environment, since 
environmental circumstances are not actually something 
separate from the individual and their genetic make-up. For 
example, subtracting EA resulted both in lower genetic cor-
relations with SES-related (environmental) traits, as well as 
with intelligence (cognitive). Similarly, even the neighbor-
hood where one lives is not strictly environmental but is 
under genetic influence (Laidley et al. 2019). Further layers 
of interplay can be added, and it is plausible that moderated 
rGE (e.g., where rGE effects differ per sub group; Wedow 
et al. 2018), or genetically mediated G × E effects exist (e.g., 
where vulnerability to G × E effects depend on some other 
genetic factor). Future research should be increasingly con-
scious about the meaning of statistical choices to model 
components as G, E, rGE, or G × E, and, preferably, test 
them concurrently.

Concluding, we show overlap and specificity in the 
genetic etiology of educational attainment and smoking. 

Gene-environment correlation plays an important role in the 
etiology of smoking. Although it has not provided definitive 
answers to our questions of G × E effects in substance use, 
we showed the feasibility of an approach based on modeling 
G × E using ‘partitioned’ genetic risk factors as a tool to 
investigate questions of overlap and interplay. Further refine-
ments of this approach could contribute to disentangling the 
knot of genetic and environmental factors in the etiology of 
smoking and other complex traits, while providing further 
insight into where they overlap and interact.
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