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Abstract Large scale research projects in behaviour

genetics and genetic epidemiology are often based on

questionnaire or interview data. Typically, a number of

items is presented to a number of subjects, the subjects’

sum scores on the items are computed, and the variance of

sum scores is decomposed into a number of variance

components. This paper discusses several disadvantages of

the approach of analysing sum scores, such as the attenu-

ation of correlations amongst sum scores due to their

unreliability. It is shown that the framework of Item Re-

sponse Theory (IRT) offers a solution to most of these

problems. We argue that an IRT approach in combination

with Markov chain Monte Carlo (MCMC) estimation

provides a flexible and efficient framework for modelling

behavioural phenotypes. Next, we use data simulation to

illustrate the potentially huge bias in estimating variance

components on the basis of sum scores. We then apply the

IRT approach with an analysis of attention problems in

young adult twins where the variance decomposition model

is extended with an IRT measurement model. We show

that when estimating an IRT measurement model and a

variance decomposition model simultaneously, the esti-

mate for the heritability of attention problems increases

from 40% (based on sum scores) to 73%.

Keywords Item response theory � MCMC � Bayesian

statistics � Measurement � Attention problems � Sum scores

Introduction

In quantitative genetics, one is interested in the extent to

which variation in certain characteristics is heritable.

Heritability is expressed in terms of the proportion of the

variance of a trait in a population that can be attributed to

genetic differences. This genetic variance component can

be estimated in, for example, the classical twin design

(Boomsma et al. 2002a) in which the covariance structures

of monozygotic and dizygotic twins are compared.

However, it is not always straightforward to estimate

variance components. A variance component is only

meaningful when measures are expressed on a scale of at

least interval level. Moreover, many statistical methods

require the phenotype to be normally distributed. Many

phenotypes are not expressed in clearly defined units and

are at best ordinal in character (e.g., conservatism, extra-

version). Some traits have even only a nominal character

(e.g., psychiatric disorders). There are several ways of

dealing with such nominal data. One possibility is to focus

on concordance rates and compute recurrence risk ratios

(Risch 1990, 2001). Alternatively, one might assume a

latent continuous trait with a threshold above which indi-

viduals are affected and estimate the heritability on that

latent trait (Lynch and Walsh 1998; Falconer 1965; Crit-

tenden 1961). This method can also be used with ordinal

data.

For some traits, it is convenient to have multiple indi-

cators (items). For example one might have for a particular

disease 10 symptoms that each can be scored as absent (0)

or present (1). For each individual one can then compute a

sum score that indicates to what extent the individual is
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affected by the disease. Such sum scores usually show a

normal distribution or do so after an appropriate transfor-

mation. It is typically assumed that the normally distributed

scores or transformations thereof reflect a continuous

interval scale and the variance of the sum scores is sub-

sequently decomposed. This approach follows classical test

theory (CTT) where it is assumed that the observed score

(the sum score) is the aggregate of a true score and a

random component, usually referred to as measurement

error. When decomposing the variance of sum scores, the

measurement error variance (the unreliability) ends up as

part of the non-shared environmental variance. As a result,

when the reliability of a scale is low (i.e., the measurement

error is large) and the analysis is based on sum scores, the

heritability of the actual trait is significantly underesti-

mated.

Modelling sum scores is appropriate if the sum scores

are highly reliable (for instance because they are based on a

large number of correlated items) and well validated.

Furthermore, there should be enough variation and the

distribution should be more or less normal. Finally, there

should be no data missing. If these requirements do not

hold, item response theory (IRT) provides a well-estab-

lished alternative to classical test theory. This paper

introduces the basics of the IRT framework, after which its

advantages over a sum score approach are discussed. Next,

it is argued that IRT models should be estimated simulta-

neously with the variance decomposition model, which can

be done using a Bayesian approach with Markov-chain

Monte Carlo estimation. Lastly, a simulation study shows

the potential bias when estimating variance components on

the basis of sum scores and the Bayesian method is illus-

trated with an empirical data set on attention problems.

Item response theory models

In IRT models—as opposed to CTT—the influence of the

items and the respondents are explicitly modelled by dis-

tinct sets of parameters. In these models, an assumed

continuous latent variable h reflects the trait and every item

is identified by thresholds b where a response in one cat-

egory becomes more likely than a response in an adjacent

category. It is usually assumed that the latent variables hj

are drawn from a normal distribution, that is, hj are inde-

pendently and identically distributed N(l, r2), though this

assumption is not always necessary to identify the model

parameters. The probability of the presence of the symptom

i in individual j, p(Yij = 1), is a function of the difference

between the individual’s trait score hj and the parameter bi,

with bi indicating the location on the scale where the

presence of a symptom becomes more probable than its

absence. In the case of multiple symptoms, we have

pðYij ¼ 1Þ ¼ Uðhj � biÞ; ð1Þ

with Uð:Þ denoting the cumulative standard normal distri-

bution function. That is, the probability of the presence of

symptom i in person j is a function of both a person’s

liability score hj and a symptom (or item) parameter bi. In

the IRT framework, this model is referred to as the one-

parameter normal ogive model, or 1PNO (Lawley 1943;

Lord 1952, 1953). This model is identified with a location

restriction, for example, l = 0. The variance of the latent

trait, r2, can be estimated and can be interpreted as the

covariance of the items: the larger the variance, the higher

the reliability of the scale.

An alternative parameterisation replaces the normal

ogive by a logistic curve, that is,

pðYij ¼ 1Þ ¼ Wðhj � biÞ; ð2Þ

where

WðxÞ ¼ expðxÞ
1þ expðxÞ :

This version of the model is known as the one-parameter

logistic model (1PLM), or Rasch model (Rasch 1960). To

illustrate the model, consider an individual with a score hj of 1

on the latent trait, and a particular item with parameter b = 1.

Then the probability of a positive response from this indi-

vidual on this item equals exp(1 – 1)/(1 + exp(1 – 1))

= exp(0)/(1 + exp(0)) = 1/2 = 50%. An individual with a

score higher than 1 has a higher probability of showing a

positive response, whereas an individual scoring lower than 1

has a lower probability. Individuals with a latent score of –1

have a probability of exp(–2)/(1 + exp(–2)) = 12%. With a

simple multiplicative transformation of the scale, the logistic

and normal ogive curves are very similar and indistinguish-

able for all practical work (see, for instance, Lord 1980).

In the Rasch model, as well as in the 1PNO model, all

items have the same correlation (‘‘factor loading’’) with

the underlying latent trait. Analogous to factor models, it is

possible to estimate factor loadings that differ across items.

In the IRT framework these factor loadings are referred to

as discrimination parameters ai. These parameters indicate

the extent to which an item i loads onto the latent trait, and

the model becomes

pðYij ¼ 1jhj; ai; biÞ ¼ Wðaihj � biÞ: ð3Þ

An alternative form in the literature replaces ah – b with

a(h – b). This leads to a somewhat different interpretation

of the b-parameters (they are scaled differently) but it only

involves a reparameterisation.

Essentially, a one-parameter model can be described

by a two-parameter model where all a parameters are
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equal. In order to identify the model and estimate a,

however, the variance of the latent trait should be fixed.

Thus, a one-parameter model with a large variance of the

latent trait is equivalent to a two-parameter model with

large discrimination parameter a that is equal for all items

together with a fixed variance of the latent trait.

The two-parameter model must be identified by both a

location and a scale restriction. The former can be the same

restriction as above, that is, l = 0. The latter can be the

additional restriction that the variance of the latent distri-

bution is equal to one, that is, the model is identified by

assuming a standard normal distribution, N(0,1), for the

latent ability parameters hj. Alternatively one fixes one of

the discrimination parameters to unity. Generally, however,

this identification solution is not advisable, because the

standard errors of the parameters blow up if the discrimi-

nation parameter chosen for the identification is poorly

identified.

IRT models for polytomous data

Often, measurement is based on items or symptoms with

more than two categories. For example, answers can be

coded as 0 (not at all), 1 (somewhat, sometimes) and 2 (a

lot, often). Typically in CTT approaches in behaviour

genetics the sum of these item scores is regarded to rep-

resent a person’s score on the trait of interest and is used

for the statistical inference.

There are several IRT models for ordered categories

(e.g., Samejima 1969; Masters 1982). These have different

rationales and are not reparameterisations of each other,

but the practical implications for preferring one over the

other are often negligible. Here we describe a continuation-

ratio model (Tutz 1990; Verhelst et al. 1997). This model

allows the transformation of a polytomous item into a set of

dichotomous items, which facilitates model estimation.

The response to a polytomous item is viewed as a set of

responses to an ordered sequence of virtual dichotomous

items: it is assumed that the respondent is administered

virtual items until an incorrect or negative response is given.

So, in this approach, an item with M categories labelled

m = 0,..., M – 1, the response is dummy-coded into M – 1

dichotomous quasi-items. As an example, for an item with

m = 3 categories we make two new virtual items. A score of

2 would be coded as correct responses to both virtual items.

A score of 1 on the original item would be coded as a

correct response to the first virtual item and an incorrect

response to the second virtual item. A score of 0 would be

coded as an incorrect response to the first virtual item and

the second virtual item would be coded as not administered

(missing). Now the responses to all virtual items can be

modelled by an IRT model for dichotomous items, such as

the models given by Eqs. 1, 2 or 3 and can be estimated by

any IRT software package that can handle dichotomous

items in combination with missing data. There are also IRT

packages that estimate models for polytomous items di-

rectly (e.g., Multilog; Thissen et al. 2003).

Advantages of using an IRT framework compared

to analysing sum scores

We will discuss four advantages of using IRT: (1) it supports

construct validity and the scoring rule (e.g., a scoring rule

might consist of taking the unweighted sum of symptoms as

an estimate of a person’s liability), (2) it supports the use of

incomplete item administration designs and handling of

missing data, (3) it supports accounting for measurement

error, and (4) it can handle floor and ceiling effects.

An IRT framework allows one to explicitly model the

relationship between item scores and the phenotype of

interest. Any combination of items can of course be sum-

med (weighted or unweighted), but this does not guarantee

that the sum score reflects a meaningful construct. The

meaningfulness of the measurement can be directly as-

sessed in an IRT framework. Fit to an IRT model is

empirical evidence that the observed responses can be

explained by an underlying structure. The latent variable of

the IRT model should, of course, be an appropriate repre-

sentation of the construct to be measured.

The IRT model that fits the data determines the score

rule of the measurement instrument. If, for instance, a one-

parameter model does not fit the data, but a two-parameter

model does, the sum score where the items scores are

weighted with their respective discrimination parameters is

a sufficient statistic for hj (Lord and Novick 1968). So

some items can be more important or sensitive indicators of

a trait than others. Modelling the item data in a variance

decomposition analysis allows the separate evaluation of

model fit regarding the measurement model and the vari-

ance decomposition model.

In addition, group differences can be modelled, through

differences in means, variances and variance components,

and through differences in the way symptoms relate to the

latent trait. For instance, one or more symptoms may

show a higher incidence rate in one group (indicated by a

difference in b-parameters across groups, e.g., females and

males), or be a more sensitive indicator for the trait in a

particular group (indicated by a difference in a-parameters

across groups). Such violations of measurement invariance

are usually referred to as differential item functioning

(DIF).

A practical advantage of the analysis of data using an

IRT framework is the use of incomplete item adminis-

tration designs and handling of missing data. In some
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situations, intentionally incomplete item administration

designs can greatly improve the efficiency of data col-

lection. With an IRT approach one can also effectively

deal with problems specific to longitudinal research where

items differ across waves. When using IRT models in a

maximum likelihood or a Bayesian framework, it is easy

to include individuals that have missing data on one or

more items if the data are missing at random (Little and

Rubin 1987). When data are not missing at random, the

non-randomness can be modelled within an IRT frame-

work by expanding the model with an IRT model that

describes the pattern of the missing data (see, for in-

stance, Moustaki and Knott 2000; Moustaki and O’Mu-

ircheartaigh 2000; Holman and Glas 2005). The

encompassing framework for handling missing data using

IRT offers an important advantage over classical test

theory. In classical test theory sum scores are only

meaningful if the items are the same in all individuals and

at all measurement waves.

The third advantage of the analysis of data using an

IRT framework is that it accounts for measurement er-

ror. Unreliability suppresses the correlation between

measurements (attenuation). Particularly when using a

scale with only a few items, the correlations amongst

sum score variables may be grossly attenuated. Clearly,

this has important implications for the estimation of

variance components in genetic research. In an IRT

framework, the problem can be solved by, instead of

focussing on sum scores, considering the correlations

between latent variables (see, for instance, Béguin and

Glas 2001; Fox and Glas 2003). These so-called latent

correlations can be seen as estimates of correlations

corrected for attenuation. A simulation study and an

application of IRT to real data in a later section will

show the possible extent of such attenuation effects on

the estimation of heritability.

The fourth advantage of IRT has to do with floor and

ceiling effects. A problem of analysing sum scores that

represent indices of psychopathology is that these scores

show a skewed distribution in the general population (Van

den Oord et al. 2003; Derks et al. 2004). These skewed

distributions result from the fact that many behavioural

phenotypes are assessed using questions that relate to

symptoms that are relatively rare in the population. These

distributional violations may have important implications

for the inference regarding relative variance components

when analysing sum scores (Derks et al. 2004). In an IRT

framework one is essentially free to specify the distribution

of the latent trait (in some cases, it can even be estimated).

In most cases, with polygenic traits, a normal distribution

seems the most reasonable alternative (a mixture approach

may be more suitable for traits with only a few large QTL

effects). When in turn the variance of the normally

distributed latent trait is decomposed into genetic and non-

genetic variance, the inference is unbiased if the assump-

tions of the model are correct.

Variance decomposition: the one-step and the

two-step approach

In IRT models, the latent scores hj are typically assumed to

be random draws from a normal distribution. When we are

interested in the extent to which individual differences on

the latent trait are heritable, we only need to decompose the

variance of the hjs using, for example, the classical twin

design. There are two approaches. The first approach is to

first estimate the parameters of the IRT model using stan-

dard IRT software (such as, Bilog, Multilog, Parscale,

Testfact, ConQuest, OPLM), and then to have the same

software estimate each individual score on the latent trait.

Next, one uses these estimates of the hjs as observed values

in a standard variance decomposition analysis. This we call

the two-step approach.

There are several disadvantages to this two-step

approach. First of all, in the IRT model fitting phase, the

usual IRT estimation software cannot handle the depen-

dency in the data inherent in twin and family designs. In

some cases, with simple designs such as with sibling pairs

only, weighting of the data would come a long way in

solving this problem, but with more complex family

designs, weighting is not a satisfactory solution.

Second, when estimating latent scores for each individ-

ual, the estimates of the hjs, just like sum scores in the CTT

tradition, are not simply observations but estimates with

error variance. When computing the confidence intervals

for the heritability estimates in the second phase, this

uncertainty on the latent scores is not taken into account and

the heritability confidence intervals are consequently too

narrow and the estimates biased downwards. Moreover, in

an IRT framework, the confidence intervals for estimates of

individual latent scores are dependent on their location on

the scale (actually, the number of items with b-parameters

that are similar in magnitude to the person score h and the

items’ discriminatory power, a), whereas in the variance

decomposition, it is assumed that measurement error (as

included in the non-shared environmental variance com-

ponent) is independent of location (cf. CTT). For example,

many psychopathology scales have only items that refer to

relatively rare symptoms. As a consequence, many indi-

viduals in the general population score 0, which does not

necessarily imply that all actually have the trait to the exact

same degree. In other words, the scale provides very little

information on the trait on the low end. In contrast, the

upper end of the scale usually shows more variation, which

may imply that the measures are more reliable (more items
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that discriminate between individuals). Thus, a priori it

seems likely that psychopathological scales have more dis-

criminatory power at the upper end of the scale than at the

lower end. Of course, this is not a bad thing, since these

scales were designed to discriminate between the healthy

and the sick. Therefore it seems reasonable to forego the

assumption of equal reliability across the scale and take

differing reliabilities into account.

Actually, using the two-step approach the heritability

coefficient estimate will be about the same as when the

analysis is carried out on sum scores. This is because IRT

estimates and sum scores correlate highly, well over 0.90 in

the case of two-parameter models. When applying a one-

parameter model, the correlation will be practically one,

because a basic assumption of the Rasch model is that a

sum score is a sufficient statistic for the score on the latent

trait. Therefore, all persons with the same sum score will

get the same estimate on the latent trait. Thus, a third

problem of the two-step approach is that it neither solves

the attenuation problem, nor the non-normality, nor the

ceiling effects.

In order to take full advantage of the IRT approach, it is

critical to estimate both the measurement model and the

variance decomposition model simultaneously, using a

one-step approach. However, computationally this is rather

challenging. Below, it is shown how this can be done using

software for Bayesian estimation procedures. In an appli-

cation in a later section, we demonstrate the one-step ap-

proach for the estimation of heritability with both

simulated and empirical data.

Bayesian estimation using a Markov chain Monte Carlo

algorithm

In twin studies, a widespread method of estimating vari-

ance components is through structural equation modelling

(SEM). For continuous traits with normal distributions, this

is a flexible approach in that it is able to accommodate all

linear models and allows for testing of equality of means,

variances, covariances and variance components across

subpopulations. However, with more elaborate models with

discrete or categorical observed variables, SEM maximum

likelihood (ML) estimation or ML procedures for esti-

mating generalised linear mixed models such as GLAMM

(Rabe-Hesketh and Skrondal 2005) soon reach computa-

tional boundaries. An alternative method is Bayesian sta-

tistical modelling with Markov chain Monte Carlo (MCMC)

estimation algorithms (see also Eaves et al. 2005).

In the Bayesian approach, inference is based on the pos-

terior density of the model parameters, P(g|Y), where g rep-

resents the vector of model parameters and Y the observed

data. By Bayes’ rule, the density P(g|Y) is proportional to the

product of the likelihood of the data given the model param-

eters P(Y|g) and the marginal density for g, P(g), that is,

P ðg j YÞ / PðY j gÞPðgÞ: ð4Þ

The marginal distribution of g is termed the prior dis-

tribution (prior in the sense of before the data have been

taken into account), and must be specified by the user. The

model provides us with the likelihood function P(Y|g), and

hence the posterior distribution of g is determined (pos-

terior in the sense of after the data have been taken into

account). The posterior distribution is a description of the

probabilities of possible values for g given the observed

data and forms the basis for statistical inference. We may,

for example, take the mean or the median of this distri-

bution as our point estimate for g. Further, the interval

between the 2.5th and the 97.5th percentile of the posterior

distribution provides the so-called central 95% credibility

region, which is analogous to a 95% confidence interval in

the ML framework. For more on Bayesian statistics, the

reader is referred to the introductions by Box and Tiao

(1973) and Gelman et al. (2004).

Sometimes it is easy to compute the posterior distribu-

tion analytically, but very often this is not possible. One

can then use computer simulation to draw a sample of g-

values from the posterior distribution. The mean or median

of the posterior distribution can then be approximated by

the mean or median of the sampled g-values, and approx-

imate credibility regions can be determined in a similar

way. In practice, the joint posterior distribution of all

model parameters is usually quite complicated. Therefore,

the complete set of parameters is split up into a number of

subsets in such a way that the conditional posterior distri-

bution of each subset given all other parameters has a

tractable form and can be easily sampled from. This ap-

proach is known as Gibbs sampling (Geman and Geman

1984; Gelfand et al. 1990; Gelman et al. 2004), which is a

special case of an MCMC algorithm. When however the

conditional posterior distribution of a subset of the

parameters is not easy or even impossible to sample from

directly, other MCMC algorithms can be used, where one

samples from a similar proposal distribution and uses a

decision rule to either accept or reject a sample so that the

accepted values can be regarded drawings from the target

distribution.

In each iteration of an MCMC algorithm, a sample is

taken from each conditional posterior distribution for each

subset of the parameter space, given the current values of

the other parameters. After a number of so-called ‘‘burn-

in’’ iterations, necessary for a chain to achieve stationarity

(i.e., approaching the target distribution: the joint posterior

distribution) sufficiently closely, the subsequent draws can

be regarded as sampled from the joint posterior distribution.
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The application of the Bayesian approach with MCMC

sampling to IRT models is mainly motivated by the fact

that IRT models with complex dependency structures re-

quire the evaluation of multiple integrals to solve the

estimation equations in a likelihood-based framework. This

problem is avoided in an MCMC framework. In recent

years, the fully Bayesian approach has been adopted to the

estimation of IRT models with multiple raters, multiple

item types, missing data (Patz and Junker 1999a, b), testlet

structures (Bradlow et al. 1999, Wainer et al. 2000), latent

classes (Hoijtink and Molenaar 1997), models with a multi-

level structure on the ability parameters (Fox and Glas

2001, 2003) and the item parameters (Janssen et al. 2000),

and multidimensional IRT models (Béguin and Glas 2001).

In behaviour genetics, the approach has been taken up by

Eaves and his co-workers (Eaves et al, 2005; Eaves et al.

2004).

In IRT research, the Gibbs sampler is used in two ver-

sions: a version with a normal ogive representation such as

in Eq. 1, introduced by Albert (1992), and a version with a

logistic representation introduced by Patz and Junker

(1999a). Below, a logistic version will be used for simu-

lated and real data, implemented in the freely obtainable

MCMC software package WinBUGS (http://www.mrc-

bsu.cam.ac.uk/bugs/).

Genetic models may be specified in WinBUGS as fol-

lows. Under the assumption that an ACE variance

decomposition model (additive genetic, shared environ-

mental and non-shared environmental effects) is appropri-

ate for a latent trait h, the model can be parameterised as a

linear random effects model (see also Van den Berg et al.

2006a):

hjk ¼ a1k þ a2jk þ ck þ ejk; ð5Þ

where ck denotes the environmental effect for being a

member of family k, and ejk denotes the environmental

effect of being individual j in family k. The genetic com-

ponent is split into a1 and a2 to model the different genetic

correlations amongst monozygotic (MZ) and dizygotic

(DZ) twins (cf. Jinks and Fulker 1970). The genetic cor-

relation in MZ twins is usually assumed 1.0 and in DZ

twins 0.5, in other words, the genetic covariance in MZ

twins is twice as large as in DZ twins. Therefore, if we let

the random effect a1 be constant within all families and we

let a2 vary within families only for DZ twins (but be

constant for MZ twins), and then fix the variances of a1 and

a2 to be equal, the genetic covariance in MZ twins will be

twice as large as in DZ twins. The variance of a1 and a2

together, VAR(a1) + VAR(a2) = 2 * VAR(a1) can then be

interpreted as the variance due to additive genetic effects.

We assume that a1 ~ N(0, ½ r2
a), a2 ~ N(0, ½ r2

a),

c ~ N(0, r2
c), and e ~ N(0, r2

e).

The case for the ADE model can be derived similarly

(Van den Berg et al. 2006a). For some estimation prob-

lems, it might be computationally more convenient to

model sum and differences scores, instead of the latent

scores for the twins separately (Van den Berg et al. 2006a;

Robert and Casella 2004, p. 396; cf. Boomsma and

Molenaar 1986).

Simulation

To illustrate the effect of attenuation on heritability esti-

mates, 101 datasets were generated consisting of 400 MZ

twin pairs and 600 DZ twin pairs. A standard normally

distributed latent trait was simulated with an additive ge-

netic component of 72% and a non-shared environmental

component of 28%. The 1PL IRT model was used to

simulate responses to 14 dichotomous items, where the b
parameter values ranged from 0.5 to 3.5, with increments

of 0.25. This corresponds to questionnaire items that are

rarely endorsed by people. The simulated item data were

fitted using a model with additive genetic and non-shared

environmental effects (AE model) on a latent trait and a

1PL measurement model.

Next, sum scores were computed and these were anal-

ysed with an AE model. Since the distribution of the sum

scores is positively skewed, the AE analysis was also

performed after a logarithmic transformation of the sum

scores.

The simulations were carried out using the software

package R. For each replicated data set, we computed the

twin correlations for the latent scores, the twin correlations

of the sum scores and the twin correlations for the log-

transformed sum scores. The three types of analyses were

carried out in WinBUGS. After a burn-in phase of 1000

iterations, the characterisation of the posterior distribution

for the model parameters was based on 1000 iterations

from 2 independent Markov chains. From each of the 3

(analyses) * 101 (replicated data sets) marginal posterior

distributions for the heritability we took the mean and the

median as point estimates.

Further simulations were carried out to illustrate the

attenuation effect and the bias in variance components. For

simple genetic models, the twin correlations are sufficient

statistics for the variance decomposition. Therefore it is

enough to show how correlations based on sum scores

behave as a function of number of items and beta param-

eters. Data were simulated using bivariate normally dis-

tributed latent values, with correlations 0.9, 0.7, 0.5, 0.3

and 0.1. These latent values were used to simulate corre-

sponding sum scores using a one-parameter logistic IRT

measurement model under a variety of conditions. First of

all, we used different degrees of discrimination of the items

Behav Genet (2007) 37:604–616 609
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(i.e., the variance of the latent trait: 0.676, 1 and 100).

Second, we varied the way in which the items are dis-

tributed across the scale, either evenly scattered so that sum

score distributions are symmetrical, or only scattered on the

upper half part of the scale, that is, using only items that

less than 50% of the population endorses, which results in

positively skewed sum score distributions (cf. Derks et al.

2004; van den Oord et al. 2003). Third, we varied the

number of items (5, 10, 20, 50, 100) to investigate atten-

uation.

Simulation results

Taking the median parameter values from the 101 data sets,

the simulated latent data correlated 0.72 in MZ twins and

0.36 in DZ twins, just as would be expected. The sum

scores correlated 0.45 in MZ twins and 0.21 in DZ twins

(medians of the 101 data sets) and the log-transformed sum

scores correlated 0.41 and 0.20, respectively. Thus, twin

correlations are severely attenuated when analysing sum

scores, even with 14 items.

Analysing the simulated item data with a 1PL IRT

model, using the one-step approach, we recovered the true

72% value for the heritability coefficient closely (see Ta-

ble 1). When analysing the raw sum scores using a normal

AE model, either with or without transformation, the her-

itability point estimate dropped considerably, to about

42%. Thus, when the true model is an IRT model and the

number of items is limited, an analysis of raw or trans-

formed sum scores can lead to extensive underestimation

of heritability.

For each condition of latent correlation, number of items,

and variance of the latent variable, we simulated 100,000

twin pairs and correlated their sum scores. Figure 1A shows

the result for the condition where the variance was 1 and the

items were nicely scattered across the distribution of the

latent values, between –2½ and 2½ times the standard

deviation (1). The attenuation effect is clearly dependent on

the number of items: with 100 items, the correlation on the

basis of the sum scores is very close to the true correlations.

An analysis treating the sum scores as bivariately normal

and applying a variance decomposition will approximate the

true proportions. Moreover, the degree of the attenuation is

proportional to the true correlation: with 5 items, a true

correlation of 0.9 will be attenuated to a correlation of 0.55

(61%) and a true correlation of 0.1 will be attenuated to a

correlation of 0.06 (60%). Therefore, when the analysis on 5

items is based on the sum score, and the true MZ correlation

equals twice the DZ correlation, this ratio is maintained

when analysing sum scores. Thus, when applying an AE

model, heritability will be underestimated, but no artifactual

shared environmental effects or dominance genetic effects

will appear as a result of analysing sum scores.

Figure 1B shows the result for a scale with slightly

worse discrimination: the variance of the trait is now only

0.767. The items are again nicely scattered, between –2½

SD (–2.05) and 2½ SD (2.05). Thus, we retain the spread of

the b values in terms of the SD, so that the expected pro-

portion of individuals scoring a particular number of items

remains equal across simulation situation; the resultant

distribution of the sum scores will be equal. But now, due

to the decreased sensitivity of the scale, the number of

items has a more pronounced effect on the attenuation. The

sum score correlations are now lower than under the model

with variance = 1. However, the attenuation effect is still

proportional to the true correlations.

Figure 1C shows an extreme situation where the items

have high discriminatory power. The variance is now 100,

and the items are evenly scattered between –25 and 25.

Note that again, we retain the scatter of the beta values in

terms of the SD, and again the sum score distribution will

not be different from the earlier simulations. However,

with such a sensitive scale, practically everybody that

scores less than 1 SD below the mean will show a sum

score of 16% of the total number of items. Everybody with

a latent score higher than 1 SD below the mean will show a

sum score of 84% of the number of items. Moreover, the

data will show a scalogram pattern, for example with 3

items with increasing difficulty, the only observed patterns

will be 111, 110, 100 and 000. Such a pattern will not be

observed when the variance is 1, and even less so with a

variance of 0.767: more individuals will then show patterns

like 101 and 011, etc. Again, attenuation occurs when the

number of items is limited, but the effect is much less

pronounced, and again the attenuation is proportional

across the different correlations. In this situation, an anal-

ysis of sum scores will yield reasonable estimates for the

variance components given a sufficient number of items.

Actually, when the raw item data follow the scalogram

pattern, the true correlations and the corresponding vari-

ance components will be recovered when applying a

threshold model (Lynch and Walsh 1998). This is also true

when the data follow a scalogram pattern but the items are

Table 1 Simulation results. Reported heritability values are the

medians of the 101 posterior means and medians, standard deviations

between parentheses

Method of analysis Heritability coefficient point

estimates

Posterior mean Posterior median

1PL IRT model 0.7232 (0.0585) 0.7245 (0.0589)

Sum scores continuous model 0.4364 (0.0393) 0.4369 (0.0395)

Log-transformed sum scores 0.4046 (0.0403) 0.4047 (0.0406)
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not evenly scattered across the scale and the sum score

distribution is skewed: applying a threshold model will

recover the true correlations (cf. Derks et al. 2004). How-

ever, when applying an ordinary variance component

analysis, ignoring its non-normality will yield biased esti-

mates, underestimating the effects of shared environment

and overestimating the effects of dominance (cf. Derks

et al. 2004). This because when the items are not evenly

scattered and the sum score distribution is skewed, the

attenuation effect is no longer proportional to the true

correlations (Fig. 1D): small correlations are more

severely attenuated than large correlations. In case the

true DZ correlation equals half the true MZ correlation,

DZ:MZ = 1:2, the correlations of the sum scores will show

a smaller ratio, DZ:MZ < 1:2, usually an indication of

dominance genetic effects or epistasis. This is hard to see

from the Fig. 1D, but with 5 items, the simulated sum score

correlation is 0.83667 when the true correlation is 0.9

(92.96%), 0.42429 when the true correlation is 0.5

(84.86%), and 0.076575 when the true correlation is 0.1

(76.58%). Suppose we could analyse the true correlations,

0.9 and 0.5. One would then conclude that additive genetic

variance accounts for 80% of the variance, non-shared

environmental effects 10% and the shared environmental

effects for the remaining 10%. Now if we would base our

analysis on the observed sum score correlations 0.84 and

0.42, we would conclude that there are no shared environ-

mental effects. One can imagine that when the true corre-

lations are 0.90 and 0.45 one would conclude dominance

effects to be absent, whereas if one would analyse observed

sum scores correlations, one would find evidence for dom-

inance genetic variance, the extent of which is dependent on

the number of items.

Now, scalogram pattern data that fit a Guttman scale

model are extremely rare. More often, item data follow a

pattern that can be explained by the more lenient IRT

model. Figure 1E shows the attenuation effect when the

true model is a one-parameter IRT model with variance 1,

where all items are endorsed by fewer than half the par-

ticipants (i.e., all b parameters larger than the average

latent score). Again we see that under the usual IRT

model, the attenuation effect depends on the number of

items and again we see that due to the skewness of the

sum score distribution, the attenuation is not proportional
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Fig 1 Correlations of simulated sum scores as a function of true correlation at the latent level, variance of the latent trait (quality of the scale),

and scatter of the item b parameters (entire scale or only top half, i.e., all > 0)
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to the true correlation. For example, with five items the

simulated sum score correlation equals 0.591256 for true

correlation 0.9 (66%), 0.316222 for true correlation 0.5

(63%), and 0.056567 for true correlation 0.1 (57%). When

true correlations are again 0.9 and 0.5, the most likely

model would be, when based on an analysis of the sum

scores with 5 items, 5% dominance genetic variance, 61%

additive genetic variance and 34% non-shared environ-

mental variance.

Thus, also under the IRT model, analysing sum scores

leads to an underestimation of shared environmental effects

and an overestimation of dominance genetic effects when

the sum score distributions are skewed.

An application

We illustrate the decomposition of variance using an IRT

measurement model with data from the Netherlands Twin

Registry (NTR; Boomsma et al. 2002b). Attention prob-

lems were measured with the Young Adult Self-Report

(YASR; Achenbach 1997). We used data collected in the

year 2000 from 460 males and 966 females from MZ twin

pairs, 288 males from DZ same-sex twin pairs, 561

females from DZ same-sex twin pairs, and 305 males and

441 females from opposite sex twin pairs. All twins were

between 18 and 30 years (inclusive). All available data

were used, including data from incomplete pairs and

individuals with several items missing. It was assumed that

data were missing at random (cf. Van den Berg et al.

2006c).

The attention problems (AP) subscale of the YASR

consists of seven items (see Table 2) with three ordered

response categories (0 = Not true, 1 = Somewhat or

Sometimes True, 2 = Very True or Often True). In chil-

dren, sum scores typically show a high heritability with a

significant non-additive genetic component (Rietveld et al.

2004). In young adults, AP sum scores also showed heri-

tability (40%), but no non-additive genetic component

(Van den Berg et al. 2006c).

Here, we estimate A and E variance components using a

1PL measurement model. A main effect of sex, d, was

modelled on the latent trais. The seven original items with

three response categories were transformed into 14

dichotomous dummy items for each individual as described

above. A separate b-parameter was estimated for each

dummy item, so that for each original item there are two b-

parameters. For the variance components, locally non-

informative (‘‘flat’’) inverse gamma priors were used, and

for the b and d parameters we used locally non-informative

normal priors. The parameterisation modelled the variances

of sum and differences scores for the latent trait (Van den

Berg et al. 2006a). The appendix gives the WinBUGS

script. Three independent MCMC chains were used with

randomised starting values. The chains converged rapidly

to the stationary distribution with relatively low autocor-

relations. The first 1000 iterations were discarded as burn-

in samples, and a further 1000 iterations were used for

inference.

Table 2 Items of the attention problems subscale of the young adult

self-report (YASR; Achenbach 1997)

Item Description

1 I act too young for my age

2 I have trouble concentrating or paying attention

3 I daydream a lot

4 My school work or job performance is poor

5 I am too dependent on others

6 I fail to finish things I should do

7 My behaviour is irresponsible

Table 3 Descriptives of marginal posterior distributions for the AE

variance decomposition model using the 1PL IRT model for polyt-

omous items with a main effect for sex

Parameter Mean SD 2½th

percentile

Median 97½th

percentile

r2
a 0.84 0.07 0.71 0.84 0.99

r2
e 0.32 0.06 0.20 0.32 0.44

d –0.13 0.05 –0.24 –0.13 –0.02

b11 0.25 0.05 0.15 0.25 0.34

b12 2.76 0.10 2.56 2.76 2.96

b21 –0.76 0.05 –0.86 –0.76 –0.66

b22 2.44 0.08 2.30 2.45 2.60

b31 –0.43 0.05 –0.53 –0.43 –0.33

b32 1.84 0.08 1.71 1.84 1.98

b41 1.90 0.06 1.78 1.90 2.02

b42 3.96 0.20 3.58 3.96 4.36

b51 0.22 0.05 0.13 0.22 0.32

b52 3.03 0.10 2.83 3.02 3.23

b61 0.62 0.05 0.53 0.62 0.73

b62 3.90 0.15 3.63 3.90 4.19

b71 2.57 0.07 2.44 2.57 2.71

b72 4.61 0.31 4.05 4.60 5.27

h2 0.73 0.05 0.63 0.72 0.82

Note: First index of the betas refers to the item (see Table 1) and the

second to the threshold
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Results

Table 3 gives the descriptives of the marginal posterior

distribution of the parameter values. The estimate for

heritability based on the mean of the posterior distribution

is 73%. The main effect of sex on the latent trait, with

females scoring higher than males, is just significant, as

zero is not included in the central 95% credibility region.

Values of the b-parameters are all around zero or positive,

indicating that the AP scale is most sensitive for individ-

uals with considerable attention problems but has a hard

time discriminating individuals with relatively few prob-

lems with attention. This results in the severely skewed

distributions of sum scores.

The estimate for the heritability (73%) is much larger

than the one reported earlier based on sum scores (40%,

Van den Berg et al. 2006c). In the current sample, twin

correlations for sum scores are very much like those re-

ported earlier (MZ:0.45, DZ:0.17). By applying an IRT

measurement model the twin correlation estimates for the

latent trait are much higher, 0.76 for MZ twins and 0.30 for

DZ twins. For comparison, when using a two-step ap-

proach, first estimating IRT model parameters in Multilog

and then estimating latent scores for each individual (cor-

relation between sum score and IRT estimate: 0.98), the

results showed twin correlations nearly identical to those

based on sum scores.

The 1PL IRT measurement model could easily be ex-

tended to include discrimination parameters (‘‘factor

loadings’’). It is most convenient to constrain these to be

positive through the specification of lognormal priors

where for instance a = exp(c) and c ~ N(0, 100). In this

case, the heritability estimate was not affected by this

extension of the model (results not shown).

Discussion

We have compared an IRT model with a sum score

approach with indirectly measured phenotypes. Under a

range of conditions, the IRT framework is to be preferred

over using sum scores. For example, in longitudinal

studies with data missing by design or changing mea-

surement instruments, when some items in a questionnaire

change across birth cohorts or across different ages or

when item data are missing, a sum score approach

may no longer be appropriate, but in many cases the

analysis can still be meaningfully carried out in an IRT

framework using parameter expansion (see, for instance,

Glas 1998).

When a simple IRT model does not fit the data, one

could consider deleting or changing bad fitting items, and/

or deleting bad fitting persons. Alternatively, one could

consider using more general IRT models that offer many

possibilities of obtaining model fit. General frameworks

for multi-level and multi-dimensional IRT models are

outlined in Skrondal and Rabe-Hesketh (2004) and De

Boeck and Wilson (2004). In the specific context of genetic

modelling, it might also occur that a particular subset of

items show relatively high genetic correlations compared

to the remaining items. In that case a more appropriate

model would be an independent pathway model for cate-

gorical or ordinal traits (see for instance Van den Berg

et al. 2006b).

Good fit to a one-dimensional IRT model is empirical

evidence that the observed item responses can be explained

by one continuous underlying trait. When it further can be

concluded that the scale is meaningful (based on item

analysis and association with external measures to assess

its validity), and the assumption of measurement invariance

across different subpopulations is tenable (Lubke et al.

2004), the approach effectively deals with non-normal

distributions of sum scores in for instance psychopathology

(Van den Oord et al. 2003).

Moreover, when the measurement model and the vari-

ance decomposition model are estimated simultaneously,

the variance decomposition deals appropriately with the

dependency in the data when estimating IRT model

parameters and testing the model’s assumptions, and the

IRT measurement model deals appropriately with the

estimation of the heritability coefficient (correcting for

attenuation to obtain an unbiased point estimate) and the

reporting of the confidence intervals (correcting for loca-

tion-dependent uncertainty of person scores on the latent

trait).

Our simulations showed the dramatic extent of the

attenuation effect and the bias in estimating variance

components due to imperfect measurement. Particularly

when sum score distributions are skewed, underestimation

of shared environmental effects and overestimation of

dominance genetic effects may occur. The bias in variance

components was also illustrated with an empirical data set:

instead of finding a heritability estimate of 40% for atten-

tion problems with a sum score (Van den Berg et al.

2006c), a heritability estimate of 73% was obtained when

including a measurement model and estimating it simul-

taneously with the variance decomposition model. This

example provides an additional illustration of the bias in

variance components due to the analysis of sum scores.

However, it should be noted that model fit was not

assessed, nor was the assumption of measurement invari-

ance tested. This requires further study.

The crucial element of the one-step approach that leads

to unbiased point estimates is the inclusion of the appro-

priate probabilistic measurement model so that the esti-

mation takes into account the unreliability of the
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measurement. The probabilistic modelling allows for the

fact that twins with identical response patterns may have

different scores on the latent trait, and also, that twins with

non-identical response patterns may have exactly the same

score on the latent trait. Discriminatory power of the items

and the number of items are both crucial to the heritability

estimated based on sum scores: the fewer the items and the

worse the discrimination of the items (i.e., the smaller the

variance of the latent trait in the one-parameter model; the

smaller the factor loadings in the two-parameter model),

the more biased the estimation will be when the analysis is

performed on sum scores. High quality scales with a large

number of items (say, more than 50) with high discrimi-

natory power that are scattered across the entire scale can

indeed be analysed with sum scores, but any other scale

should be analysed using the IRT framework if one is

interested in an unbiased heritability estimate with trust-

worthy confidence intervals.

Future work should focus on the assessment of model

fit in the context of genetic models. It is only sensible to

apply a one-step IRT approach when the data actually

conform to an IRT measurement model. If data do not

fit an IRT model, for instance when there is differential

item functioning across subpopulations, the approach

will still lead to biased estimates. A crucial first step

therefore is assessing model fit and checking measurement

invariance.
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Appendix: WinBUGS script

AE decomposition with 1PL IRT measurement model

and main effect of sex

# The model is parameterised using the sum of latent

# liabilities in a twin pair and the

# difference.

# Nfammz: number of MZ twin pairs, Nfamdz: number

# of DZ twin pairs, specified in the

# data matrix

# Ymz[i, k]: the kth datapoint from the ith MZ twin pair;

# Ymz[i, 1] is a covariate that is not used in this analysis

# Ymz[i, 2] is a dummy code for sex of the first twin

# (1 = male), the next 14 data points relate # to the items

# for the first twin, Ymz[i, 17] is a dummy code for sex of

# second twin, the last

# 14 datapoints relate to the second twin.

# Ydz[i, k]: the kth datapoint from the ith DZ twin pair;

# Winbugs uses precision parameters instead of variance

# parameters for the distributions.

# tau.summz: the inverse of sigma2.summz, being the

# variance of the summed latent scores

# of MZ twin pairs.

Model

{

for(i in 1:Nfammz)

{

Summz[i] ~ dnorm(0, tau.summz)

difmz[i] ~ dnorm(0, tau.difmz)

for( k in 3:16)

{

logit(p1[i,k]) <- (summz[i] + difmz[i])/

2 + Ymz[i,2]*delta – beta[k – 2]

Ymz[i,k] ~ dbern(p1[i,k])

}

for(k in 18:31)

{

logit(p1[i,k]) <- (summz[i] – difmz[i])/

2 + Ymz[i,17]*delta – beta[k – 17]

Ymz[i,k] ~ dbern(p1[i,k])

}

}

for(i in 1:Nfamdz)

{

sumdz[i] ~ dnorm(0, tau.sumdz)

difdz[i] ~ dnorm(0, tau.difdz)

for(k in 3:16)

{

logit(p2[i,k]) <- (sumdz[i] + difdz[i])/

2 + Ydz[i,2]*delta – beta[k – 2]

Ydz[i,k] ~ dbern(p2[i,k])

}

for(k in 18:31)

{

logit(p2[i,k]) <- (sumdz[i] – difdz[i])/

2 + Ydz[i,17]*delta – beta[k – 17]

Ydz[i,k] ~ dbern(p2[i,k])

}

}

# winbugs works with precision parameters, i.e., the

# inverted variances

tau.summz <- 1/sigma2.summz

tau.sumdz <- 1/sigma2.sumdz

tau.difmz <- 1/sigma2.difmz

tau.difdz <- 1/sigma2.difdz

# variance decomposition, see Van den Berg et al., Twin

# Res Hum Genet, 9(3), 334–342.

sigma2.summz <- 4*VarA + 2*VarE
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sigma2.sumdz <- 3*VarA + 2*VarE

sigma2.difmz <- 2*VarE

sigma2.difdz <- VarA + 2*VarE

# specification of inverse gamma priors for variance

# components

VarA <- 1/invVarA

VarE <- 1/invVarE

invVarA ~ dgamma(0.10, 0.10)

invVarE ~ dgamma(0.10, 0.10)

# sample the heritability parameter

h2 <- VarA/(VarA + VarE)

# remaining priors

delta ~ dnorm(0, 0.01) # the sex effect

for (i in 1:14)

{

beta[i] ~ dnorm(0, 0.01) # item parameters

}

}
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