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Abstract
The seismic vulnerability of a city is a degree of its intrinsic susceptibility or predisposition 
to sustain damage or losses stemming from seismic events. In terms of physical vulnerabil-
ity, one of the most important factors for assessing seismic risk, especially, for estimating 
losses, is the exposure of structures, particularly those structures intended for residential 
use. The present article outlines a methodology for classifying residential buildings based 
on the structural and non-structural components that ultimately determine the building 
typology and control the seismic performance. The proposed methodology is divided into 
three steps: first, spatial data are analysed using an official database that is supplemented by 
remote field work to verify, validate, and identify construction typologies and urban modi-
fiers after incorporating the new observable data. During the second step, machine learning 
techniques based on Two-Step cluster analysis and neural networks are used to identify 
building typologies, using a multilayer perceptron to assess the representativeness of the 
building typologies identified. Finally, each building typology is defined, a vulnerability 
assessment is carried out, and vulnerability classes are ranked based on the macroseismic 
scale. The above-mentioned steps were applied to 7631 residential buildings in the city of 
Murcia, Spain. The methodology is scalable and may be automated, so it may be replicated 
in other urban areas with similar characteristics or adapted to different urban settings. This 
may help save time and reduce the cost of carrying out seismic risk studies, providing valu-
able information for both civil protection and regional and local governments.

Keywords  Buildings classifications · Seismic vulnerability · Vulnerability index · Cluster 
analysis · Neural networks · Murcia Spain

 *	 J. Eduardo Meyers‑Angulo 
	 eduardo.meyers.angulo@alumnos.upm.es

	 Sandra Martínez‑Cuevas 
	 sandra.mcuevas@upm.es

	 Jorge M. Gaspar‑Escribano 
	 jorge.gaspar@upm.es

1	 Universidad Politécnica de Madrid, Madrid, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-023-01671-5&domain=pdf
http://orcid.org/0000-0002-5831-901X
http://orcid.org/0000-0002-2150-3251
http://orcid.org/0000-0002-2220-7112


3582	 Bulletin of Earthquake Engineering (2023) 21:3581–3622

1 3

1  Introduction

The seismic vulnerability of a building or group of buildings reflects its intrinsic predispo-
sition to sustaining damage in the event of a seismic motion and is directly correlated with 
its physical properties, structural design and soil-structure interaction (Barbat et al. 1998). 
In order to further a multidisciplinary and comprehensive approach to seismic risk assess-
ment, we must first evaluate the potential physical damage that may result from the com-
bination of hazard and physical vulnerability for exposed elements (Carreño 2006). Seis-
mic risk assessment at the urban level must contemplate a large number of structures with 
their corresponding potential levels of damage and probabilities of sustaining said damage, 
while also bearing in mind that different buildings serve different purposes that are more 
or less relevant to city life (Basaglia et al. 2018). In this context, data quality and avail-
ability directly affect a realistic risk assessment, which serves as the basis for implement-
ing informed disaster risk reduction actions, in line with the international agenda and the 
global targets set in the Sendai Framework, such as those that seek to make risk data and 
information more available to local communities and organizations (Torres et al. 2019).

The details of a building’s construction make each building unique. In order to sys-
tematically characterize the different elements of the building, it is essential to record and 
update the data with the structural and non-structural attributes that can affect the seismic 
behaviour of the building. All these attributes are represented in an exposure model for 
vulnerability and seismic risk assessments, which can be adapted to a suitable taxonomy. 
This step poses the most significant challenges. For Dell’Acqua et al. (2013), the pitfalls of 
taking a detailed inventory of building stock include: (i) high investment in terms of time 
and money; (ii) access to data or public information that is incomplete or scattered across 
several entities; (iii) possible observation errors due to uncertainty; (iv) variable data for-
mats or poor homogenization. Thus, the ongoing challenge of recording and enriching spa-
tial data has led many researchers to propose methodologies based on primary data sources 
such as population and housing censuses, cadastres, and other official sources, combined 
with direct observations or computer-based surveys.

Examples of the above include the exposure model presented by Yepes-Estrada et  al. 
(2017)—which, as part of the Global Earthquake Model’s (GEM) South America Risk 
Assessment (SARA) Project, classifies typical building structures in seven South American 
countries based on population and housing census data—and the classification of structures 
in Central and South Asian countries presented by Lang et al. (2017), in which the authors 
managed to identify key building typologies based on data from rapid visual surveys. At 
the country level, the exposure model proposed by Santa María et  al. (2017) provides a 
classification of residential building structures in Chile using census data as a primary 
source and identifying structures based on remote surveys. Another example of methodol-
ogy, this time based on geomatics and statistical techniques, is the study by Torres et al. 
(2019) in which the researchers propose procedures for estimating seismic exposure and 
vulnerability by applying algorithms to remote-sensing data, thus providing accurate auto-
mation for these types of studies. Consequently, one current challenge is to adopt new auto-
mated methodologies for classifying building structures before assessing vulnerability.

Several global initiatives propose methods for assessing seismic vulnerability based 
on Building Typology Model (BTM) that correspond to predefined building classes with 
similar characteristics as far as their structural systems and seismic behaviour. Some of 
the most characteristic of these initiatives include: the taxonomy proposed by the Federal 
Emergency Management Agency (FEMA-154 1988, 2002), which contains 15 different 
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typological classes or BTMs based on building specifications typical in the United States; 
HAZUS (HAZUS-MH 2003), created by FEMA as a method for estimating seismic risk, 
with 15 BTMs subdivided according to the number of storeys; EMS-98 (Grünthal 1998), 
a European building classification based on empirical macroseismic intensity scales that 
identifies 15 BTMs based on the level of vulnerability in the event of a major earthquake; 
Risk-UE (Mouroux et al. 2004; Mouroux and Le Brun 2006), which integrates and homog-
enizes seismic risk projects in Europe, identifying 23 BTMs based on the most prevalent 
construction specifications; SYNER-G (2009), a comprehensive methodology for assessing 
the seismic vulnerability of buildings in Europe that contemplates the urban system and 
its interrelation with other systems and proposes new taxonomies for reinforced concrete 
and masonry; GEM Taxonomy; v.2.0 (Brzev et  al. 2013), which comprises 13 attributes 
that describe the structural system, roofing, flooring, building envelope, and use, among 
other things. These attributes are divided into sub-levels corresponding to the specific char-
acteristic of the main attribute, thus providing a more detailed physical description of the 
building and positioning the system as a global taxonomy. In this context, and in line with 
the Sendai Framework’s goal of promoting availability of multi-hazard systems, recent 
taxonomies such as GED4ALL (Silva et al. 2018)—which presents a taxonomy based on 
GEM v2.0—have taken a multi-risk approach, clearly distinguishing between the concepts 
of exposure (common to all risks) and vulnerability (specific to each risk). Other use cases 
include European projects such as SERA (2017), urban exposure studies (Pittore et  al. 
2018), and studies based on modelling building typologies (Esteghamati et al. 2020).

Hence, the main objective of any building vulnerability rating is to identify those 
building typologies that might respond differently to seismic shaking and group them 
into classes to evaluate their response and the estimated extent of potential losses. Ongo-
ing studies rate the variables that affect building vulnerability and formulate a statistical 
model using a discrimination index (Martínez-Cuevas et al. 2020) that makes it possible 
to identify habitable and non-habitable buildings. Recently published studies in the field of 
machine learning apply artificial neural networks (ANN) to the field of seismic engineer-
ing. Several authors (e.g., Stefanini et al. 2022; Ferreira et al. 2020) have used techniques 
based on artificial intelligence to evaluate seismic response and estimate damage. Others 
(Vazirizade et al. 2017; Tang et al. 2021) have applied machine learning to structural reli-
ability assessments and rapid assessments of seismic risk and potential building loss.

This paper focuses on using data mining and machine learning techniques to obtain data 
and ultimately classify the predominant building construction patterns (including structural 
and non-structural aspects) in an urban area. The method was applied to the city of Murcia, 
which has one of the highest seismic risks of any city in Spain (IGN-UPM 2013; Gaspar-
Escribano et al. 2015). The last significant earthquake in this region occurred in 2011 in 
the city of Lorca, 105 km from the city of Murcia and the two cities have similar urban 
settings. The literature on Lorca’s post-earthquake vulnerability includes studies on seis-
mic behaviour in masonry and reinforced concrete buildings (Basset-Salom and Guardiola-
Víllora 2014; Gomez-Martinez et al. 2015; Ródenas et al. 2018) and analyses of building 
typologies and urban modifiers based on empirical data and the re-evaluation of macroseis-
mic intensity estimates (Martínez-Cuevas and Gaspar-Escribano 2016; Martinez-Cuevas 
et al. 2017).

The proposed methodology uses multivariate statistical techniques and machine learn-
ing to classify building types according to seismic vulnerability. The study was carried out 
by performing data analysis at different resolutions, starting with primary data sources, 
and then verifying and collecting data via remote surveys using online map viewers, digi-
tal cartography analysis, and Geographical Information System (GIS) tools to obtain a 
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high-quality final database. Based on the data obtained, an initial building typology classi-
fication was carried out by applying a two-step cluster analysis and a multilayer perceptron 
ANN to the final evaluation of key building typologies in the study areas. Finally, seis-
mic vulnerability was assessed and classified according to the EMS-98 macroseismic scale 
(Grünthal 1998).

2 � General methodology

The present study proposes a methodology (Fig. 1) that is divided into three steps, with 
specific workflow stages in each phase.

The first step consisted on selecting a study area in the city of Murcia, compiling build-
ing data extracted from the Cadastre (https://​www.​sedec​atast​ro.​gob.​es/) and setting up an 
initial database and geographic information system. This allowed us to preliminarily iden-
tify the different Construction Typologies (CT) and their variability within the selected 
study area. Preliminary data were checked for potential identification errors by means of 
a typology membership probability matrix for Murcia (RISMUR 2014), and in parallel, 
remote field work was carried out to identify urban modifiers for the buildings in the study 
area (Martinez-Cuevas et al. 2017). In this way, an initial database was configured and was 
thus enriched with the incorporation of new attributes (urban modifiers) coded according 
to the GEM taxonomy (https://​taxon​omy.​openq​uake.​org/). The initial CTs completed with 
the corresponding urban modifiers are called Building Typologies (BT) in this work.

The second step involved multivariate statistical techniques. A two-step cluster analysis 
was used to identify clusters, correlating previously identified construction typologies with 
the urban modifiers present in each building. For each CT, the resulting clusters, called 
Building Cluster Typologies (BCT) in this work, were internally similar but dissimilar 
compared to other clusters. The various BCT were evaluated using a multilayer perceptron 
neural network (ANN-MLP), which allowed us to assess the representativeness of the natu-
ral clusters obtained using the multivariate technique.

The third step consisted of conducting a vulnerability study of structural and non-struc-
tural components, developing a building taxonomy based on the BCT evaluated, calculat-
ing average vulnerability at the neighbourhood and census tract levels, and establishing 
vulnerability index ranges for each cluster analysed. The European Macroseismic Scale 
(EMS-98) was used to classify vulnerability classes, in addition the corresponding vulner-
ability curves are prepared for each BCT.

2.1 � Study area and data

The study area comprises the urban area of the city of Murcia, whose local administration 
is divided into 28 neighbourhoods and 158 census blocks (CB). The former represents the 
largest scale at the urban level while the latter are lower-level territorial subdivisions that 
are useful for disseminating statistical data. The total area covered by the sum of all neigh-
bourhoods analysed is approximately 11.93  km2. The study area contains high-density 
residential buildings with unique urban characteristics and construction typologies attribut-
able to the date of construction, urban planning, and the way construction techniques have 
evolved. The total building stock consists of 8698 buildings, of which 7631 are residen-
tial buildings. These buildings constitute the basis of this study, corresponding to 100% of 
the residential buildings within the city of Murcia. Figure 2 shows the study area and the 

https://www.sedecatastro.gob.es/
https://taxonomy.openquake.org/
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correlation between neighbourhoods, census blocks, and the number of residential build-
ings analysed.

2.2 � Database and geographical information

Initially, a building database and a GIS were set up using the primary data (shapefiles 
Building and BuildingPart) obtained from the Spanish Cadastre (https://​www.​catas​tro.​
minhap.​es/​webin​spire/​index.​html) according to the INSPIRE Directive. The attributes 
extracted for each building included: identifier for each building and building parts, cadas-
tral reference, geometries, year of construction, state of conservation, total number of 

Fig. 1   Diagram showing the steps of the proposed methodology

https://www.catastro.minhap.es/webinspire/index.html
https://www.catastro.minhap.es/webinspire/index.html
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building, number of dwellings, number of storeys above and below ground level, reforms, 
areas, centroid coordinates, and precision. This database was depurated by specifying dif-
ferent IDs for buildings sharing the same cadastral reference, by correcting errors in con-
touring polygons and by removing nonessential data for the purpose of this work (retaining 
the number of storeys, year of construction, building use, number of dwellings, and reno-
vation only). This process led to the configuration of the CT database, that was comple-
mented with the attributes related to urban modifiers to obtain BT database.

The first step was to apply a building membership probability matrix (RISMUR 2014) 
that links the year of construction with the approximate validity periods of the correspond-
ing earthquake-resistant building codes for the entire region of Murcia (Table 1). The ini-
tial matrix was randomly applied to the entire building database to obtain an initial identi-
fication of CTs. The CTs were classified as low-rise, medium-rise, and high-rise buildings 

Fig. 2   Study area in the city of Murcia and a list of neighbourhoods, number of census blocks, number of 
buildings and densities
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according to the number of storeys. Depending on the year of construction and the applica-
ble building code, concrete buildings were classified as pre-code and low-code (buildings 
with higher level of seismic design are not present in the study area).

It should be noted that, the NCSE-02 seismic-code regulation is an improved update of 
NCSE-94 based on probabilistic hazard studies. The NCSE-02 stands out for its focus on 
seismic safety and building lifespan, including detailed information on construction and 
conceptual design of projects. It also introduces the soil coefficient “S” factor, maintaining 
the same ground accelerations for Murcia (0.15 g). In our study, we have considered con-
tinuity in construction technology from the validity of NCSE-94, classifying buildings as 
CT RC3.1-low. During the years 1997–2004, the RC3.1-pre classification corresponds to 
30%, by construction licenses under PDS-1 regulation. Table 2 offers a general description 
of each CT.

As the initial membership matrix was applied randomly to the baseline data, errors were 
observed in the initial identification of CTs, where an important piece of information is the 
number of storeys. For example, buildings identified as M1.1 and M3.1 were found to have 
more than seven storeys, which is more common in reinforced concrete structures. These 
errors were checked and rectified by means of remote inspection using the Street View tool 
in Google Maps. Based on the above, we hypothesized that some structures were near the 
lower and upper limits of the probability matrix’s date range, where uncertainty in identify-
ing typology might be greater.

2.3 � Remote field work

Using the data collection approach proposed by Martínez-Cuevas and Gaspar-Escribano 
(2016), remote fieldwork was carried out to check and correct preliminary CTs results. 
Google Maps was used to locate the buildings, and the Street View tool was used for vis-
ual inspection with a special emphasis on the dates of construction closest to the years in 
which seismic-resistant regulations changed. Approximately 60% (4607 out of 7693) of 
buildings were observed, with 64% (2952) of them incorrectly classified through the appli-
cation of the initial matrix at random. Table 3 shows the matrix of CTs obtained after the 
remote fieldwork inspection. Figure 3 illustrates the number of buildings for each CT.

From the preliminary analysis and out of the total number of buildings, 62 build-
ings were listed as dilapidated. After checking the data through field work, the findings 
observed indicated that these buildings no longer existed, and the plots were vacant. On 
the other hand, 275 buildings had been completely renovated, leading us to re-assign 

Table 1   Evolution of seismic codes applicable in Spain

*Official Gazette of the Spanish State

Seismic regulations BOE* publication Earthquake-resistant 
design level

Enforcement period

No regulations … No seismic code < 1964
MV-101/1962 February 9, 1963 Pre-code 1964–1969
PGS-1/1968 February 4, 1969 Pre-code 1970–1976
PDS-1/1974 November 21, 1974 Pre-code 1977–1996
NCSE-94 February 8, 1995 Medium-code 1997–2004
NCSE-02 October 11, 2002 Medium-code > 2004
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typologies based on the year of renovation, in accordance with current seismic-resistant 
regulations. Table 4 shows the amounts of buildings for each CT and general percent-
age within the study area. Figure 4 shows the percentage breakdown of the various CTs 
obtained for each neighbourhood.

3 � Classification and characterization of urban modifiers

In the present study, urban modifiers reflect urban planning parameters that are applied 
to residential buildings and make buildings more or less vulnerable, depending on their 
location and other factors that may affect their behaviour in the event of a seismic event 
(Martinez-Cuevas et  al. 2017). The GEM taxonomy Brzev et  al. (2013) was used to 
code the various urban modifiers. Table 5 describes the derivation of each urban modi-
fier based on different data sources, remote fieldwork, and GIS processes.

Below we describe each urban modifier and the procedure to obtain it:

Fig. 3   CT results using remote field work

Table 4   CTs frequencies and 
percentages in the study area

Construction typology Buildings %

M1.1 354 4.6
M3.1 1753 23.0
M3.4 1672 21.9
RC3.1-pre 2890 37.9
RC3.1-low 962 12.6
Total 7631 100
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3.1 � Irregular floor plan (code PLF)

Floor plans with irregularities, mainly re-entrant corners, were evaluated based on car-
tographic data from the cadastre and using a GIS environment. Thus, a corner is con-
sidered re-entrant when the setback measures at least 15% of sections L and L’ in the 
floor plan (Fig. 5). We also identified the various floor plan shapes for buildings (E, H, 
L, T, U) coded PLF (Brzev et al. 2013). Buildings with a setback < 15% are considered 
rectangular (R) or square (SQ), as the case may be.

3.2 � Soft storey (code SOS)

Structural layouts in which one storey of a building, usually the ground floor, is more 
ductile and/or weaker than the floors immediately above. Soft storeys are typically used 
as parking, retail, or office spaces (Brzev et al. 2013; Martinez-Cuevas et al. 2017). For 
the purposes of this study, mixed-use buildings with a second storey intended for non-
residential use (as given by the cadastral database) are assumed to have a soft storey 
and are coded as SOS.

Fig. 4   Spatial distribution of CTs in the neighborhoods studied
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3.3 � Irregularities in the vertical structure (code CHV)

Variations in the vertical structure and/or the materials used in the vertical structures 
of the buildings were evaluated according to the approach of Lantada (2007), which 
compares the perfect and actual volumes of the building. These volumes were calcu-
lated using area data from the cadastral database with the support of GIS processes. 
The results of this process were validated with the dataset of remotely viewed buildings. 
In the remote visual inspection, we analysed buildings in which various parts of the 
exterior wall are displaced with respect to the limits of the vertical planes that enclose 
each building or its fachade (Martinez-Cuevas et  al. 2017). The results of the visual 
inspection provided excellent reliability of the processes executed in GIS, which led us 
to assume as valid the results of these processes in non-inspected buildings. The code 
used to indicate variations in the vertical structure was CHV.

3.4 � Short column (code SHC)

Irregularity related to variations in the distribution of columns within a building. This 
occurs when, at any given point, some columns are shorter or more fragile than others 
(Martinez-Cuevas et  al. 2017). This concept also includes captive columns, a type of 
column whose free length is restricted by infill walls (Guevara and García 2001). Gener-
ally, a building has short columns if it has captive columns where non-structural walls 
reduce the height of the unsupported length of the column by at least half or the column 
aspect ratio to less than 2:1 (Brzev et al. 2013). This modifier was assigned upon ana-
lysing the site (see Sect. 6.1) for each reinforced concrete building that featured under-
ground storeys (obtained from cadastral data). Based on the site analysis, buildings with 
underground storeys on slopes with gradients of > 10% were assigned code SHC to indi-
cate short column irregularity.

3.5 � Residential building type (code RES)

Residential buildings were divided into two main categories, according to cadastral 
data, based on the number of dwellings listed: single-family home or collective hous-
ing, using codes RES1 and RES2, respectively. It is worth mentioning that single-family 
residential subdivisions may include detached, semi-detached, attached, or closed-block 
buildings. Multifamily residential buildings, or collective housing, may include build-
ings separated by party walls or open-block buildings with façades facing the street.

Fig. 5   Definition of an irregular 
re-entrant floor plan is where 
L’ > 0.15L or L’ and L ≥ 15% 
(Charleson 2008)
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3.6 � Difference in height compared to adjacent buildings (code POP)

According to Brzev et al. (2013), when the space between buildings is less than 4% of 
the height of the shorter building, insufficient or non-existent spacing between adjacent 
buildings can potentially produce a pounding effect, leading to damage to both struc-
tures. For Lantada (2007), this irregularity is applied when there is a difference of at 
least 2 storeys between adjacent buildings. Based on this last criterion, the code POP 
was assigned to adjacent buildings with a difference of 2 or more storeys, according to a 
GIS inspection of the distribution of number of floors extracted from the cadastral data-
base and validated for the buildings inspected in the field work.

3.7 � Position of the building within the block (code BP)

Brzev et al. (2013), classify the position of a building within a block based on the adjoining 
or attached buildings on either side of the building to be classified. Accordingly, they estab-
lish four distinct categories: BPD buildings with no other adjoining or attached buildings, 
BP1 with adjoining or attached buildings on one side, BP2 with contiguous or attached 
buildings on two sides, and BP3 with adjoining or attached buildings on three sides. These 
can also be categorized as: detached buildings, header/terminal buildings at either end of 
a block, corner buildings, and intermediate buildings (Lantada 2007). Based on the above 
criteria, building location within the block was determined using GIS based on automatic 
neighbouring polygons techniques. The polygons for all buildings in the cadastre data set 
were analysed and, finally, a classification was assigned only to residential buildings.

Figure 6 illustrates the classification adopted. Sub-classifications were included to pro-
vide greater detail about the position of buildings within a block. This enabled us to adopt 
criteria, using the year of construction and the year in which renovations were completed 
as primary data. Our analysis resulted in the following classification: (i) semi-detached 
buildings with distinct cadastral reference numbers and identical structural typology that 
were built or renovated in the same year were assumed to have a continuous structure and 
classified as BPD; (ii) header/terminal buildings at either end of a row of attached build-
ings were classified as BP1; (iii) semi-detached buildings built or renovated in different 
years were assumed to have a discontinuous structure and classified as BP1_P, like the 
header/terminal buildings on either end of a row of attached buildings; (iv) attached build-
ings with adjacent units on two sides, leaving a corner of the building to be catalogued 
free, were classified as BP2_E corner buildings; (v) two adjacent buildings on opposite 
sides of the building to be catalogued were classified as BP2_I intermediate buildings; (vi) 
buildings with one side free were classified as BP3 intermediate buildings.

Fig. 6   Classification of buildings within blocks
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3.8 � Identifying urban modifiers in the study area

A descriptive statistical study was carried out to determine the frequency of each urban 
modifier in each CT. Figure 7 shows the relative presence of 1–2 storey masonry build-
ings and of 3–5 storey reinforced concrete buildings. Masonry CTs (M1.1, M3.1 and M3.4) 
tend to have highly irregular vertical structures (CHV) because they often have balconies 
and bay windows. They also tend to have regular floor plans. On the other hand, reinforced 
concrete buildings (RC31-pre and RC31-low) tend to have irregular floor plans and highly 
irregular vertical structures (CHV), and most have soft storeys (SOS). This makes it possi-
ble to infer certain Building Typologies (BT) from the combination of CT and urban modi-
fiers. However, it can be useful to obtain more detailed information and establish a more 
direct relationship between CT and urban modifiers, as these can affect the seismic perfor-
mance of buildings. In this study, we applied multivariate statistics and, more specifically, 
cluster analysis to identify subgroups, applying homogeneity criteria to help define repre-
sentative BTs in the study area and, in turn, assess and compare their seismic vulnerability.

4 � Identifying patterns based on a multivariate statistical study

A multivariate analysis was performed for each CT using the Two-Step Cluster analysis 
proposed by Chiu et al. (2001). IMB SPSS Statistics 26 software was used to perform the 
cluster analysis to identify similar and dissimilar multivariate patterns (urban modifiers) 
based on CTs.

The starting point was a set of five CTs for which we had access to information coded 
as a set of variables corresponding to the various urban modifiers identified previously. 
The first step was to select a limited number of variables, making sure not to duplicate the 
information contained in the data. The next step consisted of selecting the distance/dissimi-
larity measure, which must match the types of variables. In our case, the urban modifiers 
are qualitative variables, and the distance measures are for non-metric data. A grouping 

Fig. 7   Relative incidences of urban modifiers in each CT identified in the study area
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criterion was applied to generate the various clusters with their corresponding predictor 
variables. This made it easier to form homogeneous groups. The last step consisted of eval-
uating the various clusters obtained.

This method was used because it can handle categorical and continuous variables, ana-
lyse large volumes of data using a cluster feature (CF) tree, and automatically deliver the 
natural and optimal number of clusters. The latter was carried out subject to the condi-
tions of independent variables, with multinomial distribution for categorical variables and 
normal distribution for continuous variables. Nevertheless, internal empirical tests indi-
cate that this multivariate analysis method is robust even when these conditions are not 
met, since the Two-Step cluster does not involve hypothesis testing or calculation of sig-
nificance, leaving the decision as to whether or not the solution is satisfactory up to the 
researcher (Rubio-Hurtado and Baños 2017; Ballestar et al. 2018; Norusis 2011).

4.1 � Types of variables

Based on the final data, the urban modifiers affecting each CTs were used as nominal quali-
tative variables, thus enabling us to obtain homogeneous clusters for each identified CT. 
A modifier was assigned a categorical variable when its presence was the only way a CT 
could feature this characteristic. If more than one modifier was present in each CT, it was 
coded as a dichotomous variable indicating the presence or absence of said characteristic 
(Table 6). Variables were incorporated in the analysis based on the principle of parsimony, 
thus limiting the selection of variables (Rubio-Hurtado, and Baños 2017). Consequently, E, 
H, L, T, and U floor plans were assumed to include re-entrant corners so that the presence 
of re-entrant corners in a floor plan did not have to be considered a variable.

4.2 � Implementing two‑step cluster analysis

The data was inputted in SPSS in a randomized manner, as recommended by Norusis 
(2008). The first stage of analysis consisted of sequence clustering to generate a CF tree 
structure of attributes using the notation described by Zhang et al. (1996), using the default 
CF-tree settings. This way, the variables (urban modifiers) for each CT was organized to 
form a branching tree structure, moving from the bottom, or root node, to the top level, or 
leaf node. The software process was sequential, counting the categories for each variable 
by scanning the records following the approach proposed by Theodoridis and Koutroumbas 
(2001). From the initial branching to the end of the process, the records were divided up to 
the leaf node by applying similarity/dissimilarity criteria to the data, thus generating a set 
of pre-clusters. The distance measure used corresponds to the maximum logarithmic likeli-
hood using BIC clustering criterion (Schwarz 1978).

The number of clusters (Fig. 8) for which the BIC value drastically decreases, and the 
inflection point on the curve steadily declines from that point on is directly correlated with 
the formation of optimal clusters (Fraley and Raftery 1998; Norusis 2008). Given that our 
data set may include different points (bends in the curve) for each CT, thus altering the 
number and quality of the clusters, the inflection points defining each of the final clusters 
proved to be of good quality. After first verifying internal stability and specifying various 
fixed and maximum numbers of clusters, the various clusters were formed with the maxi-
mum number of clusters set to 10. Once the pre-clusters were formed, an exchange ratio 
was applied to the pre-cluster distance measure to determine the final clusters.
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The final setting for the clusters was assessed by means of silhouette validation 
(Rousseeuw 1987), which determines the cohesion of elements within a cluster and the 
distance between clusters. The silhouette coefficient can vary between − 1 and 1, where 
− 1 is a poor model and 1 is a robust model. In general, a result > 0.5 indicates that the 
model is of good quality (Kaufman and Rousseeuw 1990). In our data, the silhouette 

Table 6   List of variables included in the two-step cluster analysis

Urban modifiers present in CTs and their correspondence with GEM taxonomy

Variables Description

Number of storeys Categorical variable. Only possibility in range of storeys
Range 1: 1–2 storeys
Range 2: 3–5 storeys
Range 3: 1–3 storeys
Range 4: 4–7 storeys
Range 5: > 7 storeys

Building shape in plan Categorical variable. Only possibility of shape
Shape 1: PLFE
Shape 2: PLFH
Shape 3: PLFL
Shape 4: PLFT
Shape 5: PLFU
Shape 6: PLFR
Shape 7: PLFSQ

Type of building Categorical variable. Only possible type
Type 1: RES1
Type 2: RES2

Position in block Categorical variable. Only possible position
Position 1: BPD
Position 2: BP1
Position 3: BP1_P
Position 4: BP2_E
Position 5: BP2_I
Position 6: BP3

Soft storey Dichotomous variable. Possible presence of soft storey
1: Presence SOS
0: Non-presence SOS

Vertical irregularity Dichotomous variable. Possible presence of vertical irregularity
1: presence CHV
0: non-presence CHV

Short column Dichotomous variable. Possible presence of short column
1: Presence SHC
0: Non-presence SCH

Height difference Dichotomous variable. Possible presence of height difference
1: Presence POP
0: Non-presence POP
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coefficient for the clusters formed was > 0.5 (Fig. 9), indicating that the various modi-
fiers for each typology generated optimal clusters.

4.2.1 � Variables predictive of cluster formation

The variables introduced in this method were ranked in order of importance based on 
their specific contribution both within each cluster and between clusters. As may be 
observed in Fig.  10, building height was the key variable in most clusters, except in 
M1.1, for which height was not introduced as a variable. These buildings have a uniform 
height range of 1 to 2 storeys (see Fig. 8), for which the predictor variable is the residen-
tial building typology. This same correlation is also observed in RC3.1-low, for which 
the key predictor variable also corresponds to single-family or multi-family residential 
buildings. The other variables were less relevant to cluster formation, indicating that 
the existence or non-existence of certain modifiers is not representative when it comes 
to cluster formation. That is, the final weight of the variables is affected by the number 
of times that said value is present as building attributes (see Fig. 7). Nevertheless, it is 
useful to know the proportion in which modifiers are present in each CT so that we can 
subsequently assess the vulnerability associated with each cluster.

Fig. 8   Example of optimal number of clusters for M1.1 and RC3.1-pre based on the Schwarz Bayesian Cri-
terion (BIC)

Fig. 9   Silhouette coefficients for cluster models applied to each CT
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4.2.2 � Buildings cluster typologies obtained

Each CT is associated, to a greater or lesser percentage, with urban modifiers that make up 
each BT. By applying the two-step method, it is possible to define subgroups of building 
typologies or Building Cluster Typologies (BCTs) for each BT. Figure 11 shows the final 
BCTs obtained and the participation percentages in each CT. The BTs were rearranged into 
homogeneous natural clusters, resulting in 11 BCTs.

Table  7 shows the description of frequencies and percentages for each urban modi-
fier present in each BCT. To facilitate comprehension of each BCTs, the suffix “_C” fol-
lowed by the cluster number was added to the type of construction. For example, M1.1 

Fig. 10   Variables according to their degree of importance in identifying clusters

TYPOLOGY BCT 1 BCT 2 BCT 3 TOTAL
Buildings % Buildings % Buildings % Buildings %

M1.1 276 78,0% 78 22,0% * * 354 100%
M3.1 1511 86,2% 242 13,8% * * 1753 100%
M3.4 545 32,6% 1127 67,4% * * 1672 100%

RC3.1-pre 247 8,5% 1198 41,5% 1445 50,0% 2890 100%
RC3.1-low 87 9,0% 875 91,0% * * 962 100%

Fig. 11   Final BCTs obtained using the two-step cluster analysis
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was divided into two BCTs, which were named M1.1_C1 and M1.1_C2, representing two 
different BTs.

4.3 � Using neural networks to assess BCTs

The results obtained using the Two-Step cluster method are natural outputs. In other 
words, the results were obtained using an unsupervised method and the various BCTs were 
defined based on similarities/dissimilarities among BTs. However, it is worth comparing 
these outputs using supervised learning techniques to evaluate and verify the representa-
tiveness of the BCTs obtained in the study area. This evaluation was carried out using a 
multilayer perceptron (MLP) artificial neural network (ANN) with IMB SPSS Statistics 
26 software, as this ANN meets the characteristics of a universal approximator (Park and 
Sandberg 1991; Cybenko 1989) (Table 8).

In general, an ANN is a machine learning model that is based on the structure and 
function of the human brain (McCulloch and Pitts 1943). The ANN is composed of inter-
connected nodes, also known as artificial neurons, organised into layers (Rumelhart et al. 
1986). These layers process and transform input data to produce output predictions, and the 
intermediate layers are known as hidden layers. The ANN is trained using a set of labelled 
examples, with the goal of reducing the difference between the predictions of the network 
and the actual values (LeCun et al. 2015; Hinton et al. 2012). In this context, the imple-
mentation of an ANN is essential in our methodology, as it allowed us to transfer the BCTs 
obtained through the Two-Step cluster method to the supervised outputs of the ANN-MLP. 
This allows to evaluate the importance and representativeness of each BCT in the study 
area, without discarding any, using the metrics presented in Table 9.

The ANN input predictor variables, that is to say the urban modifiers (Table 6) were 
the same variables used to define the various BCTs. The latter was the desired output set. 
A general ANN was applied, introducing all predictor variables as network input and the 
set of all BCTs as the output. The objective was to verify the behaviour of the final clas-
sification using an ANN and evaluate the degree of representativeness of each BCT. It is 
important to note that the input variables for each ANN were randomized, this is because, 
if the input variables are not randomly distributed, it can introduce biases into the model 
and affect its accuracy and ability to generalize (Goodfellow et al. 2016).

4.3.1 � Neural network architecture

The ANN used has three layers: an input layer, a hidden layer, and an output layer. 
This architecture was sufficient to verify and assess the results obtained using the clus-
ter method. Figure 12a and b illustrate the general forward propagation MLP model. The 
model consists of a hidden layer; the input layer (urban modifiers), formed by N neurons 
(sensors), and the output layer (BCT), which consists of M neurons with the previous 
classification.

The relationship between the urban modifier input set ( RN ) and the BCT output set 
( RM ), is defined as:

(

x1, x2, x3, x4,… , xn
)

∈ RN
→

(

y1, y2, y3, y4,… , ym
)

∈ RM
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Table 8   Confusion matrix results after applying ANN-MLP

TP true positives; TN true negatives; FP false positives; FN false negatives

BCT Sample No. of cases TP TN FP FN

M1.1L_C1 Training 175 85 4244 109 90
M1.1L_C2 50 29 4465 13 21
M3.1L_C1 894 743 3264 370 151
M3.1M_C2 140 0 4385 3 140
M3.4L_C1 341 50 4126 61 291
M3.4M_C2 662 662 3724 142 0
RC3.1L-pre_C1 124 33 4380 24 91
RC3.1M-pre_C2 707 676 3441 380 31
RC3.1H-pre_C3 846 838 3629 53 8
RC3.1L-low_C1 52 40 4418 58 12
RC3.1L/M/H-low_C2 537 110 3942 49 427
Overall 59.30% 4528 3266 44,018 1262 1262
Accuracy 72.1% Cross-entropy error 2750.03

M1.1L_C1 Test 42 23 1491 39 19
M1.1L_C2 12 6 1552 8 6
M3.1L_C1 322 261 1140 110 61
M3.1M_C2 52 0 1517 3 52
M3.4L_C1 105 13 1446 21 92
M3.4M_C2 233 233 1286 53 0
RC3.1L-pre_C1 59 19 1493 20 40
RC3.1M-pre_C2 266 252 1178 128 14
RC3.1H-pre_C3 283 274 1268 21 9
RC3.1L-low_C1 21 13 1526 25 8
RC3.1L/M/H-low_C2 177 26 1371 24 151
Overall 20.60% 1572 1120 15,268 452 452
Accuracy 71.2% Cross-entropy error 955.81

M1.1L_C1 Holdout 59 25 1439 33 34
M1.1L_C2 16 6 1512 3 10
M3.1L_C1 295 246 1120 116 49
M3.1M_C2 50 0 1481 0 50
M3.4L_C1 99 10 1402 30 89
M3.4M_C2 232 232 1248 51 0
RC3.1L-pre_C1 64 22 1459 8 42
RC3.1M-pre_C2 225 218 1191 115 7
RC3.1-pre_C3 316 314 1192 23 2
RC3.1L-low_C1 14 11 1493 24 3
RC3.1L/M/H-low_C2 161 28 1354 16 133
Overall 20.10% 1531 1112 14,891 419 419
Accuracy 72.6%
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The general supervised model (Fig.  12a) follows the function f (⋅) ∶ RN
→ RM and 

is applied to the entire set of building typologies, where the urban modifiers present 
define N vector spaces and M vector spaces are defined by the BCTs. The variables 
(urban modifiers) are inputted randomly, after testing stability. The sample set has a 
3:1:1 ratio (approximately 60% used for training, 20% for testing, and 20% as a reserve 
sample), with on-line training. The optimization algorithm is correlated with the gradi-
ent slope, where the initial learning rate is 0.1, with Reduced rate of learning is 10 and a 
0.9 impulse, the number of epochs was set automatically by SPSS.

Figure  12b shows the individual process for each neuron and indicates the linear 
weighted sum 

∑n

i=1
(xiwi + wb) , where wi corresponds to synaptic weights and wb to 

the bias weight. In general, the sum corresponds to the product of the matrix XW+b , 
where X represents the value of the input vectors, W the weight vectors and b the bias. 
The next step is to apply an activation function. In our study, the activation function of 
the hidden layer was the hyperbolic tangent (Eq. 1), whose output was bounded to the 
range (− 1, 1). In the output layer, activation was performed using the softmax function 
(Eq. 2), which calculates relative probabilities.

(1)tanh (βx) =
eβx − e−βx

eβx + e−βx

(2)�(z)j =
ezj

∑k

k=1
ezk

; for j = 1,… ,k

Table 9   F1-score values used 
to determine the degree of 
representativeness of a BCT

F1-score Type Description

0.00–0.20 Weak BCT representativeness is very low or weak
0.21–0.60 Low BCT with low representativeness
0.61–0.80 Medium BCT with average representativeness
0.81–1.00 High BCT with high representativeness

Fig. 12   Neural network architecture a overall ANN-MLP, b detailed view of a neuron
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In its general form, the MLP applied in our study, which contains a hidden layer and 
consists of L neurons, is defined as:

where wij is the synaptic weight connecting the output neuron i with the j neuron of the 
hidden layer, the activation functions f1 and f2 represent the output and hidden layer units, 
and the synaptic weights tjr connecting the hidden neuron j with the input neuron xr . The 
backpropagation algorithm was used for the learning stages, enabling us to quantify the 
influence of each weight and bias in the ANN predictions (Rumelhart et al. 1986).

4.3.2 � Results of BCT evaluation

Table 8 lists the results extracted from the confusion matrix after applying ANN-MLP and 
shows how the algorithm performed in supervised learning. The matrix represents the pre-
dictions in each BCT as a function of the actual number of cases compared to the number 
of cases predicted. After inputting all urban modifiers and assessing the ANN capability, 
fewer predictions were obtained for clusters with fewer cases, with overall accuracies of 
72.1% for the training sample, 71.2% for the test sample, and 72.6% for the reserve sam-
ple, which generally indicates reliable performance. However, the following considerations 
should be considered when evaluating the various BCTs:

•	 In BCTs with high accuracy and low sensitivity or recall, this is indicative of a low rate 
of class detection that is nevertheless highly reliable when the class is actually detected.

•	 In BCTs with low accuracy and low sensitivity or recall, this is indicative of a high rate 
of class detection but includes cases in which the BTC are different.

•	 In BCTs with low accuracy and low sensitivity or recall, this is indicative of poor clas-
sification.

•	 In BCTs with high accuracy and high sensitivity or recall, this indicates that the model 
correctly recognizes the class.

In this study, we assessed the representativeness of each BCT in the study area using 
the F1-score metric, which indicates the harmonic mean between precision and sensitivity 
or recall and is highly reliable when there is an imbalance between these two metrics. The 
F1-score values used to evaluate each BCT ranged between 0 and 1, with values approach-
ing 1 indicating a high degree of representativeness. The values used to determine the 
degree of representativeness of a BCT are listed in Table 7.

Table 8 shows the key metrics used to evaluate the ANN model and assess the repre-
sentativeness of each BCT. Medium and high ratings correspond to the BCTs that per-
formed best in the ANN-MLP.

(3)yi = f1

(

L
∑

j=1

wijsj

)

= f1

(

L
∑

j=1

wijf2

(

N
∑

r=1

tjrxr

))
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5 � Seismic vulnerability assessment

The present study adopted an approach based on the vulnerability index method (Benedetti 
and Petrini 1984; Angeletti et al. 1988; Milutinovic and Tredafiloski 2003), contemplating 
both building structure and non-structural components that can alter the seismic behaviour 
of a building.

The final plausible vulnerability index for each building (Iv) was calculated by adding 
the total scores for the urban modifiers (∆Mc) and the variation in the basic vulnerability 
index (Ivb), as follows:

where Mci stands for the n urban modifiers present, which are added to the basic vulner-
ability index for the building Ivb that, in turn, belongs to a given BTM. Therefore, the final 
vulnerability index is a range of vulnerability values with a minimum value, maximum 
value, and buildings with vulnerability (Ivx) indexes, between the maximum and minimum 
possible values after adding any urban modifiers, that is to say:

5.1 � Seismic vulnerability estimate applied to BCTs (lvBCT)

The vulnerability index for each BCT was calculated using Eq. 6, as follows:

where IvTC is the basic vulnerability index for the CT.

5.1.1 � Value of IvCT

The CTs identified were classified according to height and assigned the vulnerability func-
tion and basic vulnerability index, the Building Typology Vulnerability Index (IvCT), cor-
responding to the most probable vulnerability value proposed by Lagomarsino and Giovi-
nazzi (2006). Table 9 shows the various CTs identified, and the basic vulnerability index 
used, given the corresponding construction technique and heights.

5.1.2 � Modifiers by behaviour (Mc)

Building vulnerability can be influenced by the unique characteristics of each building’s 
design and location. These characteristics, Mc, can either enhance or diminish the overall 
vulnerability of a building.

The Mc evaluated correspond to the urban modifiers observed. A score was assigned for 
the building type, soft storey, and short column, following the approach proposed by Milu-
tinovic and Trendafoloski (2003). With regards to the presence of soft storeys, this Mc was 

(4)Iv = Ivb - BTM +

n
∑

i=1

Mci

(5)Iv =
[

I−−
v

, I++
v

]

=
{

Ivx ∈ Iv ∶ I−−
v

≤ Ivx ≤ I++
v

}

(6)IvBCT = IvCT +

n
∑

i = 1

Mci
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evaluated based on the difference between the total number of units in the building (Bu) 
and the number of residential units (Dw).

Evaluating short columns required implementing a GIS process to analyse soil mor-
phology based on a digital terrain model (MTD25) obtained from Spain’s National Centre 
for Geographic Information (CNIG) that enabled us to distinguish slopes with gradients 
greater or less than 10%. In evaluating reinforced concrete buildings, the combination of 
slopes with more than a 10% gradient and the presence of storeys below ground level indi-
cates the probable presence of a short column.

The various classes of floor plan irregularity (E, H, L, T, U, R and SQ) were assigned 
a score based on evaluating the Ratio of Compactness/Circularity, RC (Udwin 1981 cited 
in Lantada et al. 2010). Mc values indicating vertical irregularity, differences in height, and 
position within the block were evaluated by assigning the corresponding score following 
the GIS procedures proposed by Lantada et al. (2010) Table 10 lists the scores for each Mc 
evaluated and taken from Martínez-Cuevas et al. (2017), Lantada et al. (2010) and Miluti-
novic and Trendafoloski (2003).

Table 10   Evaluation metrics for each BCT when applying ANN-MLP

BCT Precision (%) Recall (%) Specificity (%) F1-score Type

M1.1L_C1 43 42 98 0.43 Low
M1.1L_C2 67 38 100 0.48 Low
M3.1L_C1 68 83 91 0.75 Medium
M3.1M_C2 0 0 100 0.00 Weak
M3.4L_C1 25 10 98 0.14 Weak
M3.4M_C2 82 100 96 0.90 High
RC3.1L-pre_C1 73 34 99 0.47 Low
RC3.1M-pre_C2 65 97 91 0.78 Medium
RC3.1H-pre_C3 93 99 98 0.96 High
RC3.1L-low_C1 31 79 98 0.00 Weak
RC3.1L/M/H-low_C2 64 17 99 0.27 Low

Fig. 13   Boxplot with vulnerability spread calculated for each BCT
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5.1.3 � Calculating the IVBCT value

The final IvCT value for each building is the sum of the IvCT and the Mc for each CT. 
Figure  13 shows the vulnerability distribution for each BCT as a range of maximum 
and minimum values. The distribution of IvBCT values shows a concentration of build-
ings within the first and third quartile (Q1 and Q3), where 50% of buildings with these 
vulnerability ranges lie, corresponding to the probable Iv values. Twenty-five percent 
(25%) of the buildings are concentrated below Q1 and above Q3 with respectively less 
probable vulnerability values. The minimum and maximum vulnerability values ( I++

v
 

represent fewer probable values.
Table 11 shows the ranges described and the probable Iv value, which is the median 

value in Fig. 13.
Note that the Iv for reinforced concrete BCTs is very similar to that of some masonry 

buildings. This is because these buildings feature many urban modifiers, mainly soft 
storeys and vertical irregularities. For certain buildings with short columns, vulnerabil-
ity approaches the extreme values (Tables 12 and 13).

5.2 � BCT descriptions: building cluster typologies

Table 14 below describes each building typology (BCT) identified in this study and its 
degree of representativeness as indicated in Table 10.

6 � Results and discussion

In this section, we will present the final results applied to the city of Murcia. Census 
blocks were used to visualize the results at a smaller scale, enhancing the final resolu-
tion and making them easier to interpret.

The methodological development of our study implied the correction of errors in 
the primary data source that were related to the digitization of polygons and updat-
ing of buildings. Through GIS processes and remote field work, errors were corrected, 

Table 11   Basic vulnerability 
index of CTs

Construction typology CT + heights BTM Ivb

M1.1 M1.1L M1.w_L 0.77
M3.1 M3.1L M5.w_L 0.62

M3.1M M5.w_M 0.70
M3.4 M3.4L M6_L-PC 0.57

M3.4M M6_M-PC 0.65
RC3.1-pre RC3.1L RC3_L 0.57

RC3.1M-pre RC3_M 0.59
RC3.1H-pre RC3_H 0.63

RC3.1-low RC3.1L-low RC3-III_L 0.61
RC3.1M-low RC3-III_M 0.59
RC3.1H-low RC3-III_H 0.59
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obtaining a refined database, which was enriched with data from urban modifiers, 
resulting in a final database of good quality. In this context, the proposed methodology 
must necessarily contemplate and correct common errors in the data sources used, since 
these errors will act as limitations in obtaining robust results. The final database can 

Table 12   Scores used to calculate vulnerability for each urban modifier

*SCH corresponds to the sum of the scores 0.04 and 0.02 for storeys below ground level and slopes with a 
gradient over 10% (Milutinovic and Tredafiloski 2003)

Urban modifiers Mc Description Score

Building shape in plan PLFE 0.5 ≤ RC < 0.7 0.02
RC < 0.5 0.04

PLFH 0.5 ≤ RC < 0.7 0.02
RC < 0.5 0.04

PLFL RC ≥ 0.7 0.00
0.5 ≤ RC < 0.7 0.02
RC < 0.5 0.04

PLFT RC ≥ 0.7 0.00
0.5 ≤ RC < 0.7 0.02
RC < 0.5 0.04

PLFU RC ≥ 0.7 0.00
0.5 ≤ RC < 0.7 0.02
RC < 0.5 0.04

PLFR RC ≥ 0.7 0.00
0.5 ≤ RC < 0.7 0.02
RC < 0.5 0.04

PLFSQ RC ≥ 0.7 0.00
Type of building RES1 Single-family home 0.00

RES2 Collective housing 0.02
Position in block BDP Detached buildings 0.00

BP1 Header/terminal buildings 0.06
BP1_P Header/terminal semi-detached buildings 0.06
BP2_E Corner buildings 0.04
BP2_I Middle buildings between two buildings − 0.04
BP3 Middle buildings between three buildings − 0.04

Soft storey SOS Bu–Dw ≠ 0 0.06
Vertical irregularity CHV δ = 1 0.00

0.5 ≤ δ < 1 0.02
δ < 0.5 0.04

Short column SCH Storeys below ground + Slope* 0.06
Height difference POP Same height 0.00

A lower building 0.02
Building between two low buildings 0.04
A taller building − 0.02
Building between two tall buildings − 0.04
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be consulted in the Catalogue of Residential Buildings and Classification According to 
Seismic Vulnerability in the City of Murcia, Spain (Meyers-Angulo et al. 2023).

6.1 � Distribution of variables and clusters in the city of Murcia

Applying the Two-Step clustering method to our final database generated clusters of 
buildings with similar characteristics for each CT.

In general, masonry buildings tend to be low or medium-rise, primarily single-fam-
ily homes with structures up to two storeys high. The layout for most buildings features 
re-entrant corners, and there is a greater predominance of buildings attached on two or 
three sides, which explains the average level of the pounding effect. Note that medium-
rise buildings have soft storeys and irregular vertical structures.

Most reinforced concrete buildings are medium or high-rise collective housing 
buildings and present a more varied range of structural designs. The shape of the floor 
plan and the position within the block show similar characteristics in all clusters with 
respect to the layouts. There is a high prevalence of soft storeys and irregular vertical 
structures as well as a high proportion of attached buildings, which directly affects the 
potential risk of generating the pounding effect. Table 15 shows the percentage distri-
butions for each BCT in the study area.

Figure 14 illustrates the percentage distribution for each cluster relative to its preva-
lence in each census tract within the neighbourhoods in the study area. Note that the 
most varied range of BCTs is found closer to the city centre. In more peripheral areas, 
masonry structures and M3.1 and M3.4 construction types predominate and there is 
a lower proportion of modern, reinforced concrete buildings to be found. Neverthe-
less, this proportion is notably greater in certain census blocks, indicating new urban 
developments.

Table 13   Vulnerability ranges 
for each cluster and vulnerability 
class

BCT Iv
−− Iv

− Iv Iv
+ Iv

++

M1.1L_C1 0.69 0.73 0.75 0.81 0.87
M1.1L_C2 0.71 0.75 0.77 0.83 0.89
M3.1L_C1 0.54 0.60 0.64 0.68 0.80
M3.1M_C2 0.66 0.74 0.78 0.82 0.88
M3.4L_C1 0.49 0.57 0.61 0.65 0.75
M3.4M_C2 0.59 0.71 0.75 0.79 0.85
RC3.1L-pre_C1 0.51 0.58 0.61 0.65 0.75
RC3.1M-pre_C2 0.55 0.67 0.71 0.75 0.83
RC3.1H-pre_C3 0.65 0.73 0.77 0.79 0.85
RC3.1L-low_C1 0.57 0.63 0.65 0.67 0.73
RC3.1L/M/H-low_C2 0.57 0.69 0.73 0.77 0.85
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Table 14   Description of each BCT identified in the study area

BCT Description

M1.1L_C1 Buildings with low representativeness: 1 to 2-storey stone or rubble 
masonry single-family residential buildings with wood girders and an 
L-shaped floor plan

In addition, the floor plan for these buildings is predominantly rectangular 
and, to a lesser extent, U-shaped

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_E, BP2_I and BP3) of greater or equal height

M1.1L_C2 Buildings with low representativeness: mainly 2-storey stone or rubble 
masonry multi-family residential buildings with wood girders and an 
L-shaped floor plan

The floor plan for these buildings is predominantly rectangular and, to a 
lesser extent, U-shaped

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I and BP3) of greater or equal height

M3.1L_C1 Buildings with average representativeness: 1 to 2-storey unreinforced brick 
masonry wood-frame single-family residential buildings with irregular 
vertical structures (especially in 2-storey buildings) and L-shaped floor 
plans

In addition, there is a predominance of collective housing with rectangular 
and, to a lesser extent, U-shaped floor plans

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I and BP3) of greater or equal height

M3.1M_C2 Buildings with very low or weak representativeness: 3 to 5-storey unrein-
forced brick masonry wood-frame multi-family residential buildings with 
rectangular floor plans, irregular vertical structures, and soft storeys

In addition, there is a predominance of 3-storey single-family homes with 
L-shaped and, to a lesser degree, U-shaped buildings

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I, BP2_E and BP3) of equal or lesser height

M3.4L_C1 Buildings with very low or weak representativeness: 1 to 2-storey rein-
forced concrete brick masonry single-family residential buildings with 
rectangular floor plans and irregular vertical structures (especially in 
2-storey buildings)

 In addition, there is a predominance of 2-storey collective housing with 
L-shaped and, to a lesser extent, U-shaped floor plans

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I, BP2_E and BP3) of equal or greater height. There is a 
lower proportion of detached buildings (BPD)

M3.4M_C2 Highly representative buildings: 3 to 5-storey reinforced concrete brick 
masonry multi-family residential buildings with rectangular floor plans, 
irregular vertical structures, and soft storeys

In addition, there is a predominance of 3-storey single-family homes with 
L-shaped and, to a lesser degree, U-shaped buildings

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I, BP2_E and BP3) of greater or lesser height. There is a 
lower proportion of detached buildings (BPD)
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Table 14   (continued)

BCT Description

RC3.1L-pre_C1 Buildings with low representativeness: 1 to 3-storey unreinforced brick 
masonry single-family residential buildings with regular concrete infilled 
porticos, rectangular floor plans, and irregular vertical structures (espe-
cially in buildings over 2-storeys high)

In addition, there is a predominance of collective housing over 2-storeys 
high with L-shaped and, to a lesser extent, U-shaped floor plans

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I, BP2_E and BP3) of greater or lesser height and with soft 
storeys. There is a lower proportion of detached buildings (BPD)

RC3.1M-pre_C2 Buildings with average representativeness: 4 to 7-storey unreinforced brick 
masonry multi-family residential buildings with regular concrete infilled 
porticos, rectangular floor plans, irregular vertical structures, and soft 
storeysIn addition, there is a predominance of collective housing with 
L-shaped and, to a lesser extent, U-shaped floor plans

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I, BP2_E and BP3) of equal or lesser height

RC3.1H-pre_C3 Highly representative buildings: more than 7-storeys high unreinforced 
brick masonry multi-family residential buildings with regular concrete 
infilled porticos, rectangular floor plans, irregular vertical structures, and 
soft storeys

In addition, there is a predominance of collective housing with L-shaped 
and, to a lesser extent, U-shaped floor plans

 The position within the block is mainly within a row of attached buildings 
(BPD, BP1, BP2_I, BP2_E and BP3) of lesser height. There is a lower 
proportion of detached buildings (BPD)

RC3.1L-low _C1

 

Buildings with very low or weak representativeness: 1 to 3-storey unre-
inforced brick masonry single-family residential buildings with low 
seismic-resistant design, regular concrete infilled porticos, rectangular 
floor plans, and irregular vertical structures (especially in buildings with 
2 or more storeys)

In addition, there is a predominance of buildings with an L-shaped floor 
plan

The position within the block is mainly within a row of attached buildings 
(BPD, BP1, BP2_I, BP2_E and BP3) of greater height. Lower propor-
tion of detached buildings (BPD) and soft storeys among buildings over 
2-storeys high

RC3.1M/L/H-low_C2

 

Buildings with low representativeness: 4 to 7-storey high unreinforced 
brick masonry multi-family residential buildings with low seismic-resist-
ant design, regular concrete infilled porticos, rectangular floor plans, 
irregular vertical structures, and soft storeys

In addition, there is a predominance of collective housing over 7-storeys 
high and, to a lesser extent, 2 to 3-storey collective housing. L-shaped 
and, to a lesser extent, U-shaped floor plans

The position within the block is mainly within a row of attached buildings 
(BP1, BP2_I, BP2_E and BP3) of equal or lesser height. There is a lower 
proportion of detached buildings (BPD) and soft storeys
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Table 15   Percentage distribution 
of BCTs in study area

Construction typology BCT %

M1.1 M1.1L_C1 3.62
M1.1L_C2 1.07

M3.1 M3.1L_C1 19.80
M3.1M_C2 3.20

M3.4 M3.4L_C1 7.10
M3.4M_C2 14.80

RC3.1-pre RC3.1L-pre_C1 3.20
RC3.1M-pre_C2 15.70
RC3.1H-pre_C3 18.90

RC3.1-low RC3.1L-low _C1 1.14
RC3.1L/M/H-low _C2 11.47

Fig. 14   Percentage distribution of each BCT in the study area
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6.2 � Vulnerability distribution

Figure  15 shows total vulnerability by neighbourhoods and census blocks. The data 
are presented using the average vulnerability index for each neighbourhood and census 
tract to make it easier to understand the distributions. Note that the most vulnerable 
buildings are located closer to the centre of the study area, coinciding with the area 
with the greatest variety of construction types and corresponding BCTs. As the con-
centration of buildings is higher in this area, factors such as position within the block, 
height differences, and mixed uses (presence of soft storeys) have a greater weight in 
making these areas more vulnerable.

6.3 � BCT vulnerability classes: macroseismic scale

The BCTs were adapted (see Fig. 13) to the EMS-98 scale (Grünthal 1998), which defines 
six vulnerability classes from A (most vulnerable) to F (least vulnerable). Table 16 shows 
the correlation between each the BCTs identified and the EMS-98 vulnerability classes. 
Note the low proportion of class A for masonry constructions. This is mainly due to the 
prevalence of older low-rise residential buildings and more modern medium-rise masonry 
buildings. The vulnerability class is higher for reinforced concrete constructions as the 
height and the number of applicable urban modifiers determine building typology, increas-
ing seismic vulnerability.

Fig. 15   Distribution of vulnerability in the study area by neighbourhoods and census blocks
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6.4 � Vulnerability curves applied to BCTs

In this study we have identified different BCTs, calculating the vulnerability for each one of 
them (Table 13) using the vulnerability index method, being able to evaluate the belonging 
of each BCT to a vulnerability class (Table 16). Figure 16 shows the vulnerability curves 
that relate, for each BCT, the mean damage (μD) with the macroseismic intensity and the Iv 
(Milutinovic and Trendafoloski 2003), defined in Table 13.

Previous research in the Region of Murcia, particularly in the city of Lorca, has assessed 
building vulnerability using empirical methodologies, identifying the urban modifiers that 
determine the irregular seismic response in buildings and evaluating their relationship with 
the damage caused after the 2011 Lorca earthquake (Martínez-Cuevas et al. 2017, 2020; 
Martínez-Cuevas and Gaspar-Escribano 2016). When comparing our findings in the city of 
Murcia with those from previous studies in Lorca, we observe similarities in relation to the 
identified CTs and BTs. Regarding the damage, buildings with greater irregularities (pres-
ence of urban modifiers) were found to be uninhabitable in both masonry and reinforced 
concrete CTs, according to data from the Lorca earthquake. This highlights the increased 

Fig. 16   Vulnerability curves for each BCT identified
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vulnerability of buildings due to a greater presence of urban modifiers, leading to a higher 
likelihood of damage. In addition, this study examines additional typologies that are not 
present in those studies, which are related to the methodology used to identify the relation-
ship between CTs and modifiers using machine learning techniques.

7 � Conclusions

This study addresses the classification of construction types associated with the structural 
and non-structural components of buildings, following certain characteristic patterns. Our 
approach is based on the premise that each structure is more or less likely to be subject to 
unique urban modifiers that impact the seismic behaviour of a building. These patterns cor-
respond to clusters that group the existing urban modifiers by construction type, a point of 
view that has seldom been studied and could help lay the foundation for automated classifi-
cation and, subsequent, vulnerability assessments. The methodological approach is divided 
into three phases and includes specific procedures in each phase to obtain the final results, 
identifying building cluster typologies (BCT) and grouping the various building charac-
teristics based on similarities and dissimilarities. Each phase and procedure are described 
in detail to lay a solid foundation that will enable rapid vulnerability assessments in the 
future, which would help shorten the duration of seismic risk studies and optimize the effi-
ciency of response assessments in the aftermath of a seismic event.

The study was conducted based on a significant number of residential buildings in the 
metropolitan area of the city of Murcia, Spain. To enhance the resolution of the initial 
data, obtained from primary sources, the database was refined based on remote field work. 
The final data were coded following the Global Earthquake Model (GEM) taxonomy. A 
Two-Step cluster analysis was performed to find natural groupings within the data, and 
multilayer perceptron neural networks (ANN-MLP) were used to evaluate the degree of 
representativeness of the BCTs in the study area. Patterns were identified in five construc-
tion typologies: three types of masonry buildings and two reinforced concrete construction 
types. The relevance of the modifiers in each structure and their impact on the vulnerability 
distribution was analysed to obtain vulnerability index ranges for each BCT.

Based to the proposed methodology, we can assert that:

•	 Step 1 covers various procedures, from choosing the study area and obtaining base-
line data to verifying and enriching the data through remote fieldwork and identifying 
urban modifiers. These procedures enabled us to obtain an expanded and more robust 
final database. All this was possible thanks to freely available online satellite and carto-
graphic viewers that can be used to plan remote field work, establishing methodologies 
based on using initial data gathered from official primary sources and verifying and 
enriching cartographic data, thus reducing logistical and operational expenses. How-
ever, the time spent detecting possible errors in the original data source and incorporat-
ing new attributes and findings observed through remote visual inspection can make 
this a tedious and challenging task that requires training and a thorough familiarity with 
the various construction specifications, since adequate data collection will impact the 
robustness of the final database. Step 2 consisted of a machine learning study in which 
multivariate statistical techniques and ANN were used to define building typologies 
and assess their degree of representativeness within the study area. Finally, in Step 3, 



3618	 Bulletin of Earthquake Engineering (2023) 21:3581–3622

1 3

we defined each BCT, we elaborate the vulnerability curves each BCT and conducted a 
vulnerability classification based on the EMS-98 scale.

•	 The uncertainty in the data obtained through remote visual inspection arises from the 
limitations in satellite, cartographic, and photographic updates of the viewers available 
online. Another key factor was access to technical construction specifications. This was 
not contemplated our study, as it would have required an in-depth analysis of technical 
data sheet. The aim is to propose a methodology that is easy to execute, is combined 
with remote observation, and relies on the technical expertise of the people in charge of 
carrying it out.

•	 Applying the cluster method required several tests to stabilize and increase the silhou-
ette coefficients that indicate whether the cluster groupings are robust. When the origi-
nal data was entered without doing any field work, the resulting classifications were 
inadequate, with silhouette values under 0.5, indicating average or poor-quality clus-
ters. Thanks to remote fieldwork, as the volume of revised and new data increased, the 
quality of the model improved. Eventually, we obtained cluster models with silhou-
ette values greater than the minimum optimal value, indicating that data robustness had 
been achieved.

•	 In our study, 60% of the total residential buildings in the cadastral database were 
inspected through remote field work. This relatively high percentage is due to the 
highly heterogeneous building stock present in Murcia, composed by buildings that 
cover a wide period (more than 300 yrs.), with different construction technologies and 
materials and with several changes in earthquake-resistant regulations. In addition, the 
relatively complete cadastral database, the low incidence of informal construction and 
the availability of Google street images helps carrying out virtual field campaigns.

•	 The application of the proposed methodology in other geographical areas will be con-
tingent on the quality and reliability of the available data, including the availability of 
accurate cadastral data, as well as information gathered in housing censuses. Further-
more, access to high-quality street images from Google will also play a crucial role. It 
is important to consider potential errors or inaccuracies in primary data sources when 
adapting or applying the methodological procedures, especially in developing coun-
tries where additional challenges may arise due to the possibility of errors in cadastral 
data and a higher rate of self-construction, lack of information in google maps or other 
online viewers. Should remote fieldwork prove infeasible, it may be necessary to con-
duct in-situ fieldwork, which could entail higher costs in terms of time and logistics.

•	 Data behaviour and prediction using a general ANN-MLP applied to the entire set of 
modifiers and the eleven BCTs obtained, yielded error rates of 27.9% for the training 
sample, 28.8% for the test sample, and 27.4% for the reserve sample. These values indi-
cate that the ANN may have failed to correctly identify overlaps among certain modi-
fiers. It is worth noting that the highest error rates occurred in those clusters with the 
least number of cases. Based on the above, and since the ANNs are fed historical data 
during the learning process, it follows that the greater the number of cases for these 
particular clusters, the higher the prediction accuracy rates will be.

•	 While it is true that the ANN-MLP achieved high accuracy (72.6% for the reserve sam-
ple), due to imbalances between the accuracy and sensitivity metrics, this should not 
be taken to indicate that the overall ANN model is performing adequately for each CT. 
Given that each BCT identified is in fact a building typology present in the study area, 
the F1-score metric was used to find a harmonic mean between precision and sensitiv-
ity, and this enabled us to determine the degree of representativeness (Table 7@@) for 
each BCT within the study area.
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•	 The vulnerability analysis was used to determine the relevance of the various modifi-
ers in increasing the vulnerability indexes for each BCT identified, and these coincided 
with the expected ranges according to Risk-UE. EMS-98 macroseismic scale concepts 
were applied to obtain vulnerability classifications (Table  14) after factoring in the 
impact of the various urban modifiers present.

Based on the results, we obtained the BCT distributions for the urban area analysed at 
the census tract level. Compared to the BCTs, the vulnerability distributions were found to 
have higher resolution both in terms of individual building construction specifications and 
in terms of vulnerability distribution within the urban area of Murcia. Based on our study, 
obtaining up-to-date building typologies can help assess exposure based on different build-
ing characteristics grouped into specific types, and make it easier to perform future vul-
nerability assessments using predefined vulnerability index ranges and macroseismic class 
classifications (Table 11, Table 16 and Fig. 16).

In general, the democratization of cartographic and spatial data is a constant challenge 
that should require periodic updates based on methodologies adapted to the dynamics of 
urban development. In fact, the international agenda under the Sendai Framework, the New 
Urban Agenda, and the Sustainable Development Goals promotes periodic updates, data 
accessibility, data collection, and new technical studies. In our field and according to seis-
mic risk studies, the foregoing leads to increased understanding of risk and enhanced the 
resilience of urban societies. In this context, the present study is in line with the interna-
tional agenda and promotes updating data, in addition to presenting and proposing a meth-
odology for classifying and assessing urban physical vulnerability at the local level.

The combination of procedures and techniques employed supports the use of data min-
ing and machine learning techniques in the field of seismic engineering. The methodology 
can be replicated, in whole or in part, in other urban areas with similar characteristics or 
adapted to specific urban settings. In addition, seismic vulnerability was mapped to identify 
the most vulnerable areas with the aim of planning new areas for relocating people who 
might be left homeless as a result of a seismic event. This information can be very valuable 
for civil defence because it makes it possible to draw up contingency plans quantifying the 
number of people living in affected buildings and foreseeing their subsequent relocation. It 
can also be useful for local and regional governments (the City Council and Autonomous 
Community) to help them ensure that General Urban Development Plans include public 
spaces large enough to house all the people who might be left without housing.

As a final remark, it may be useful to assess structural resistance using analytical meth-
ods based on mechanical structural response models applied to each BCT identified. Fur-
thermore, in future approaches, it would be interesting to consider social factors and urban 
fabric as they relate to building typologies. Specifically, the results for the proposed cluster 
model and vulnerability parameters may be applicable to other cities with similar char-
acteristics. Similarly, in cities with different urban attributes, the methodology provides a 
basis for extrapolating methodological procedures. Of course, the theoretical basis of the 
present study can lead to computational developments that may expedite future seismic 
risk assessments.
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