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Abstract Infant rodents emit ultrasonic vocalizations

when isolated from dam and littermates. Due to the context

of their occurrence and the well described bidirectional

modulation by substances known for their capability to

influence emotionality, it was postulated that such calls

reflect a negative affective state akin anxiety. Comparative

studies observed pronounced differences in calling behavior

between strains, which were paralleled by differences in

maternal care. Therefore, it was recently hypothesized that

early environmental factors may have strong impact on call

production. Here, the relative contributions of genetic

background, gender, and early environmental factors on

calling behavior in C57BL/6JOlaHsd and C57BL/6NCrl

were studied by using an embryo-transfer procedure. The

results show that these sub-strains differ in the amount of

calling and specific call features, like call frequency and

amplitude. The embryo-transfer procedure indicated that

the observed differences in the amount of ultrasonic calling

are dependent on the dyadic interaction between mother and

pup. Conversely, call features were primarily dependent on

the genotype of the pup. Thus, call frequency and frequency

modulation were solely dependent on the pup, i.e. its

genotype and gender. However, there was one exception,

namely call amplitude, which was solely dependent on the

genotype of the mother, i.e. on early environmental factors.

Furthermore, it was shown that particularly changes in call

amplitude might be of high functional relevance, since a

sub-strain dependent preference towards pups emitting calls

with high amplitudes was observed. In total, it can be

concluded that both genomic and nongenomic factors can

tune calling behavior in mouse pups.

Keywords Ultrasonic vocalization � Maternal care �
Pup retrieval � Individuality � Anxiety � Alpha-synuclein �
Embryo-transfer � Strain differences � Inbred � USV �
C57BL/6N � C57BL/6JOla

Introduction

Infant rodents emit ultrasonic vocalizations when isolated

from dam and littermates (e.g. Zippelius and Schleidt 1956;

for review see: Constantini and D’Amato 2006). Such calls

play an important role in pup survival, since they can elicit

maternal behavior, like retrieval (Allin and Banks 1972;

Ehret 1992; Ehret and Haack 1982; Sewell 1970; Smith

1976; Smotherman et al. 1974; Wöhr and Schwarting

2008; for review see: Ehret 2005). Importantly, isolation-

induced ultrasonic vocalizations seem to reflect a negative

affective state akin anxiety, since they are modulated by

anxiogenic and anxiolytic drugs (Gardner 1985; Insel et al.

1986; for review see: Hofer 1996). Also, these pup

vocalizations have been proposed as sensitive markers to
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evaluate alterations of neurobehavioral development

(Branchi et al. 2001). Therefore, they have received

increasing experimental attention, for example, to examine

the respective roles of genetic, maternal and other envi-

ronmental influences.

The importance of genetic effects was indicated by early

studies where differences between species and strains were

observed (Sales and Smith 1978). Within the species Mus

musculus, inbred strain differences in call rate and call

characteristics have been consistently observed (Bell et al.

1972; Cohen-Salmon et al. 1985; Hennessy et al. 1980;

Robinson and D’Udine 1982), and genetic studies have

shown, in summary, that call rate and probably all acoustic

call characteristics have a multiple genetic background

(Hahn et al. 1987, 1997, 1998; Hahn and Schanz 2002;

Roubertoux et al. 1996; Thornton et al. 2005). Ehret (2005)

explained this observation by the fact that genes in three

main areas of the infant development may affect ultrasonic

vocalizations, namely genes, which contribute to the per-

ceptual pathways of the nervous system that are responsible

for the perception of the releasing stimuli, genes that are

involved in the regulation of emotion and motivation, and

genes that are linked to the anatomical properties of the

breathing system and larynx. The multitude of genetic

influences on sound production was also observed in studies

on knockout mice. There it was found that mice with de-

myelization (Bolivar and Brown 1994), mice lacking Foxp2

(Shu et al. 2005), MeCP2 (Picker et al. 2006), oxytocin

(Winslow et al. 2000), or different receptors, like

mu-opioid (Moles et al. 2004), vasopressin 1b (Scattoni

et al. 2007), 5-HT1A (Weller et al. 2003), 5-HT1B (Brunner

et al. 1999; El-Khodor et al. 2004; Weller et al. 2003), and

CB1 (Fride et al. 2005) show altered calling behavior in

infancy.

Besides, numerous environmental variables, in partic-

ular maternal care, have also been shown to modulate

ultrasonic calling in rodents. Hofer and Shair (1978,

1980; for review see: Hofer 1996) showed that the mere

presence of the dam acutely inhibits ultrasonic calling.

Moreover, brief interactions of the pup with its dam can

induce an intensified vocal response during subsequent

isolation (Hofer et al. 1994, 1999; Moles et al. 2004;

Muller et al. 2005, 2008; Myers et al. 2004; Shair et al.

1997, 2003; for review see: Shair 2007). Apart from

acute and short-term effects, however, there are also data

suggesting that maternal behavior can have long-term

effects on ultrasonic calling of pups during isolation.

Such long-term effects were indicated by genetic analy-

ses, where small but persistent maternal effects on call

rate, duration, frequency, and frequency modulation were

observed (Roubertoux et al. 1996; Thornton et al. 2005).

A possible mechanism for maternal effects on ultrasonic

calling was observed by D’Amato and Populin (1987)

who found that call rate of normal mouse pups was

reduced when reared by deaf mothers, indicating that the

absence of an adequate response by the mothers can

result in a reduction of calling behavior. However, in

pups raised by normal mothers, reduced calling rates

may not result from the absence of adequate maternal

responses, but instead from a sustained level of maternal

care yielding anxiolytic-like effects. Recently, D’Amato

et al. (2005) demonstrated that pups raised by mothers

from the more responsive C57BL/6 strain elicited fewer

isolation-induced calls than those raised by the less

responsive BALB/c strain.

Strain differences in mice have been reported for

several measures of maternal behavior, like pup retrieval,

nest building, nursing, and licking (Carlier et al. 1982;

Cohen-Salmon et al. 1985; Champagne et al. 2007;

Hennessy et al. 1980). Evidence for maternal effects on

offspring development came from reciprocal breeding of

inbred mouse strains (Calatayud and Belzung 2001;

Calatayud et al. 2004) and cross-fostering studies

(Francis et al. 2003; Priebe et al. 2005; Zaharia et al.

1996; for review see: Gordon and Hen 2004). By using

an embryo-transfer, Francis et al. (2003) were able to

show that early environmental factors hold strong influ-

ence on anxiety-related behavior in adult mice. From rat

studies it is known that variations in the nursing style

affect the development of stable individual differences in

emotionality (Caldji et al. 1998; Francis et al. 1999;

Menard et al. 2004; Menard and Hakvoort 2007; Zhang

et al. 2005), and that isolation-induced calling is a sen-

sitive marker for differences in maternal licking

experienced throughout the first week of life (Wöhr and

Schwarting 2008).

The objective of the present study was to assess potential

causes of individual differences in various characteristics of

pup ultrasonic vocalizations in C57BL/6 mice. To disso-

ciate between effects of genetic background and early

environmental factors, an embryo-transfer was conducted,

where blastocysts of C57BL/6JOlaHsd (B6JOla) and

C57BL/6NCrl (B6N) were transferred to pseudo-pregnant

females either of the same or the other sub-strain. These

sub-strains were selected since it is known that they differ

in adult anxiety-related behavior, namely the course of

extinction of conditioned fear. Thus, C57BL/6JOla develop

lower levels of freezing to the context where they have

been shocked before, and their maximal fear responses

were restricted to a shorter period of time (Radulovic et al.

1998; Siegmund et al. 2005; Siegmund and Wotjak 2007;

Stiedl et al. 1999), reflecting a different susceptibility to

develop symptoms resembling those in posttraumatic stress

disorder (PTSD; Siegmund and Wotjak 2007).
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Materials and methods

Experiment I—embryo-transfer

Animals and housing

C57BL/6NCrl (B6N) mice were purchased from Charles

River Laboratories (Sulzfeld, Germany) and C57BL/6JO-

laHsd (B6JOla) mice were purchased from Harlan-

Winkelmann (Borchen, Germany). All mice were housed

in Makrolon type II long cages (36 9 21 9 12 cm) in the

specified pathogen free mouse facility of the Gene Centre

in Munich. Water and food (Ssniff, Germany) were freely

available. Room temperature was 25�C with 40% humidity

and a 12-h light/12-h dark cycle (lights on at 7 am). All

experiments and experimental procedures were approved

by the Committee on Animal Health and Care of the local

governmental body of the state of Bavaria (Regierung von

Oberbayern) and performed in strict compliance with the

EEC recommendations for the care and use of laboratory

animals.

General methods

By using an embryo-transfer, four developmental condi-

tions were created (Donor strain [ Recipient strain):

B6JOla [ B6JOla (n: males = 17, females = 16; 6 l),

B6JOla [ B6N (n: males = 7, females = 9; 4 l), B6N [
B6N (n: males = 27, females = 18; 7 l), B6N [ B6JOla

(n: males = 12, females = 8; 3 l). Pregnant females were

monitored for birth. Within 12 h of birth [postnatal day

(pnd) 0] litters with more than 10 pups were reduced to

10 animals/l by discarding surplus pups. Thereafter, ani-

mals remained undisturbed until behavioral tests started.

On pnd 7, pups were screened for isolation-induced ultra-

sonic calling and maternal retrieval behavior was

measured. Behavioral tests were conducted between 8 am

and 7 pm in a separate room.

Embryo-transfer

For the production of the embryos, 8-week-old females

were mated with males of the same mouse sub-strain. The

females were screened for vaginal plugs every morning

and evening. Females were killed at day 3 after finding a

vaginal plug (3.5 dpc) through cervical dislocation. The

uterus was removed and flushed with M2 medium con-

taining 0.4% bovine serum albumin (BSA) and the

blastocysts were collected under a stereomicroscope with

209 magnification (Nagy et al. 2003). The embryos were

transferred to M2 medium with 0.4% BSA microdrops on

a culture dish covered with paraffin oil at 37�C until

needed. Between 12 and 20 embryos were transferred into

the uterus of a pseudo-pregnant female recipient (2.5 dpc)

which was prepared by mating 12-week-old females with

vasectomized males. The skin and muscles of the anes-

thetized recipient were cut and the uterus externalized

from the peritoneal cavity. Under a stereomicroscope with

209 magnification, the uterus was punched with a needle

near the oviduct. A transfer pipette prepared with M2

medium and the embryos was inserted through the pun-

ched whole and the embryos were placed into the uterus.

Embryos of one mouse sub-strain were transferred to

recipients of the same mouse sub-strain and to recipients

of the other sub-strain, depending on the experimental

group.

Maternal retrieval behavior

To induce maternal retrieval behavior, all pups of a given

litter were removed from the nest and placed in the edge

most distal from the nest. Similar to most studies on

maternal retrieval behavior (Hahn and Lavooy 2005), the

test was performed in the home cage (36 9 21 9 12 cm)

on pnd 7. The latency to pick up the first pup and the

latency to retrieve the first and last pup were measured.

Isolation

To induce ultrasonic vocalization, pups were isolated for

5 min from the mother and nest on pnd 7. Pups were

individually removed from the nest in random order and

gently placed into a dish (8 9 8 9 3 cm) on a warming

plate at 27�C. The dish was placed in a sound attenuating

chamber (55 9 65 9 50 cm), which was prepared with

sound absorbent foam inside and covered outside with

aluminum foil. Ultrasonic vocalization was recorded using

an UltraSoundGate Condenser Microphone (CM 16; Avi-

soft Bioacoustics, Germany) suspended 7 cm from the

testing surface. The microphone was sensitive to frequen-

cies of 15–180 kHz with a flat frequency response (±6 dB)

between 25 and 140 kHz. It was connected via an Avisoft

UltraSoundGate 116 USB Audio device (Avisoft Bio-

acoustics) to a personal computer, and were recorded with

a sampling rate of 300,000 Hz in 16 bit format. Thereafter,

ultrasonic vocalization was analyzed using Avisoft

SASLab Pro (for details see: ‘‘Analysis of ultrasonic

vocalizations’’).

After recording, the pups were marked for identification

by foot tattoo with black drawing ink (Pelikan, Germany).

The dish was cleaned with Bacillol AF after each session.

After replacing the pup into the cage 5 min were allowed to

elapse until going on with the next littermate.
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Experiment II—maternal search behavior

Animals and housing

Timed pregnant B6N and B6JOla dams (n = 10, each)

were purchased from Charles River Laboratories and

Harlan-Winkelmann, respectively, in the last gestation

week. A total of 6 B6JOla and 5 B6N dams successfully

delivered the offspring and brought them up to pnd 7 to 10.

All mice were housed in Makrolon type II long cages

(36 9 21 9 12 cm). Water and food (Ssniff, Germany)

were freely available.

Playback task

Testing of maternal responses to playback of ultrasonic

calling was performed on a white platform (100 9 86 cm),

elevated 45 cm above the floor, under white light (about

350 lux) when pups were 7–10-days-old. In the center of

the platform, a petri dish (diameter: 15 cm, rim: 2 cm) was

situated, which was filled with soiled bedding from the

home cage, i.e. from the nest. For playback, two ultrasonic

speakers (ScanSpeak, Avisoft Bioacoustics), connected to

an external sound card (Fire Wire Audio Capture FA-101,

Edirol, UK) were used (for details see: Wöhr and

Schwarting 2007, 2008). They were placed opposite to

each other and 20 cm away from the elevated platform at a

height of 45 cm above the floor. One speaker was pseudo-

randomly chosen for playback, i.e. counter-balanced for

strain of the mother and test order. Playback of acoustic

stimuli was verified by using an UltraSoundGate Con-

denser Microphone (CM 16; Avisoft Bioacoustics), which

was placed 20 cm away from the platform and next to one

speaker. The microphone was connected via an Avisoft

UltraSoundGate 116 USB Audio device (Avisoft Bio-

acoustics) to a personal computer, where acoustic data

were displayed in real time by Avisoft RECORDER (ver-

sion 2.7; Avisoft Bioacoustics).

The following three acoustic stimuli were presented: (1)

white noise, (2) B6JOla ultrasonic vocalizations, and (3)

B6N ultrasonic vocalizations. To identify recordings of

ultrasonic vocalizations of within-transferred pups, which

optimally resembled the mean call characteristics of its

strain, hierarchical cluster analyses were applied using call

number and duration, total calling time, peak frequency

and amplitude, and frequency modulation. Values were

standardized to z scores before computing proximities

(squared Euclidian distance). By means of the cluster

method nearest neighbor, the pup was selected, of which

the calling behavior displayed in the first min in isolation

resembles best the mean call characteristics of its strain.

White noise was generated with Avisoft SASLab Pro

(version 4.38; Avisoft Bioacoustics). All stimuli were

presented with a sampling rate of 192 kHz in 16 bit format

with 65 dB.

A given animal was placed into the petri dish with

bedding from the nest. Behavioral recording started as soon

as the mouse had left the Petri dish for the first time (all

four paws on the platform). After an initial habituation

phase (3 min), the mouse was exposed to 3 presentations of

acoustic stimuli for 1 min, each followed by an inter-

stimulus-interval of 3 min. The first stimulus presented was

white noise. The second and third stimuli were ultrasonic

vocalizations of the own strain, i.e. B6JOla mothers were

exposed to B6JOla calls and B6N mothers to B6N calls.

Behavior was monitored by a black/white CCD video

camera (Conrad Electronic, Germany) from about 102 cm

above the platform, which fed into a video recorder (NV-

HS950, Panasonic, Germany). For behavioral analysis, the

platform was virtually divided into 3 equally-sized areas

(33 9 86 cm), namely (1) proximal to the active loud-

speaker, (2) distal from the active loudspeaker and (3)

central (including the Petri dish). A trained observer

measured the time spent in each of these areas. In addition,

the time spent in the petri dish was measured separately.

An entry was counted when all four paws crossed the

virtual grid line.

Behavioral testing was performed between 9 and 17 h.

Prior to each test, behavioral equipment was cleaned using

a 1% acetic acid solution followed by drying.

Pup discrimination task

Testing of maternal responses to natural ultrasonic calling

was performed on the same platform as used for the

playback experiment (for details see: ‘‘Playback task’’)

when pups were 7–10-days-old. In the forward middle of

the platform, a petri dish (diameter: 15 cm, rim: 2 cm) was

situated, which was filled with soiled bedding from the

home cage, i.e. from the nest. Additionally, two smaller

petri dishes (diameter: 9 cm, rim: 2 cm) without bedding

material were situated in the two most distal corners

(10 cm away from the edge). In each of them, a stimulus

pup from a foreign litter was placed. To avoid differences

in age, stimulus pups were littermates. Testing was per-

formed under 22�C.

A given mother was placed into the petri dish with home

cage bedding. The experiment was started when the mother

left the Petri dish for the first time (all four paws on the

platform), and stopped when the first pup was removed

from the small petri dish. Ultrasonic vocalization was

recorded using two UltraSoundGate Condenser Micro-

phones (CM 16; Avisoft Bioacoustics) suspended 12.5 cm

from the testing surface. They were connected via an

Avisoft UltraSoundGate 416 USB Audio device (Avisoft

Bioacoustics) to a personal computer, and were recorded
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with a sampling rate of 214,285 Hz in 16 bit format.

Thereafter, ultrasonic vocalization was analyzed using

Avisoft SASLab Pro (for details see: ‘‘Analysis of ultra-

sonic vocalizations’’). Behavior was monitored by

equipment described above. The time the mother spent in

contact with the small Petri dish, in which the pup was

placed, was measured.

Behavioral testing was performed between 13 and 17 h.

Prior to each test, behavioral equipment was cleaned using

a 1% acetic acid solution followed by drying.

Analysis of ultrasonic vocalization

For acoustical analysis, recordings were transferred to

SASLab Pro (version 4.38; Avisoft Bioacoustics) and a fast

Fourier transformation was conducted (512 FFT-length,

100% frame, Hamming window and 75% time window

overlap). Spectrograms were produced at 586 Hz of fre-

quency resolution and 0.427 ms of time resolution.

Call detection was provided by an automatic threshold-

based algorithm (threshold: -40 dB) and a hold-time

mechanism (hold time: 10 ms). Since no ultrasonic

vocalizations were detected below 30 kHz, a lower-cut-off-

frequency of 30 kHz was used to reduce background noise

outside the relevant frequency band to 0 dB. The accuracy

of call detection was verified by an experienced user. When

necessary, missed calls were marked by hand to be inclu-

ded in the automatic parameter analysis. Based on previous

studies on isolation-induced calling (Wöhr and Schwarting

2008), various parameters, including peak frequency and

peak amplitude, which were derived from the average

spectrum of the entire element, were determined automat-

ically. Peak amplitude was defined as the point with the

highest energy within the spectrum, and peak frequency

was defined as the frequency at the location of the peak

amplitude. The extent of frequency modulation, i.e. the

difference between the lowest and the highest peak fre-

quency within each call was also measured automatically.

Temporal parameters determined included call duration,

total calling time, and the duration of intervals between

subsequent calls. Finally, the total number of calls emitted

was measured.

Statistical analysis

For call duration, peak frequency, peak amplitude, and the

extent of frequency modulation, the mean of each call

parameter served as the statistical unit in each subject. To

test whether B6JOla and B6N pups differ in their calling

behavior following within-strain transfer, two-way analy-

ses of variance (ANOVAs) with the factors sub-strain of

the pup and gender were used. The contribution of genetic

predispositions, gender, and early environmental factors to

ultrasonic calling behavior in these two sub-strains was

determined by using a three-way ANOVAs with the factors

sub-strain of the pup, i.e. genotype, gender, and sub-strain

of the mother. Since it is known that individual pups within

one litter receive variable levels of maternal care and emit

highly variable numbers of isolation-induced vocalizations

(Wöhr and Schwarting 2008), statistical analyses were

based on individual pups. However, to control for potential

litter effects, ANOVAs were repeated by using the litter

average for males and females (Abbey and Howard 1973;

Zorrilla 1997). Maternal retrieval behavior was compared

between B6JOla and B6N pups in consideration of the

genotype of the mother by using two-way ANOVAs with

the factors sub-strain of the mother and sub-strain of the

pup. Maternal search behavior was compared by ANOVAs

for repeated measurements with the factors sub-strain and

test-phase (playback task), or sub-strain and maternal

preference (pup discrimination task). ANOVAs for repe-

ated measurements were used for the pup discrimination

task, since pups were from the same litter and therefore not

independent from each other. Finally, a principal compo-

nent analysis with varimax rotation using the Kaiser criterion

(eigen-values [ 1) was calculated to examine patterns of

relationships among call parameters. The exact P-values of

2-tailed testing were calculated, except when explicitly

noted. A P-value B 0.05 was considered statistically sig-

nificant. As measures of effect size partial g2 and Cohen’s

f were calculated. The g2 statistic describes the proportion

of total variability attributable to a factor. In case of

Cohen’s f, values of C0.100, C0.250, and C0.400 were

considered as small, medium, and large, respectively

(Cohen 1988). Data are shown as mean ± SEM.

Results

Experiment I—embryo-transfer: ultrasonic vocalization

Within-strain embryo-transfer

To test whether calling behavior differs between B6JOla

and B6N pups, their calling behavior was compared and

considerably differences between sub-strains were

observed (see Fig. 1). Firstly, B6JOla pups emitted more

calls than B6N pups (main effect pup: F1,74 = 5.664,

P = 0.020, g2 = 0.071, f = 0.274, power = 0.651), irre-

spective of gender (main effect gender: F1,74 = 0.886, P =

0.350, g2 = 0.012, f = 0.105, power = 0.153). On the

other hand, total calling time (main effect pup: F1,74 =

2.157, P = 0.146, g2 = 0.028, f = 0.165, power = 0.305)

and call duration (main effect pup: F1,74 = 1.590, P =

0.211, g2 = 0.021, f = 0.246, power = 0.238) did not

differ between the sub-strains, whereas females generally
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spent more time calling than males (main effect gender:

F1,74 = 4.155, P = 0.045, g2 = 0.053, f = 0.232, power =

0.521). This effect was based on a difference in call dura-

tion, since female calls were longer than male calls (main

effect gender: F1,74 = 7.012, P = 0.010, g2 = 0.087, f =

0.408, power = 0.743).

B6JOla and B6N pups also differed with respect to peak

frequency and peak amplitude, since calls emitted by

B6JOla pups were higher in frequency and amplitude

(main effect pup: F1,74 = 7.289, P = 0.009, g2 = 0.090,

f = 0.314, power = 0.760 and F1,74 = 18.899, P \ 0.001,

g2 = 0.203, f = 0.491, power = 0.990, respectively),

whereas gender had no effect (main effect gender: F1,74 =

0.004, P = 0.947, g2 \ 0.001, f = 0.007, power = 0.050

and F1,74 = 0.776, P = 0.381, g2 = 0.010, f = 0.002,

power = 0.140, respectively). Finally, frequency modula-

tion was higher in females (main effect gender: F1,74 =

9.429, P = 0.003, g2 = 0.113, f = 0.350, power = 0.858),

but did not differ between sub-strains (main effect pup:

F1,74 = 1.418, P = 0.238, g2 = 0.019, f = 0.128, power =

0.217). No evidence for an interaction pup 9 gender was

obtained (all P-values [ 0.100).

When data were reanalyzed by using the litter average

for males and females, a similar picture was obtained.

Thus, B6JOla pups tended to emit more calls than B6N

pups (main effect pup: F1,20 = 3.419, P = 0.079, g2 =

0.146, f = 0.605, power = 0.421). Calls emitted by

B6JOla pups tended to be higher in frequency (F1,20 =

3.258, P = 0.086, g2 = 0.140, f = 0.607, power = 0.405)

and showed higher peak amplitudes (F1,20 = 16.649, P =

0.001, g2 = 0.454, f = 0.908, power = 0.972). Call

duration, total calling time, and frequency modulation did

not differ between strains (all P-values [ 0.100). Further-

more, calling behavior did not differ between males and

females (all P-values [ 0.100), expect for a trend for a

more pronounced frequency modulation in females (F1,20 =

4.085, P = 0.057, g2 = 0.170, f = 0.435, power = 0.486).

No evidence for an interaction pup 9 gender was obtained

(all P-values [ 0.100).

Between-strain embryo-transfer

To test whether the observed differences are due to genetic

or early environmental factors cross-fostered pups were

added to the analysis. Results indicate that certain call

parameters were primarily dependent on early environ-

mental factors, whereas others were primarily dependent

on genotype or gender of the pup (see Table 1 and Fig. 2).

Thus, the finding that B6JOla emitted more calls than B6N

was based on early environmental factors (main effect

mother: F1,106 = 4.457, P = 0.037, g2 = 0.040, f = 0.192,

power = 0.553), whereas pup genotype did not directly

contribute to the observed difference (main effect pup:

F1,106 = 0.583, P = 0.447, g2 = 0.005, f = 0.005, power =

0.118). Additionally, an interaction between mother and

pup genotypes was observed (interaction mother 9

pup: F1,106 = 11.733, P = 0.001, g2 = 0.100, f = 0.320,

power = 0.924), since pups born and raised by females of

the same sub-strain emitted higher rates of ultrasonic calls

in comparison to pups born and raised by females of the

other sub-strain. This was especially true for B6JOla pups.

Remarkably, these effects were evident throughout testing
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Fig. 1 Column graphs comparing call number, total calling time (s),
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(white) pups originating from within-strain embryo-transfers, sepa-

rately for males (squares) and females (circles). Lines indicate the

arithmetic mean of the sample
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(see Fig. 3). Gender did not directly or indirectly influence

call number (main effect gender: F1,106 = 0.005,

P = 0.944, g2 \ 0.001, f = 0.006, power = 0.051; all

P-values for interactions [ 0.100).

A similar picture was obtained for total calling time.

Thus, the genotype of the mother affected the time spent

calling (main effect mother: F1,106 = 3.519, P = 0.063,

g2 = 0.032, f = 0.173, power = 0.460), whereas the

genotype of the pup did not directly affect total calling time

(main effect pup: F1,106 = 013, P = 0.910, g2 \ 0.001,

f = 0.010, power = 0.051). As for call number, however,

total calling time was primarily dependent on an interaction

between mother and pup sub-strain, since pups born and

raised by mothers of the same sub-strain spent a longer

time calling than pups born and raised by the other sub-

strain (interaction mother 9 pup: F1,106 = 6.121, P =

0.015, g2 = 0.055, f = 0.230, power = 0.689). Gender

had no effect on total calling time (main effect gender:

F1,106 = 0.725, P = 0.396, g2 = 0.017, f = 0.078,

power = 0.273; all P-values for interactions P [ 0.100).

Call duration was independent from genetic background,

early environmental factors, and gender (main effect

mother: F1,106 = 0.001, P = 0.971, g2 \ 0.001, f = 0.003,

power = 0.050; main effect pup: F1,106 = 2.043, P =

Table 1 Ultrasonic vocalization in B6JOla (J) and B6N (N) pups born and raised by either B6JOla (J) or B6N (N) mothers (donor [ recipient)

J [ J J [ N N [ N N [ J

Calls (n) M 325.88 ± 43.69 202.71 ± 49.22 252.48 ± 31.42 216.50 ± 39.67

F 396.38 ± 61.84 122.34 ± 45.28 263.56 ± 39.07 205.25 ± 55.57

Total calling time (s) M 7.86 ± 1.33 5.34 ± 1.21 7.59 ± 1.17 7.64 ± 1.78

F 13.51 ± 2.79 3.79 ± 1.52 8.82 ± 1.44 7.09 ± 2.59

Call duration (ms) M 22.43 ± 1.54 25.92 ± 4.73 27.35 ± 1.85 30.81 ± 2.72

F 30.26 ± 2.44 27.67 ± 2.35 30.63 ± 2.31 28.34 ± 3.37

Peak frequency (kHz) M 78.75 ± 1.29 78.81 ± 2.27 76.12 ± 0.93 76.17 ± 1.01

F 79.20 ± 0.99 79.01 ± 2.35 75.51 ± 1.41 76.34 ± 1.38

Call amplitude (dB) M 68.46 ± 0.77 67.32 ± 1.42 64.45 ± 0.60 67.39 ± 0.83

F 68.28 ± 0.87 64.26 ± 1.59 65.91 ± 0.69 66.17 ± 1.04

Frequency modulation (kHz) M 20.91 ± 0.90 21.34 ± 2.57 25.29 ± 1.19 28.50 ± 1.81

F 28.20 ± 1.80 25.06 ± 1.86 27.51 ± 2.07 29.89 ± 2.71

Descriptive statistics for B6JOla pups born and raised either by B6JOla mothers (J [ J) or by B6N mothers (J [ N), and B6N pups born and

raised either by B6N mothers (N [ N) or by B6JOla mothers (N [ J) regarding call number, total calling time (s), call duration (ms), peak

frequency (kHz), peak amplitude (dB), and frequency modulation (kHz). M = males; F = females. Values reflect means ± SEM
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modulation (kHz). Given are means ± SEM
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0.156, g2 = 0.019, f = 0.133, power = 0.294; main effect

gender: F1,106 = 1.871, P = 0.174, g2 = 0.017, f = 0.127,

power = 0.273; all P-values for interactions P [ 0.100).

Peak frequency was dependent on pup genotype only,

since B6JOla pups emitted calls with a higher peak fre-

quency than B6N (main effect pup: F1,106 = 7.810, P =

0.006, g2 = 0.069, f = 0.269, power = 0.791), irrespective

of the genotype of the mother (main effect mother: F1,106 =

0.049, P = 0.824, g2 \ 0.001, f = 0.022, power = 0.056),

or pup gender (main effect gender: F1,106 = 0.005, P =

0.944, g2 \ 0.001, f = 0.007, power = 0.051). No signifi-

cant interactions were observed (all P-values [ 0.100).

Conversely, peak amplitude was fully dependent on mater-

nal effects. Pups born and raised by B6JOla emitted calls

with a higher peak amplitude than pups born and raised by

B6N (main effect mother: F1,106 = 9.433, P = 0.003, g2 =

0.082, f = 0.276, power = 0.861). Genotype of the pup and

gender had virtually no influence on peak amplitude (main

effect pup: F1,106 = 2.596, P = 0.110, g2 = 0.024, f =

0.141, power = 0.358; main effect gender: F1,106 = 1.205,

P = 0.275, g2 = 0.011, f = 0.095, power = 0.193; all

P-values for interactions P [ 0.100, except the interaction

mother 9 pup 9 gender: F1,106 = 4.187, P = 0.043, g2 =

0.038, f = 0.180, power = 0.527). Finally, frequency

modulation was not dependent on the genotype of the mother

(main effect mother: F1,106 = 2.300, P = 0.132, g2 =

0.021, f = 0.135, power = 0.324), but on the genotype of

the pup (main effect pup: F1,106 = 8.209, P = 0.005, g2 =

0.072, f = 0.263, power = 0.810) and its gender (main

effect gender: F1,106 = 7.148, P = 0.009, g2 = 0.063, f =

0.244, power = 0.755). Calls emitted by females were more

modulated than those of males and calls emitted by B6N

were more modulated than those of B6JOla. No significant

interactions were observed (all P-values [ 0.100). In short,

the findings show that call amplitude is solely dependent on

maternal effects, whereas call frequency and frequency

modulation are solely dependent on the pup, i.e. its genotype

and gender.

When data were reanalyzed by using the litter average

for males and females, a similar picture was obtained.

Thus, call number was dependent on an interaction

between mother and pup genotype (main effect mother:

F1,28 = 2.232, P = 0.146, g2 = 0.074, f = 0.242, power =

0.303; main effect pup: F1,28 = 0.792, P = 0.381, g2 =

0.028, f = 0.142, power = 0.138; interaction mother 9

pup: F1,28 = 5.486, P = 0.027, g2 = 0.164, f = 0.398,

power = 0.618; apart from this, no evidence for an inter-

action mother 9 pup was obtained: all P-values [ 0.100).

Call duration and total calling time were not affected by

mother or pup genotype (all P-values [ 0.100). Peak fre-

quency was dependent on pup genotype (main effect

mother: F1,28 = 0.009, P = 0.925, g2 \ 0.001, f = 0.016,

power = 0.051; main effect pup: F1,28 = 5.489, P =

0.026, g2 = 0.164, f = 0.415, power = 0.619), whereas

peak amplitude was primarily dependent on early envi-

ronmental factors (main effect mother: F1,28 = 9.116,

P = 0.005, g2 = 0.246, f = 0.486, power = 0.830; main

effect pup: F1,28 = 3.161, P = 0.086, g2 = 0.101, f =

0.269, power = 0.404). Finally, frequency modulation

tended to depend on the genotype of the pup (main effect

mother: F1,28 = 1.919, P = 0.177, g2 = 0.064, f = 0.228,

power = 0.268; main effect pup: F1,28 = 4.018, P =

0.055, g2 = 0.125, f = 0.319, power = 0.490). Calling

behavior did not differ between males and females, expect

for a trend for a more pronounced frequency modulation in

females (F1,28 = 3.001, P = 0.094, g2 = 0.097, f = 0.289,

power = 0.387; all other P-values [ 0.100). Furthermore,

no evidence for interactions with gender, i.e. mother 9

gender, pup 9 gender, or mother 9 pup 9 gender, was

obtained (all P-values [ 0.100).

Despite differences in call rate and call features between

both sub-strains, individual relationships between call

parameters were similar as indicated by factor analyses

(see Table 2). Thus, factor analyses revealed two dimen-

sions in all four groups. Remarkably, in all four groups the

first dimension was characterized by high positive factor

loadings of call duration and frequency modulation,

whereas the second dimension was characterized by a high

positive factor loading of peak amplitude, but a high neg-

ative factor loading of peak frequency.
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Furthermore, when analyzing calling behavior of ani-

mals with different background, no evidence for qualitative

differences in their calling repertoire was obtained (see

Figs. 4, 5). Thus, although the scatter plots clearly indicate

that the infant mouse calling repertoire contains different

call types, the scatter plots show a profound overlap

between groups. This means that both, prenatal cross-fos-

tered and non-cross-fostered animals, show call types with

an upper peak frequency ranging around 85–105 kHz and a

lower peak frequency ranging around 60–70 kHz as a call

type which was strongly frequency-modulated, i.e. show-

ing a frequency modulation of about 40–60 kHz, and

another one which was less frequency-modulated, i.e.

showing a frequency modulation of about 0–20 kHz.

Experiment I—embryo-transfer: maternal retrieval

behavior

Retrieval task

No evidence for a difference in retrieval behavior between

B6N and B6JOla mothers was obtained, i.e. no differences

in the latency to pick up or retrieve the first pup were

observed (F1,15 = 1.615, P = 0.223, g2 = 0.097, f =

Table 2 Factor analysis of ultrasonic vocalization in B6JOla (J) and B6N (N) pups born and raised by either B6JOla (J) or B6N (N) mothers

(donor [ recipient)

J [ J J [ N N [ N N [ J

1.

Dimension

2.

Dimension

1.

Dimension

2.

Dimension

1.

Dimension

2.

Dimension

1.

Dimension

2.

Dimension

Call duration (ms) 0.943 0.222 0.966 0.181 0.936 0.238 0.918 0.211

Peak frequency (kHz) 0.006 -0.919 0.096 -0.862 -0.162 -0.893 0.093 -0.911

Call amplitude (dB) 0.232 0.892 0.304 0.789 0.212 0.882 0.320 0.858

Frequency modulation (kHz) 0.959 0.009 0.943 -0.007 0.952 0.162 0.915 -0.029

Variance explained (%) 46.60 42.28 48.12 35.29 46.33 41.44 44.74 40.32

Factor analysis of ultrasonic vocalizations emitted by B6JOla pups either born and raised by B6JOla mothers (J [ J) or B6N mothers (J [ N),

and B6N pups either born and raised by B6N mothers (N [ N) or B6JOla mothers (N [ J). Values in columns give factor loadings, which

express the association of each variable to the dimension. Variance explained gives the percentage of variance in the entire data set accounted for

by each dimension
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Fig. 4 Scatter plots depicting distribution of calls, plotted with

respect to duration, peak frequency, peak amplitude, and frequency

modulation. Each dot reflects a single call. Calls emitted by B6JOla

pups which were born and raised by B6JOla mothers are given in

black, whereas calls emitted by B6JOla pups which were born and

raised by B6N mothers are given in red. A lower-cut-off-frequency of

30 kHz was used to reduce background noise outside the relevant

frequency band to 0 dB
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0.276, power = 0.222 and F1,15 = 0.200, P = 0.661, g2 =

0.013, f = 0.204, power = 0.070, respectively). However,

pup genotype affected the latency to pick up the first pup,

since B6JOla were picked up sooner than B6N (F1,15 =

5.127, P = 0.039, g2 = 0.255, f = 0.540, power = 0.563).

Despite this, pup genotype did not affect the actual latency

to retrieve the first pup (F1,15 = 0.018, P = 0.894, g2 =

0.001, f = 0.020, power = 0.052), and no significant

interactions were obtained for the latency to pick up or

retrieve the first pup (interaction mother 9 pup: F1,15 =

2.464, P = 0.137, g2 = 0.141, f = 0.350, power = 0.312

and F1,15 = 2.300, P = 0.150, g2 = 0.133, f = 0.930,

power = 0.295, respectively). However, it is striking that

the picture of the retrieval behavior appears to be inverse to

that of call number (see Fig. 6).

Experiment II—maternal search behavior

Playback task

To test whether the emission of ultrasonic vocalizations can

affect behavior of B6JOla and B6N mothers, a playback task

was performed. It was expected that playback of ultrasonic

vocalizations would induce maternal search behavior.

During the first playback of ultrasonic vocalizations, moth-

ers spent more time in the petri dish than before and after
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Fig. 5 Scatter plots depicting distribution of calls, plotted with

respect to duration, peak frequency, peak amplitude, and frequency

modulation. Each dot reflects a single call. Calls emitted by B6N pups

which were born and raised by B6N mothers are given in black,

whereas calls emitted by B6N pups which were born and raised by

B6JOla mothers are given in red. A lower-cut-off-frequency of

30 kHz was used to reduce background noise outside the relevant

frequency band to 0 dB
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playback, irrespective of strain (main effect test phase:

F2,18 = 4.237, P = 0.031, g2 = 0.320, f = 0.943, power =

0.665; main effect strain: F1,9 = 0.004, P = 0.953, g2 \
0.001, f = 0.020, power = 0.050; interaction test phase 9

strain: F2,18 = 0.649, P = 0.535, g2 = 0.067, f = 0.279,

power = 0.142; see Fig. 7), whereas behavior was unchan-

ged during playback of white noise and the second playback

of ultrasonic vocalizations (all P-values [ 0.100). A pref-

erence for the area proximal to the speaker was not observed

during any test phase (all P-values [0.100).

Pup discrimination task

To test whether those call parameters, which were affected by

early environmental factors, are functionally relevant for the

induction of maternal search behavior, a pup discrimination

task was performed. It was expected that pups emitting high

number of calls with high peak amplitudes will attract the

mother more than pups emitting few calls with low peak

amplitudes. When calling behavior was compared between

the two pups of a given exposure that either attracted the

mothers little (B6JOla: 1.04 ± 0.82 s/min, B6N: 2.49 ±

0.49 s/min) or much (B6JOla: 9.85 ± 4.74 s/min, B6N:

7.12 ± 0.84 s/min), a trend for an interaction of maternal

preference 9 strain was observed (main effect maternal pref-

erence: F1,9 = 1.116, P = 0.318, g2 = 0.110, f = 0.378,

power = 0.157; main effect strain: F1,9 = 3.287, P = 0.103,

g2 = 0.268, f = 0.758, power = 0.367; interaction maternal

preference 9 strain: F1,9 = 3.589, P = 0.081, g2 = 0.300,

f = 0.868, power = 0.419), since B6JOla mothers spent more

time in contact with pups, which emitted calls with high peak

amplitudes (B6JOla: 63.88 ± 1.97 dB) in comparison to pups,

which emitted calls with low peak amplitudes (B6JOla:

59.00 ± 1.51 dB; F1,5 = 4.453, P = 0.049, g2 = 0.471, f[
0.999, power = 0.401; one-tailed testing). In contrast, the

preferences shown by B6N mothers were not related to peak

amplitude (high contact time: 57.25 ± 0.91 dB and low

contact time: 58.71 ± 2.29 dB; F1,5 = 0.449, P = 0.270,

g2 = 0.101, f = 0.340, power = 0.082; one-tailed testing). Call

number did not differ between pups attracting the mother for a

short (B6JOla: 71.77 ± 31.70 calls/min, B6N: 81.92 ± 18.05

calls/min) or long time in either strain (B6JOla: 55.44 ± 11.50

calls/min, B6N: 87.88 ± 8.73 calls/min; main effect maternal

preference: F1,9 = 0.063, P = 0.808, g2 = 0.007, f = 0.084,

power = 0.056; main effect strain: F1,9 = 1.057, P = 0.331,

g2 = 0.105, f = 0.364, power = 0.152; interaction maternal

preference 9 strain: F1,9 = 0.289, P = 0.604, g2 = 0.031,

f = 0.182, power = 0.077).

Discussion

Within-strain embryo-transfer: comparison between

B6JOla and B6N

The present results show for the first time that two sub-strains

of C57BL/6 mice, namely B6JOla and B6N, differ in their

ultrasonic calling behavior when isolated from dam and lit-

ter. This is in accordance with a bulk of observations of strain

differences in the emission of ultrasonic vocalizations in

mice (Bell et al. 1972; Cohen-Salmon et al. 1985; Hahn

et al. 1987, 1997, 1998; Hahn and Schanz 2002; Hennessy

et al. 1980; Robinson and D’Udine 1982; Roubertoux et al.

1996; Sales and Smith 1978; Thornton et al. 2005), and adds

to other differences between B6JOla and B6N.

Firstly, B6JOla and B6N mice differ genetically, since

B6JOla mice carry a spontaneous deletion on chromosome

6 (Chen et al. 2002; Siegmund et al. 2005; Specht and

Schoepfer 2001, 2004). This deficit leads to a loss of alpha-

synuclein, a presynaptically localized protein that has been

implicated in the etiology of Parkinson’s disease (Maries

et al. 2003; Polymeropoulos et al. 1997). Alpha-synuclein

may have affected call production in infancy, possibly

through its regulative function on dopaminergic
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Fig. 7 The left graph represents the time spent in the Petri dish

dependent on mother genotype, i.e. B6N (black circles) and BJOla

(white circles), before (PRE), during (USV), and after (POST)

playback of ultrasonic vocalizations. The right graph represents the

time spent in the proximal area dependent on mother genotype, i.e.

B6N (black circles) and BJOla (white circles), before (PRE), during

(USV), and after (POST) playback of ultrasonic vocalizations
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transmission (Abeliovich et al. 2000; Oksman et al. 2006),

since dopaminergic transmission itself influences ultrasonic

calling in isolation (Cuomo et al. 1987; Dastur et al. 1999;

Kehoe and Boylan 1992; Muller et al. 2005, 2008). How-

ever, the present gene-dependent findings cannot

necessarily be attributed to alpha-synuclein deficits, since

other genetic factors may have been critical or may have

contributed. Indeed, detailed mapping and sequencing of

the breakpoint recently revealed the absence of Mmrn1

gene in addition (Specht and Schoepfer 2004). A role of

Mmrn1 for ultrasonic calling is currently unknown.

Secondly, B6JOla and B6N mice differ in their adult

anxiety-related behavior, namely the course of extinction of

conditioned fear. Thus, B6JOla mice display lower levels of

freezing to the context where they have been shocked

before and shorter maximal fear responses (Radulovic et al.

1998; Siegmund et al. 2005; Siegmund and Wotjak 2007;

Stiedl et al. 1999). Such behavioral differences are usually

explained by genetic differences between strains. However,

Siegmund et al. (2005) have shown that the difference in

the extinction of fear memory in B6JOla and B6N is unli-

kely to be based on the different expression of alpha-

synuclein. Therefore, it can be assumed that environmental

factors contribute to such differences as well. Indeed, such

factors have proven to hold strong influence on the devel-

opment of emotionality (Calatayud and Belzung 2001;

Calatayud et al. 2004; Francis et al. 2003; for review see:

Gordon and Hen 2004) and out of these, maternal care is a

crucial one (Caldji et al. 1998; Francis et al. 1999; Menard

et al. 2004; Menard and Hakvoort 2007; Wöhr and Sch-

warting 2008; Zhang et al. 2005).

Finally, it can be noted that the virtual absence of gender

differences in infant mice calling is in accordance with the

vast majority of the literature (Hahn et al. 1997, Hahn et al.

2000; Hahn and Schanz 2002; Roubertoux et al. 1996; but

see: Hahn et al. 1998).

Between-strain embryo-transfer: effects of genetic

background, gender, and early environmental factors

By means of embryo-transfers, the present study demon-

strates that the strain difference in the amount of ultrasonic

calling is dependent on the dyadic interaction between

mother and pup. In contrast, most of the call features were

primarily dependent on the pup itself. Thus, call frequency

and frequency modulation were solely dependent on pup

genotype and gender. There was one exception, however,

namely amplitude, which was determined by the genotype

of the mother. Finally, it is worth to mention that the

individual relationship between call parameters was similar

in both sub-strains and that no differences in calling rep-

ertoire were observed.

It should be noted that these findings are not based on

litter effects since similar results were obtained by using

litter averages for males and females (Abbey and Howard

1973; Zorrilla 1997), which is remarkable given the limi-

tation that some statistical comparisons had low power due

to the small number of litters used. Most importantly, call

number was still significantly dependent on the interaction

between mother and pup, peak frequency still on pup

genotype, and peak amplitude still on the genotype of the

mother. Furthermore, effect size measures indicate medium

or large effects. Thus, in case of call number about 16% of

total variability is attributable to the interaction between

mother and pup, and a similar proportion of variance is

explained in case of frequency by the genotype of the pup.

Finally, in case of amplitude about 25% of total variability

is attributable to early environmental factors.

Overall, the present findings are in line with studies of

successful selective breeding for high or low calling rates in

isolation (Brunelli 2005; Brunelli et al. 1997, 2001, 2002;

Hofer et al. 2001). Also, genetic analyses using reciprocal

hybrids (Hahn et al. 1987, 1997, 1998; Hahn and Schanz

2002; Roubertoux et al. 1996; Thornton et al. 2005)

revealed an influence of the genetic background on ultra-

sonic call emission; a finding, which is supported by studies

on knockout mice. For instance, it was shown that several

genes are involved in the production of ultrasonic vocaliza-

tions, especially Foxp2 (Shu et al. 2005). Disruption of this

gene led to a loss of ultrasonic vocalizations. Interestingly,

Foxp2 has been considered as a potential susceptibility locus

for language disorders in humans (Lai et al. 2001).

However, genetic analyses also indicated maternal

effects on call rate, duration, frequency, and frequency

modulation (Roubertoux et al. 1996; Thornton et al. 2005).

Actually, high levels of variability in call production were

found even within lines selectively bred for high or low

calling rates in isolation. For instance, Brunelli et al.

(1997) observed that call rates ranged between 0 and 700/

min in the line selected for high rates of calling. Thus, it

seems likely that early environmental factors hold strong

influence on isolation-induced calling, and the results of the

present embryo-transfer support this assumption.

The finding that early environmental factors can influence

calling behavior is in accordance with studies on the effects

of prenatal malnutrition (Tonkiss et al. 2003), prenatal stress

(Morgan et al. 1999; Williams et al. 1998), perinatal

asphyxia (Calmandrei et al. 2004) or pre- and postnatal

exposure of various substances, like alcohol (Barron and

Gilbertson 2005; Marino et al. 2002; Tatolli et al. 2001),

cocaine (Hahn et al. 2000), lead (De Marco et al. 2005),

aluminum (Alleva et al. 1998), or carbon monoxide (Di

Giovanni et al. 1993) on ultrasonic calling in infant rodents.

However, in the natural context, variations in maternal care

might be of major importance. This is indicated by studies on
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the effects of handling (Bell et al. 1971), maternal separation

(D’Amato and Cabib 1987; Zimmerberg et al. 2003a, b), and

litter size (Hofer et al. 1993), and adoptions (Darnaudery

et al. 2004) on ultrasonic calling in infant rodents. Darnau-

dery et al. (2004) found that pups raised by fostering dams

showed less isolation-induced calling when compared to

pups raised by their actual mothers, a finding which is similar

to the present observation of lowered calling behavior in

prenatal cross-fostered pups. Remarkably, they also

observed that this difference in call production was paral-

leled by a difference in maternal care, namely that fostering

dams showed more maternal care than actual mothers,

indicating that maternal care can reduce isolation-induced

calling. Other evidence that maternal care can tune calling

behavior in offspring was provided by D’Amato et al.

(2005), who found that mouse pups raised by mothers with

higher maternal responsiveness emitted lower call rates than

pups of mothers with a comparatively low maternal

responsiveness. Furthermore, Wöhr and Schwarting (2008)

have shown that rat pups raised by mothers that demonstrated

pronounced approach behavior in response to playback of

isolation-induced calls called less in isolation than pups

raised by mothers with weak or no approach behavior. Fur-

ther, it was found that maternal licking is strongly linked to

isolation-induced infant calling. Thus, rat pups that experi-

enced a comparatively high rate of maternal licking emitted

less calls in isolation than pups that were licked less often. A

detailed analysis of ultrasonic calls revealed that apart from

call number, several call features were affected by maternal

care; and it is striking to see in the present mouse study that

the call parameters affected by early environmental factors

are quite similar to those, which were most predominantly

influenced by maternal care in rats, namely call number and

peak amplitude, but not peak frequency (Wöhr and Sch-

warting 2008). The modulation of peak amplitude is

particularly interesting, because it was demonstrated that call

amplitude can be reduced by anxiolytic drugs (Insel et al.

1986), and in adult rats it was shown that the averseness of

the situation is encoded not only in call number but also in

peak amplitude (Wöhr et al. 2005). Furthermore, peak

amplitude was shown to be a valid predictor of the suscep-

tibility to develop PTSD-like symptoms in response to a

traumatic event in adulthood in the B6N sub-strain (Sieg-

mund et al., unpublished observation).

However, the finding that early environmental factors,

such as maternal care, are related to isolation-induced

calling seems to contradict results of cross-fostering studies

in rats (Brunelli et al. 2001) and mice (Hennessy et al.

1980), where no maternal effects on call rates were

observed. With respect to the rat study by Brunelli et al.

(2001) it has to be mentioned that they bred their animals

for high or low calling rates by using a within-litter

selection procedure which minimizes maternal effects

(Hofer et al. 2001). Despite this selection procedure,

however, Rojowsky et al. (2000) found that dams from the

line with high calling rates showed reduced maternal

responsiveness compared to dams from lines with random

or low calling rates. With respect to the mouse study by

Hennessy et al. (1980) it has to be noted that the authors

reported that only one of the two strains used emitted

ultrasonic calls, namely A/J, but not C57BL/6 J. Bearing in

mind the high call rates of B6N and B6JOla mice found in

the present study, it seems likely that the absence of calls in

the study of Hennessy et al. (1980) is based on the

recording technology used there. They set their frequency

tuner at 68 kHz with a bandwidth of 5 kHz, meaning that

they were able to detect only a small proportion of calls

according to the present findings. The present findings

highlight the importance of using a sophisticated recording

technology, which allows covering the frequency range

from 50 up to 110 kHz. However, it might be also possible

that maternal effects on ultrasonic calling behavior are only

clearly evident when rectified pre- and postnatal experi-

ences occur together. This would be in line with an

embryo-transfer study in mice where it was shown that

enhancing anxiety in otherwise low-anxious C57BL/6 J

pups requires both, pre- and postnatal experience with a

more anxious dam (Francis et al. 2003). Whether maternal

factors alone are sufficient for these differences to occur is

currently evaluated by using reciprocal F1 hybrids. Finally,

it has to be noted that the strength of early environmental

effects, or the weakness of genetic effects, respectively,

observed in the present experiment is probably due to the

fact the genetically similar material was used, meaning that

one would expect more pronounced genetic effects when

more diverse genetic material is used.

The present finding that early environmental factors can

affect isolation-induced ultrasonic calling is in line with a

bulk of evidence showing that maternal factors strongly

influence anxiety-related behavior in the offspring. Apart

from the embryo-transfer study by Francis et al. (2003),

this was indicated in postnatal cross-fostering studies

(Priebe et al. 2005; Zaharia et al. 1996) and reciprocal

breeding of inbred mouse strains (Calatayud and Belzung

2001; Calatayud et al. 2004). Using backcrosses of hybrids

from BALB/c and C57BL/6, i.e. using genetically identical

pups which were exposed to different mothering styles,

Calatayud et al. (2004) were able to verify their previous

finding that maternal care can affect emotional reactivity as

measured in the elevated plus maze and a free exploration

paradigm. From rat studies, it is known that variations in

maternal licking particularly affect the development of

stable individual differences in emotionality. Thus, rats

licked more often by mothers, showed decreased startle

responses (Zhang et al. 2005), increased open field explo-

ration (Caldji et al. 1998; Francis et al. 1999), shorter
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latencies to eat food provided in a novel environment

(Caldji et al. 1998), fewer defensive responses in a resi-

dent-intruder test, and less shock-induced freezing (Menard

et al. 2004; Menard and Hakvoort 2007) in adulthood than

rats that were licked less often. Interestingly, these

behavioral differences are accompanied by alternations in

physiological stress reactivity (Liu et al. 1997) and various

neural changes in brain areas implicated in anxiety regu-

lation (Caldji et al. 1998; Liu et al. 1997; for review see:

Gordon and Hen 2004).

In total, the results of the present embryo-transfer study

show that apart from call number several other call

parameters differ between the two sub-strains, and that

these differences are partly due to early environmental

factors, and partly based on the genetic background. Early

environmental factors lead to changes in call number and

call amplitude. Changes in these call parameters might be of

great functional relevance, since call rate, peak amplitude,

and variability of calls, e.g. frequency modulation, are

assumed to be a primary source of arousal induction in the

mother (Ehret 2005). Although the present retrieval data do

not allow to satisfactorily answer the question whether such

differences are functionally relevant, it is conspicuous that

ultrasonic calling is positively related to retrieval behavior,

since pup genotype affected the latency to pick up the first

pup, i.e. B6JOla pups which emitted high levels of calls in

isolation were picked up sooner than B6N pups which

emitted fewer calls, whereas the mothers of both sub-strains

did not differ significantly in their retrieval performance.

Furthermore, the picture of retrieval behavior, i.e. the

latency to retrieve pups, is inverse to the picture of call

number, also indicating that pup ultrasonic calling plays a

role in the induction of maternal behavior. In support of this

notion, it was shown that B6JOla and B6N mothers are able

to detect ultrasonic vocalizations, i.e. are not deaf to ultra-

sound, by means of a playback task, where it was

demonstrated that isolation-induced infant calling can

induce maternal search behavior in both strains. Mothers

spent more time in the area with soiled bedding from the

nest during playback of calls than before or after playback.

The impact of pup odor for the induction of maternal search

behavior was demonstrated by Smotherman et al. (1974),

who showed that ultrasonic signals were effective cues only

when olfactory information was present. Overall, the pres-

ent finding of playback-induced maternal search behavior is

in accordance with several studies in mice and rats (Allin

and Banks 1972; Ehret 1992; Ehret and Haack 1982; Sewell

1970; Smith 1976; Smotherman et al. 1974; Wöhr and

Schwarting 2008; for review see: Ehret 2005).

In addition to call number, call amplitude seems also to

be important to attract the mother. By means of a pup

discrimination task, it was shown that B6JOla mothers

spent more time near pups emitting calls with high

amplitudes. B6N mothers, however, showed no preference

related to peak amplitude. This is particularly remarkable,

since pups of either strain show lower call amplitudes when

born and reared by B6N (when it is functionally less rel-

evant) than when born and reared by B6JOla (when it is of

higher functional relevance). The fact that call number was

not associated with maternal preference indicates that call

amplitude is of particular importance in competing situa-

tions. In principle, however, factors other than call

amplitude may have caused maternal preference, since

pups emitting calls with high amplitudes might have dif-

fered not only herein, but also in other features, like odor.

A definite answer on the functional relevance of differ-

ences in call features can best be obtained by conducting a

playback experiment, which provides opportunity to test

the communicative impact of specific call parameters

without confounding variables, like odor. A playback

experiment would also allow testing whether the temporal

sequencing and call types are of functional relevance, e.g.

whether the different call types observed here convey dif-

ferent information. Playback studies have already shown

that lactating mice can distinguish between different call

types, and that they prefer certain call types over other if

given the choice (Ehret 1992; Ehret and Haack 1982; Smith

1976).

Conclusion

The results of the present embryo-transfer study show that

early environmental factors can tune calling behavior in

mouse pups. This adds to several other examples, where it

was shown that particularly maternal care holds strong

influence on anxiety-related behavior in infancy and

adulthood.
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