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Abstract
In recent years, the tuned mass damper inerter (TMDI) has been demonstrated in sev-
eral theoretical studies to be an effective vibration absorber for the seismic protection of 
non-isolated buildings. Its effectiveness relies on careful tuning of the TMDI stiffness and 
damping properties, while its performance improves with the increase of the inertance 
property which is readily scalable. Nevertheless, in all previous studies, the energy dis-
sipative TMDI element has been modelled by a linear viscous damper. Still, commercial 
viscous dampers display a nonlinear velocity-dependent power law behavior. In this regard, 
this paper investigates, for the first time in literature, the potential of the TMDI fitted with 
nonlinear viscous damper (NVD) for seismic response protection of multi-storey buildings. 
This is supported by an efficient optimal nonlinear TMDI (NTMDI) tuning approach which 
accounts for any absorber connectivity to the building structure and employs statistical lin-
earization to treat the nonlinear damping term. For the special case of white-noise excited 
undamped buildings, optimal NTMDI tuning is derived analytically in closed-form which 
is shown to be sufficiently accurate for lightly damped structures. Comprehensive numeri-
cal data are presented to delineate trends of optimal NVD damping coefficient with the 
NVD power-law exponent and the inertance. Further, nonlinear response history analysis 
results pertaining to optimally tuned NTMDI application for a benchmark 9-storey steel 
structure demonstrate that reduced NTMDI stroke and inerter force can be achieved with 
negligible change in storey drifts and floor acceleration performance by adopting lower 
NVD exponent values, leading to practically beneficial NTMDI deployments.
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1 Introduction

Passive inertial vibration absorbers, with most representative the tuned mass damper 
(TMD), have been widely studied in the scientific literature for the seismic protection of 
buildings in past decades (e.g. Villaverde 1985; Sadek et  al. 1997; Pinkaew et  al. 2003; 
Salvi and Rizzi 2017). In such theoretical studies, the TMD is commonly modelled as a 
secondary mass attached to the primary/host building structure through linear spring and 
dashpot elements in parallel connection, following the original TMD conceptualization 
(Ormondroyd and Den Hartog 1928). This modelling supports computationally efficient 
approaches for tuning (i.e. designing) TMDs to the dominant (typically the fundamental) 
building mode shape, facilitating the transfer of the input seismic energy from the building 
to the TMD (e.g. Rana and Soong 1998). In this setting, the TMD acts as a resonant single-
degree-of-freedom appendix to the building structure which, ultimately, enables seismic 
energy dissipation by the dashpot element. Notably, in most real-life applications, the TMD 
velocity-dependent energy dissipative element is materialized through viscous dampers 
(e.g. Soong and Dargush 1997; Infanti et al. 2008; Zemp et al. 2011; Berquist et al. 2019). 
Although commercially available viscous dampers are manufactured to behave nonlinearly 
(e.g. Terenzi 1999; Lee and Taylor 2001; Lu et al. 2018; Berquist et al. 2019), the linear 
TMD assumption is taken to be sufficient in most cases, at least for TMD tuning purposes. 
Alternatively, Rüdinger (2007) and Chung et al. (2009) developed approaches to account 
for nonlinear viscous dampers (NVDs) in the optimal TMD tuning, if so desired.

Despite the above efforts, whilst TMDs are commonly used for wind-response mitiga-
tion in tall/slender buildings, very few TMD applications for seismic building response 
mitigation exist (e.g. Li et al. 2011; Zemp et al. 2011). This is because earthquakes, unlike 
wind, exert highly transient impulsive loads to buildings with uncertain frequency con-
tent, which may excite higher modes of vibration beyond the dominant one suppressed 
by TMDs (Soong and Dargush 1997). Further, detuning effects due to inelastic struc-
tural behavior reduce TMD effectiveness (e.g. Matta 2018). Consequently, it is found that 
a relatively large secondary mass with significant clearance to accommodate the relative 
movement (stroke) of the TMD is required for efficient and robust peak seismic demand 
mitigation (e.g. Hoang et al. 2008) which increase the TMD implementation cost. In this 
regard, a number of approaches have been considered by researchers to address some of the 
TMD shortcomings, including the use of multiple and/or distributed TMDs (e.g. Xu and 
Igusa 1992; Daniel and Lavan 2014) as well as the consideration of hysteretic dissipative 
elements (e.g. Ricciardelli and Vickery 1999; Bagheri and Rahmani-Dabbagh 2018) and 
nonlinear connection elements (e.g. Lu et al. 2018; Matta 2021), among various alterna-
tives. Still, such approaches increase the complexity of TMD tuning, design, and installa-
tion without necessarily reducing requirements for accommodating large additive second-
ary masses.

To this end, in recent years, the coupling of TMD with an inerter in the so-called tuned 
mass damper inerter (TMDI) configuration proposed by Marian and Giaralis (2013, 2014) 
was shown to be an effective solution for the seismic protection of non-isolated buildings 
in several theoretical studies (Giaralis and Marian 2016; Giaralis & Taflanidis 2018; Ruiz 
et al. 2018; Taflanidis et al. 2019; Kaveh et al. 2020; Patsialis et al. 2021; Djerouni et al. 
2022) by addressing all the aforementioned TMD shortcomings. Specifically, in the TMDI 
configuration, the secondary mass is connected to a lower floor (from the one where the 
damper is attached to) via an inerter. The latter is a mechanical element that produces a rel-
ative acceleration- dependent force proportional to a so-called inertance property expressed 
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in mass units (kg) (Smith 2002). Importantly, inertance scales-up practically independently 
from the inerter physical mass as demonstrated by several inerter device prototypes devel-
oped for earthquake engineering applications reaching inertance of 10,000 tons or more 
(e.g. Nakamura et al. 2014; Nakaminami et al. 2017). Thus, in the TMDI, the inerter acts 
as a mass amplifier contributing inertia (but not weight) through the inertance property. In 
this respect, Giaralis and Marian (2016) demonstrated that the required secondary mass can 
be significantly reduced by trading it to inertance for fixed structural seismic performance 
in terms of top floor displacement. Furthermore, Giaralis and Taflanidis (2018) established 
that TMDI offers increased robustness to uncertainties in structural properties and seis-
mic excitation compared to TMD which was attributed to the fact that TMDI achieves 
broadband damping, enabling the effective mitigation of higher modes of vibration. More 
recently, Ruiz et al. (2018) and Taflanidis et al. (2019) showed that through judicial tun-
ing supported by bi-objective optimal design formulations, the TMDI achieves improved 
structural seismic performance in terms of storey drifts and floor accelerations at the cost 
of increased control forces exerted to the host buildings structure. Moreover, Kaveh et al. 
(2020) and Djerouni et al. (2022) established the potential of TMDI for seismic response 
mitigation using a large sets of non-pulse and pulse-like recorded ground motions, respec-
tively. Lastly, Patsialis et al. (2021) demonstrated that TMDI is more robust than TMD to 
detuning due to inelastic seismic structural response.

Nevertheless, in all the previous TMDI studies for the seismic protection of non-isolated 
building structures, the velocity-dependent damping element has been taken as linear vis-
cous damper (i.e. a dashpot element). However, as already discussed, commercially avail-
able viscous dampers for seismic applications exhibit nonlinear behavior, commonly mod-
elled by a force–velocity power law expression. This is mainly considered to envelop the 
magnitude of damping forces developing in the devices and transmitted to the host struc-
ture (e.g. Sorace and Terenzi 2008). It, therefore, becomes important to investigate the seis-
mic structural response for TMDI with NVDs, hereafter NTMDI, given that a main consid-
eration in the use of TMDI for earthquake applications is to contain the large forces exerted 
by the TMDI to the structure (Ruiz et al. 2018; Taflanidis et al. 2019). Equally important, 
from a practical viewpoint, is to offer a practicable TMDI tuning approach, accounting 
explicitly for nonlinear damper behavior.

In this regard, this paper develops a first optimal design approach for NTMDI which 
relies on a reduced-order modelling of TMDI-equipped multistorey buildings together with 
statistical linearization (SL) (Roberts and Spanos 2003) to treat the nonlinear damping 
term. For the reduced-order modelling, the approach of Pietrosanti et al. (2020) applicable 
to linear TMDI is extended to the case of NTMDI. For the SL approach, the methodology 
of Rüdinger (2007), applicable to TMD with NVD, is extended to the case of NTMDI. In 
this setting, a numerical approach is reached for NTMDI tuning for damped building struc-
tures under stochastic excitations, while a closed-form analytical tuning is derived for the 
special case of undamped white noise excited building structures. Comprehensive paramet-
ric studies are undertaken to draw insights on the NVD parameters for different structural, 
inertial, and excitation properties (earthquake intensity and frequency content). Moreover, 
the proposed tuning approach is applied to a 9-storey steel case-study structure established 
in Ohtori et al. (2004). Nonlinear response history analyses for benchmark recorded seis-
mic ground motions defined in Ohtori et al. (2004) are undertaken to assess the potential of 
NTMDI versus the well-established in the literature TMDI for seismic response mitigation 
in terms of displacement, accelerations, damper stroke, and inerter and damper forces. The 
presentation begins by describing the modelling of multi-storey buildings equipped with 
NTMDI.
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2  Modelling of multi‑storey buildings equipped with nonlinear tuned 
mass damper inerter (NTMDI)

2.1  Multi‑mode building model equipped with NTMDI

Consider a n-storey building hosting a NTMDI, for suppressing the structural response to 
earthquake excitations. The structure is modelled as a planar linear damped lumped-mass 
multi degree of freedom (MDOF) system with Ms, Cs, and Ks mass, damping, and stiffness 
matrices with n-by-n dimensions, respectively, subjected to horizontal ground acceleration, 
üG , as shown in Fig. 1. The NTMDI is modelled by a secondary mass, mD, connected to 
the ib floor by an inerter element with inertance b, as defined by Smith (2002), and to the 
id floor by a linear spring with stiffness kD in parallel with a NVD, as shown in the inlet 
of Fig. 1. The NVD develops a nonlinear force modelled as (e.g. Terenzi 1999; Lee and 
Taylor 2001)

where cNL is the damping coefficient of the nonlinear viscous force, α is the damping expo-
nent, uk is the displacement of the secondary mass relative to the displacement of the id 
floor, sgn(·) denotes the signum function and a dot over a symbol denotes differentiation 
with respect to time. The damping exponent in Eq. (1) governs the level of nonlinearity of 
the NVD and can range as 0.1 < α < 2.0 in typical devices, depending on the application 
(e.g. Terenzi 1999; Berquist et al. 2019). For the special case of α = 1, the damping ele-
ment becomes a standard linear viscous damper, and the model in Fig. 1 degenerates to a 
linear TMDI-equipped MDOF structure, previously studied in the literature as detailed in 
the introduction. In this respect, the focus of this work is on the tuning and the assessment 

(1)Fd = cNL
||u̇k||𝛼sgn

(
u̇k
)
,

Fig. 1  Multi-storey building model equipped with NTMDI
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of the NTMDI for α ≠ 1, vis-à-vis the linear case (α = 1). Of particular interest are values 
of α ≤ 0.5, which are commonly adopted for standalone NVDs used as diagonal struts for 
seismic protection of buildings (e.g. Sorace and Terenzi 2008), as well as values of α > 1.0, 
which are commonly used for NVDs in TMD applications (Berquist et al. 2019).

Notably, the model of Fig. 1 allows for NTMDI to span more than one storey (i.e. id-
ib > 1) by considering, for example, an internal atrium formed by openings in the building 
slab(s) (e.g. Dai et al. 2019; Kaveh et al. 2020). This consideration is motivated by the fact 
that the linear TMDI is more effective in mitigating the earthquake response of buildings 
when spanning two or more floors (e.g. Giaralis and Taflanidis 2018; Ruiz et  al. 2018; 
Taflanidis et al. 2019). It is thus deemed relevant to herein study the effectiveness of the 
NTMDI for connectivities with id-ib > 1. Mathematically, arbitrary NTMDI connectivities 
can be accommodated by using the connectivity vector Rc = Rd − Rb , where Rd and Rb 
are n-long vectors with zero elements except for the element corresponding to the degrees 
of freedom (DOFs) id and ib, respectively, which are set equal to 1 (Taflanidis et al. 2019). 
Making use of the above definitions, the coupled equations of motion for the NTMDI-
equipped MDOF dynamic system of Fig. 1 are written as

where us is the n-length vector of lateral floor displacements relative to the ground motion 
indicated in Fig. 1 and δ is the standard n-length influence vector (vector of ones). In this 
setting, the force transferred from the inerter element to the ib floor is computed as

while the force transferred from the NTMDI to the id floor is computed as

2.2  Reduced‑order single‑mode building model with NTMDI

To facilitate optimal NTMDI tuning, a low-order (2-DOF) nonlinear mechanical model 
shown in Fig.  2 is put forth in this section. The considered model is a modified ver-
sion of the linear 2-DOF model proposed by Pietrosanti et al. (2020) to support optimal 
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(4)Fv = Fd + kDuk.

Fig. 2  Low-order 2-DOF dynamical model of NTMDI-equipped multi-storey building
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tuning of linear TMDI targeting the mitigation of a single mode in MDOF structures, 
herein augmented by the nonlinear damping element modelled by Eq. (1). The model is 
derived by application of modal reduction to the MDOF building model in Fig. 1 such 
that the host structure is represented by a 1-DOF system with generalized properties 
coming from any one (targeted) vibration mode of the building, assumed to be dominat-
ing the structural seismic response. In this context, the generalized structural mass, stiff-
ness, inherent damping and base acceleration indicated in Fig. 2 are defined as

respectively, where  the superscript “T” denotes matrix transposition and � is the normal 
(undamped) dominant mode shape vector of the uncontrolled MDOF building model tar-
geted by the NTMDI, normalized to have a modal coordinate equal to 1 at the DOF id (see 
also Rana and Soong 1998). Notably, the 2-DOF model in Fig. 2 can represent any NTMDI 
connectivity through the modal factor

where �id and �ib are the elements of the � mode shape vector corresponding to the id and 
the ib DOFs (modal displacements), respectively. This is achieved by appropriate modifi-
cation of the inertance values of the three inerter elements by the modal factor in Eq. (6), 
as shown in the model of Fig.  2 (Pietrosanti et  al. 2020). Specifically, the modal factor 
takes on values 0 ≤ Δ� ≤ 1 . For the limiting value of Δ� = 0 , the floors ib and id coincide 
(i.e. the inerter and the damper connects the secondary mass to the same floor) and the 
NTMDI becomes a vibration absorber with a single attachment point to the structure. For 
Δ� = 1 , the inerter connects the secondary mass to the ground (grounded NTMDI) which 
is a widely studied configuration in the literature (e.g. Marian and Giaralis 2014; Giaralis 
and Taflanidis 2018; De Angelis et al. 2019). Importantly, recent work (Pietrosanti et al. 
2020; Wang and Giaralis 2021) has shown analytically and numerically that Δ� ampli-
fies the inertance of the linear TMDI and as a result the TMDI becomes a more effective 
vibration absorber, for a given id placement, as Δ� increases up to the maximum value of 
Δ� = 1 (grounded connectivity). In this regard, the Δ� value of the 2-DOF model in Fig. 2 
will be used in later sections to account for the influence of different connectivities to the 
tuning of NTMDI for seismic building response mitigation.

Using the previous definitions, the equations of motion of the nonlinear low-order 
model in Fig. 2 are written as

in terms of the relative displacement coordinates uid and uk. By introducing the non-dimen-
sional modal natural frequency, �S , inherent (modal) damping ratio,�S , NTMDI inertance 
ratio, β, and NTMDI mass ratio, μ, parameters defined as

respectively, the equations of motion in Eq. (7) can be written as

(5)mid = 𝜙TMs𝜙 , kS = 𝜙TKs𝜙 , cS = 𝜙TCs𝜙 and ÿG =
𝜙TMs�

𝜙TMs𝜙
üG,

(6)Δ� = �id − �ib = 1 − �ib,

(7)

(
mD + bΔ𝜙

)(
üid + ük

)
+ b(1 − Δ𝜙)ük + Fd + kDuk = −mDÿG(

mid + bΔ𝜙(Δ𝜙 − 1)
)
üid + cSu̇id + kSuid − b(1 − Δ𝜙)ük − Fd − kDuk = −midÿG

(8)�S =

√
kS

mid

, �S =
cS

2mid�S

, � =
b

mid

, � =
mD

mid

, and �D =

√
kD

mid + b
,
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upon further algebraic manipulation such that the nonlinear damping force term appears in 
only one of the two equations of motion. The above system of equations is treated via sta-
tistical linearization in the subsequent section to further expedite the NTMDI tuning.

3  Equivalent linear reduced‑order model and random vibration 
analysis

3.1  Statistical linearization

It is common practice in the design/tuning of dynamic vibration absorbers for earthquake 
applications to adopt a stochastic ground excitation model to account for the uncertain 
nature of the earthquake ground motion (e.g. Giaralis and Taflanidis 2018; Taflanidis 
et  al. 2019 and references therein). For linear structural systems and absorbers, this is 
significantly facilitated by straightforward application of linear random vibration analy-
sis. In the presence of nonlinearities, computationally efficient statistical linearization 
(SL) approaches can be employed for the task (e.g. Rüdinger 2007; Sgobba and Marano 
2010) which approximate the nonlinear stochastic seismic response of structures without 
the need for nonlinear response history analysis (Roberts and Spanos 2003). To this end, 
SL is herein applied to linearize the 2-DOF dynamical system of Fig. 2. This is achieved 
by replacing the nonlinear damping force term, Fd

/
mid , in Fig. 9 by an equivalent linear 

(damping force) term, defined in terms of the effective linear damping coefficient ce or an 
equivalent linear damping ratio ξe as

In Eq. (10), xk is the displacement of the secondary mass of the equivalent linear system 
(ELS) which is derived by the replacing the nonlinear damping force term in Eq. (9) by the 
equivalent linear term in Eq. (10) as

Further in the last equation, xid is the displacement of the main structural mass of the 
ELS with respect to the ground excitation. Note that different notation is used for the two 
displacement coordinates and their derivatives in Eqs. (9) and (11) to account for the fact 
that the response of the nonlinear system and the ELS to the same excitation is different 
(Giaralis and Spanos 2010).

The effective damping coefficient ce of the ELS is an unknown deterministic variable. 
Following the most widely adopted SL approach, among other alternatives (De Domenico 
and Ricciardi 2018), ce is determined by minimising the expected value of the difference 

(9)

(𝜇 + 𝛽Δ𝜙)
(
ük + üid

)
+ 𝛽(1 − Δ𝜙)ük +

Fd

mid

+ (𝛽 + 𝜇)𝜔2
D
uk = −𝜇ÿG

[1 + 𝛽Δ𝜙(Δ𝜙 − 1) + (𝜇 + 𝛽Δ𝜙)]üid + (𝜇 + 𝛽Δ𝜙)ük + 2𝜉S𝜔Su̇id + 𝜔2
S
uid = −(1 + 𝜇)ÿG

(10)
ce

mid

ẋk = 2 𝜉
e
(𝜇 + 𝛽)𝜔Dẋk.

(11)

(𝜇 + 𝛽Δ𝜙)
(
ẍk + ẍid

)
+ 𝛽(1 − Δ𝜙)ẍk + 2 𝜉

e
(𝜇 + 𝛽)𝜔Dẋk + (𝛽 + 𝜇)𝜔2

D
xk = −𝜇ÿG

[1 + 𝛽Δ𝜙(Δ𝜙 − 1) + (𝜇 + 𝛽Δ𝜙)]ẍid + (𝜇 + 𝛽Δ𝜙)ẍk + 2𝜉S𝜔Sẋid + 𝜔2
S
xid = −(1 + 𝜇)ÿG.
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(error) between Eqs. (9) and (11) in the least square sense with respect to ce. This minimi-
zation criterion yields the expression (Roberts and Spanos 2003)

where E[·] is the mathematical expectation operation. By assuming that the excitation ÿG 
and the nonlinear response velocity u̇k are stationary normally distributed (Gaussian) sto-
chastic processes and that the variances of the response velocity processes u̇k and ẋk are 
equal, that is 𝜎2

u̇k
= 𝜎2

ẋk
 , the following analytical expression is derived from Eq. (12) (Di 

Paola et al. 2007)

where Γ(·) is the standard gamma function. Equation (13) is an implicit function, since the 
determination of ce requires knowledge of 𝜎2

ẋk
 . The latter can be readily computed for a 

given ce, or equivalently ξe, value through linear random vibration analysis applied to the 
ELS in Eq. (11). To this aim, the next section presents a state-space approach to determine 
𝜎2
ẋk

 and other response statistics to be used in the optimal NTMDI tuning for different types 
of stationary Gaussian stochastic excitations.

3.2  Random vibration analysis for the equivalent linear system

For the purposes of this work, state-space linear random vibration analysis is considered 
to obtain second-order response statistics of the ELS in Eq.  (11) subjected to stationary 
stochastic excitation. For Gaussian white noise excitation, ÿG(t) = w(t) , the equations of 
motion of the ELS in Eq. (11) are written in state-space as

 in which �(t) =
[
xk xid ẋk ẋid

]T is the state vector, while the state, input, and output 
matrices are given as

respectively, where

Further, in Eq.  (15) and hereafter 0(nxn) and I(nxn) are n-by-n zero and identity matrices, 
respectively, while the superscript “− 1” denotes matrix inversion. Note that the output matrix 
�s is specified in Eq. (15) such that the output (response) process vector, �(t) =

[
xid ẋk

]T , in 

(12)ce = c
NL

E
[||u̇k||𝛼+1

]

E
[
u̇2
k

] ,

(13)ce =
𝛼 c

NL
Γ
�

𝛼

2

��
2𝜎2

ẋk

�(𝛼−1)∕2

√
𝜋

,

(14)
�̇(t) = �s�(t) + �sw(t)

�(t) = �s�(t)

(15)�s=

[
�(2×2) �(2×2)

−�−1� −�−1�

]
, �s=

[
�(2×2)

−�−1�o

]
and �s=

[
0

0

1

0

0

1

0

0

]
,

(16)

M =

[
� + �Δ� + �(1 − Δ�) � + �Δ�

� + �Δ� 1 + �Δ�(Δ� − 1) + � + �Δ�

]
, C =

[
2 �

e
(� + �)�D 0

0 2�S�S

]
,

K =

[
(� + �)�2

D
0

0 �2
S

]
, and �o =

[
� 0

0 1 + �

]
.
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Eq. (14) contains the required states to support statistical linearization (see Eq. (13)) and the 
optimal NTMDI tuning discussed in a subsequent section. The covariance matrix, �xx , of all 
the states in x satisfies the Lyapunov equation

 where Sw is the spectral intensity of the white noise excitation. Assuming a double-sided 
clipped white noise power spectral density function, the spectral intensity Sw is herein 
related to the peak ground acceleration (PGA) by the expression

where ωc is the cut-off frequency of the white noise. Note that Eq. (18) has been derived 
under the heuristic “3σ” rule (i.e. PGA = 3�w ) (Roberts and Spanos 2003). In all the ensu-
ing numerical work, Eq. (17) is solved numerically using the “lyap” build-in MATLAB® 
routine for �xx . Then, the second-order statistics (variances) of the Gaussian zero-mean 
response process vector z, �2

xid
 and 𝜎2

ẋk
 , are retrieved from the main diagonal of the covari-

ance matrix

In case it is deemed important to account for site soil conditions in the optimal NTMDI 
design, the ground excitation can be modelled by a Gaussian colored noise, represented in the 
domain of frequencies ω by the widely-used for the purpose filtered Kanai-Tajimi (K-T) spec-
trum given as (Clough and Penzien 2003)

In the above expression, �g and �g are the natural frequency and damping ratio of the soil, 
respectively, which is modelled as a white noise excited linear 1-DOF system with spectral 
intensity So. Morevoer,�f  and �f  are parameters of a high-pass filter incorporated in Eq. (19) to 
eliminate spurious low-frequency content. In the numerical part of this work, the values of the 
parameters in Eq. (19) listed in Table 1 are used to model firm and soil conditions, derived by 
Giaralis and Spanos (2012). Further, the spectral intensity So is related to the PGA by adopting 
the expression (e.g. Sgobba and Marano 2010)

derived using the same assumptions as in Eq. (18).

(17)�s�xx+�xx�
T
s
+2�Sw�s�

T
s
= �,

(18)Sw =
PGA2

18�c

,

(19)�zz = �s�xx�
T
s
.

(20)Scp(�) = So

�4
g
+ 4�2

g
�2
g
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Table 1  Filtered Kanai-Tajimi 
parameters for different soil 
conditions (Giaralis and Spanos 
2012)

Soil type �g(rad/s) �g �f (rad/s) �f

Firm 10.73 0.78 2.33 0.90
Soft 5.34 0.88 2.12 1.17
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A similar state-space random vibration analysis approach can be used to derive �2
xid

 and 
𝜎2
ẋk

 variances under Gaussian noise colored by the K-T filter in Eq. (19), as in the case of 
white noise excitation treated before. This is achieved by writing the excitation model of 
Eq. (19) in state-space form as

where �(t) is the 4-by-1 state vector of the excitation model and

Next, the state space equations of the ground excitation model in  Eq. (22) are coupled 
with the state space equations of the ELS in  Eq. (14) and the Lyapunov equation associ-
ated with the covariance matrix, �qq , of the coupled system state vector �(t) =

[
�T �T

]
 

can be written as

where

To this end, Eq. (24) can be solved in the same way as  Eq. (17) for �qq and the response 
variances of interest, �2

xid
 and 𝜎2

ẋk
 , under Gaussian colored noise excitation are retrieved 

from the main diagonal of the matrix ��qq�
T , where � =

[
�s �(2x4)

]
.

3.3  Accuracy assessment of statistical linearization against Monte Carlo simulation 
data

Notably the SL approach in Sect. 3.1 is approximate since the effective damping coefficient 
is determined by assuming that the response velocity u̇k follows a Gaussian distribution, 
which is not true even for Gaussian excitation. Hence, it is deemed essential to assess the 
accuracy of the adopted SL approach, never previously applied to the nonlinear system in  
Eq. (9), versus results from Monte Carlo simulation (MCS) (Roberts and Spanos 2003). 
The latter involves direct time-domain integration of the nonlinear equations in Eq. (9) to 
determine nonlinear response statistics. Comparisons are made for both white noise and 
colored noise (filtered Kanai-Tajimi) excitations and for a wide range of system properties 
in Eq. (9). In all cases a cut-off frequency ωc = 35 rad/s is taken. For white noise excita-
tion, normally distributed random number sequences are generated using built-in random 
number generator of MATLAB® to represent time-history excitations. For filtered Kanai-
Tajimi excitation, spectrum compatible time-histories are simulated using the spectral rep-
resentation approach (Shinozuka and Deodatis 1991), written in continuous time as

(22)
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ÿG(t) = Cg�(t)
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where N = 256 is the number of frequency components assumed in the excitation, 
Δ� = �c

/
N and �j are uniformly distributed random numbers in the interval [0,2π].

Figure 3 plots selective data comparisons between the response variance �2
uid

 of the non-
linear 2-DOF in  Eq. (9) obtained by MCS and the response variance �2

xid
 of the ELS in 

Eq. (11) obtained using SL and linear random vibration analysis as detailed in Sect. 3.2 for 
white noise and two different filtered Kanai-Tajimi excitations defined in Table 1. Results 
are normalized by the response variance of the uncontrolled single-mode (1-DOF) struc-
ture, �2

o
 . In all excitations, PGA = 0.3 g is adopted and MCS consider 1000 excitation time-

histories which achieve stable response statistics. Further, the following parametric values 
are taken as fixed ωs = 2π, Δφ = 1 (grounded inerter), β = 0.5, while values of inherent 
structural damping ξs and damping coefficient α are let to vary as shown in Fig. 3. Further, 
the NTMDI stiffness and damping properties are found for each different system based on 
the tuning approach detailed in the following section. It is seen that results from SL are in 
very close agreement with MCS for all the different excitations and damping exponents, 
especially for ξs ≤ 5%. Similar comparative results and findings are reported in Rüdinger 
(2007), in which the case of linear 1-DOF structures equipped with NTMD under white 
noise excitation has been treated using SL. Similar trends, not reported here for brevity, 
hold for other values of Δφ, ωs and β for the 2-DOF model in Fig. 2 with tuned NTMDI. 
Overall, these results demonstrate that SL is fairly accurate to support a practical and expe-
ditious NTMDI tuning, presented in the next section.

4  Optimal NTMDI tuning

4.1  Optimization problem formulation

Herein, tuning of the NTMDI for the MDOF building model in Fig. 1 is sought by making 
use of the 2-DOF ELS defined in Sect. 3.1. The considered tuning aims to minimize the 
displacement variance �2

xid
 of the ELS under stationary stochastic seismic excitation ÿG , 

which approximates the displacement variance �2
xid

 of the id floor of the MDOF building 
subject to the corresponding üG stochastic excitation. This is pursued by solving an 

(26)ÿG(t) =
√
2

N−1�
j=0

�
2Scp(jΔ𝜔)Δ𝜔 cos

�
jΔ𝜔t + 𝜃j

�

Fig. 3  Illustrative comparison of response variances of the 2-DOF system in Fig.  2, �2

u
id

 obtained from 
MCS (1000 excitation samples) and �2

x
id

 obtained from SL for various damping exponents and structural 
damping ratios under a white noise excitation, b colored excitation-firm soil, c colored excitation- soft soil 
(PGA = 0.3 g, ωs = 2π, Δφ = 1, β = 0.5)
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optimization problem in which the non-dimensional frequency ratio, λ, and damping ratio, 
ξe, parameters defined as

 respectively, are treated as primary design variables, while the generalized modal building 
properties �S and �S , modal NTMDI connectivity factor Δ� and NTMDI inertial properties 
β and μ are taken as fixed (secondary design variables). Mathematically, the optimization 
problem is written as

where �2
o
 is the response variance of the uncontrolled structural modal oscillator under sta-

tionary random excitation defined by the generalized properties in Eq. (5).
Once the optimal frequency and damping ratios, �opt and �opte  respectively, are deter-

mined by solving Eq. (28), the NTMDI stiffness and nonlinear damping coefficients (i.e. 
optimal NTMDI tuning properties) are found by

and

Equation (29) has been derived by substituting the expressions for �S and �D in Eq. (8) 
to the definition of the frequency ratio λ in  Eq. (27), while  Eq. (30) has been derived by 
substituting the expression for ξe in  Eqs. (27)–(13).

At this junction, it is important to note that the optimal design problem in  Eq. (28) con-
siders solely the response of the ELS, thus �opt and �opte  tuning parameters are independent 
of the NVD damping exponent α. However, the optimal nonlinear damping coefficient of 
the NVD in  Eq. (30) does depend on α, thus ultimately α enters the NTMDI optimal tun-
ing as an additional secondary design variable (see also Rüdinger 2007).

4.2  General numerical solution

Comprehensive parametric numerical investigation presented in a subsequent section dem-
onstrates that the optimization problem in  Eq. (28) is convex with a single (global) optimal 
design point for a wide range of system properties of practical interest. This is also con-
firmed by numerical results reported in Pietrosanti et  al (2020) who studied the optimal 
tuning of linear TMDI using the linear system in Eq. (11), though adopted an energy-based 
objective function. Therefore, any standard optimization algorithm can be used to solve  
Eq. (28). In the numerical part of this work, the pattern search algorithm implemented in 
the built-in MATLAB® command “fminsearch” is used to determine the optimal 
design parameters,�opt and �opte  , bounded within search ranges �min ≤ � ≤ �max and 
�min
e

≤ �e ≤ �max
e

 . The specification of the bounds of the search ranges is facilitated by the 
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�D

�S

and �
e
=

ce

2(� + �)�Dmid

,

(28)min
�,�e

{
�2
xid

�2
o

}

(29)k
opt

D
=
(
mid + b

)(
�opt�S

)2

(30)c
opt

NL
=

2
√
𝜋𝜉

opt
e (𝜇 + 𝛽)𝜆opt𝜔Smid

𝛼 Γ
�

𝛼

2

��
2𝜎2

ẋk
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consideration of non-dimensional design parameters in  Eq. (28), and are taken as 
�min = �min

e
= 0 , �max = 2 and �max

e
= 3 in the numerical part of this study. Further, the ELS 

response statistics �2
xid

 and 𝜎2
ẋk

  required in Eqs.  (28) and (30), respectively, are numerically 
obtained by state-space linear random vibration analysis as detailed in Sect. 3.2.

4.3  Analytical solution for undamped white noise excited structures

Whilst a numerical approach is always applicable for solving the optimal NTMDI design 
problem in Sect.  4.1, for the special case of undamped (i.e. ξs = 0) white noise excited 
building structures, a closed-form solution of  Eq. (28) is practically tractable. This is pur-
sued by first deriving analytically the displacement response variance as

for ξs = 0 and for unit amplitude white noise excitation Sw = 1 as detailed in the “Appen-
dix”, where the coefficients an (n = 0, 1, 2, 3, 4) and bm (m = 0, 1, 2) are provided in Eqs. 
(38) and (39), respectively. Then, the following two (stationary) conditions are enforced 
simultaneously

which must hold at the global minimum design point associated with  Eq. (28) (see also 
Marian and Giaralis 2014). In this regard, Eq. (32) defines a two-by-two system of equa-
tions in terms of the unknown optimal design parameters �opt and �opte  which, after some 
algebraic manipulation, are found analytically as

and

 respectively. Ultimately, the NTMDI stiffness and nonlinear damping coefficients are 
determined by using Eqs. (33) and (34) in Eqs. (29) and (30), together with the expression 
for the velocity response variance
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 derived in the “Appendix”, where the coefficients an (n = 1, 2, 3, 4) and dm (m = 1, 2, 3) are 
provided in Eqs. (38) and (42), respectively.

As a closing remark to this Section, it is noted that whilst the analytical expressions 
in Eqs. (33), (34) and (35) for the optimal NTMDI tuning are somewhat long, they cir-
cumvent the need for employing a numerical optimization algorithm for NTMDI tuning. 
Thus, they bear some good practical advantages. In this respect, in a subsequent Section, 
the applicability of these expressions to treat damped structures will be assessed, aiming to 
extend their range of application to lightly damped structures, without significant loss of 
accuracy.

5  Parametric investigation of NVD properties in optimally tuned 
NTMDI

Having established a generic optimal NTMDI tuning approach for MDOF structures in pre-
vious sections, this section presents numerical data to determine trends of optimal NTMDI 
parameters for different excitation and structural properties. In this respect, note that the 
optimal parameters of the linear TMDI using the linear 2-DOF system in Eq.  (11) have 
already been comprehensively presented and discussed by Pietrosanti et al. (2020). There-
fore, herein attention is focused on examining the parameters of the NVD element in the 
novel 2-DOF nonlinear system of Fig. 2, upon optimal NTMDI tuning. That is, the damp-
ing exponent α in Eq. (1) and the optimal nonlinear damping coefficient copt

NL
 in  Eq. (30). 

To this aim, results for various excitation and structural properties are reported, examining 
the trends of the optimal damping coefficient ratio

derived from  Eq. (30), as the damping exponent varies within the range 0 < α ≤ 2 which 
spans all possible values of practical NVDs (Sorace and Terenzi 2008; Berquist et  al. 
2019).

At first, the convexity of the optimization problem in  Eq. (28) in numerically illustrated 
in Fig. 3 by plotting the objective function in  Eq. (28) on the NTMDI design parameters 
plane for white noise excitation with PGA = 0.3 g, for two different damping exponents and 
for a specific set of system parameters. This is facilitated by using the non-dimensional 
design parameters c

NL

/
c
e
 and λ. The global minimum (optimal design point) is identified 

by a red dot in the plots of Fig. 3 while the optimal design parameters and minimum objec-
tive function value are also reported. It is important to recognize that the optimal frequency 
ratio and minimum objective function value are the same for both plots in Fig. 3 as they 
are independent of the damping exponent α. Evidently, the level of convexity of  Eq. (28) 
is very high, with a clear unique global minimum, and pertinent to all the cases considered 
in this work.

Next, the variation of the optimal damping coefficient ratio in  Eq. (36) against the 
damping exponent is examined in Fig. 4 for different inertance ratio values. This is done 
for white noise excitation with PGA = 0.3 g and for undamped primary structure in Fig. 4a 
and for 5% inherent structural damping in Fig. (b), with all other parameters taken constant 
(ωs = 2π, μ = 5%, and Δ� = 1 ). The limiting value of β = 0 is included in Fig. 4 which cor-
responds to a TMD with NVD, hereafter NTMD. The NTMD case has been treated in 
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Rüdinger (2007) and, thus, serves well to establish the role of inertance in the optimal 
NVD properties by drawing comparisons with the NTMDI. Further, the achieved mini-
mum objective function in  Eq. (28) is also reported in the legend of Fig. 4 for each differ-
ent NTMD(I) and confirms the well-established in the literature fact that improved perfor-
mance is achieved as inertance increases (e.g. Marian and Giaralis 2014; Pietrosanti et al. 
2020). The data in Fig. 4 evidence that the trend of the optimal damping coefficient ratio 
with α for the NTMDI is quite different compared to the NTMD. The optimal NTMDI 
nonlinear damping coefficient ratio increases monotonically with α while the opposite hap-
pens for the case of the NTMD. In this respect, the incorporation of an inerter changes 
significantly the required NVD properties for optimal performance which highlights the 
importance of this work, compared to previous efforts by Rüdinger (2007), and the signifi-
cance of the optimal design problem formulation and solution in previous sections.

Examining Fig.  4 in more detail, it is found that for the range of α ≤ 0.5 adopted in 
NVDs for earthquake engineering applications, the optimal NVD damping coefficient,copt

NL
 , 

is significantly higher from the copte  obtained by the ELS-based optimization for the NTMD, 
while the opposite happens for the NTMDI, for any fixed value of α. In this range, the 
difference between copt

NL
 and copte  increases with the inertance, but at a reduced rate such 

that for β ≥ 0.6, the required damping ratio copt
NL
∕c

opt
e  to achieve the optimal performance 

improvement is almost independent of the inertance. On the other hand, for the range of 
α > 1 which is most relevant to NVDs used in TMD applications (Berquist et al. 2019), it 
is observed that copt

NL
 is higher than copte  for the NTMDI and the rate of this difference with 

α increases appreciably as the inertance increases. Therefore, for α > 1, the value of the 
damping ratio copt

NL
∕c

opt
e  significantly more dependent on the inertance than for the range 

of α < 0.5 with values of copt
NL

 required to be appreciably higher than copte  to achieve optimal 
NTMDI performance as inertance increases. Interestingly, for α > 1, the required copt

NL
 is sig-

nificantly lower than the copte  for optimal NTMD performance. Lastly, a comparison across 
Fig. 4a and b shows that the structural inherent damping influences significantly more and 
in a different manner the ratio copt

NL
∕c

opt
e  for the NTMD compared to the NTMDI. Specifi-

cally, the ratio copt
NL
∕c

opt
e  attain lower values as structural damping increases, while the same 

ratio increases for NTMDI but insignificantly.
Subsequently, the influence of the modal connectivity factor Δ� to the NVD properties 

for optimal NTMDI performance is investigated. This is supported by plotting the optimal 

Fig. 4  Contour plots of objective function �2

xid

/
�2

o
 on the design variables plane for a α = 0.5 and b α = 1.5 

under white noise excitation with PGA = 0.3 g. System parameters are ωs = 2π, ξs = 5%, μ = 5%, β = 50% and 
Δ� = 1
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damping coefficient ratio against the damping exponent for different Δ� values in Fig. 5 
and for three different excitations in terms of frequency content. Here, the NTMD case is 
not included as it is not relevant to Δ� : NTMD is attached to a single floor/location in the 
MDOF structure, as opposed to the NTMDI which is attached to two floors (Fig. 1). As 
in the previous figure, the achieved minimum structural displacement reduction is shown 
in Fig. 5, confirming that NTMDI motion control potential improves with Δ� (Pietrosanti 
et al. 2020; Wang and Giaralis 2021), with the limiting case of Δ� = 1 (inerter connected 
to the ground) achieving the best performance for all different excitations. Importantly, it is 
found that the increase of Δ� influences the trends of the curves in Fig. 5 in the same way 
as the increase of inertance β in Fig. 4, irrespective of the frequency content of the excita-
tion. That is, copt

NL
∕c

opt
e  reduces with Δ� for α < 0.5 while the opposite happens for α > 1. 

Nevertheless, this influence of Δ� to the copt
NL
∕c

opt
e  trends with α is less important compared 

to the one of inertance and essentially negligible for practical non-grounded inerter con-
nectivity. This observation suggests that appreciable improvement in motion suppression 
brought about by changing the NTMDI connectivity (e.g. improvement of more than 25% 
by increasing Δ� from 0.05 to 0.20) is achieved without changing much the optimal NVD 
damping coefficient compared to the optimal equivalent linear damping coefficient.

Fig. 5  Variation of optimal nonlinear damping coefficient with damping exponent for different inertance 
values and for a ξs = 0 and b ξs = 0.05 under white noise excitation with PGA = 0.3 g. System parameters are 
ωs = 2π, μ = 5%, and Δ� = 1

Fig. 6  Variation of optimal nonlinear damping coefficient with damping exponent for different modal con-
nectivity factors under a white noise, b K-T excitation for soft soil, and c K-T excitation for firm soil, all for 
PGA = 0.30 g. System parameters are ωs = 2π ξs = 5%, β = 50%, and μ = 5% 
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Focusing further on the influence of the excitation to the optimal NVD properties, Fig. 6 
plots the same type of data as in Fig. 5 for different excitation intensities (PGA) and for same 
system parameters as before. It is seen that the seismic excitation intensity influences signifi-
cantly the ratio copt

NL
∕c

opt
e  , in a manner that depends on the damping coefficient α. For α ≤ 0.5 

the required ratio copt
NL
∕c

opt
e  for optimal NTMDI increases with the excitation intensity, while 

the opposite occurs for α > 1.0. These trends do not depend on the frequency content of the 
excitation. Nevertheless, the influence of the frequency content excitation to the dynamic 
structural response depends on the structural natural frequency. To study this effect on the 
optimal NVD properties, Fig. 7 plots similar data as in Fig. 6 for systems with different struc-
tural natural frequencies ωs or, equivalently natural periods T = 2π/ωs, under seismic excita-
tions with different frequency content but same PGA = 0.3 g. It is seen that the optimal damp-
ing property ratio, copt

NL
∕c

opt
e  , becomes insensitive with α for relatively flexible structures with 

T ≥ 1 s under narrow-band K-T colored noise excitation, representative of the frequency con-
tent of the nominal seismic action assumed by seismic design codes (see e.g. Giaralis and 
Spanos 2012). However, copt

NL
∕c

opt
e  becomes sensitive to the natural frequency (i.e. stiffness) of 

the host building structure for white noise excitation, corresponding to frequency-neutral opti-
mal tuning as shown in Fig. 7a or for stiff structures (T < 1 s) irrespective of the excitation as 
shown in Fig. 7b and c. Stiffer structures require lower copt

NL
∕c

opt
e  for optimal NTMDI tuning for 

α ≤ 0.5, while the opposite happens for α > 1. It is noted in passing that actual seismic ground 
motions are non-stationary with varying frequency content in time (Fig. 8). Assessment of the 
motion control potential of optimal NTMDI under recorded ground motion is addressed in a 
later Section.

Fig. 7  Variation of optimal nonlinear damping coefficient with damping exponent under a white noise, b 
K-T excitation for soft soil, and c K-T excitation for firm soil, for different PGA. System parameters are 
ωs = 2π ξs = 5%, β = 50%, μ = 5% and Δ� = 1

Fig. 8  Variation of optimal nonlinear damping coefficient with damping exponent for different structural 
natural frequency ωs under a white noise, b K-T excitation for soft soil, and (c) K-T excitation for firm soil, 
for different PGA. System parameters are ωs = 2π ξs = 5%, β = 50%, μ = 5% and Δ� = 1
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6  Accuracy of analytical optimal NTMDI tuning for damped structures

The previously presented numerical data suggest that the optimal NVD properties are sen-
sitive to certain excitation and structural properties which calls for a careful NTMDI tun-
ing. The latter may be significantly facilitated by the analytical (closed-form) solution pro-
vided in Sect. 4.3. Nevertheless, this solution assumes undamped building structures which 
is an unrealistic assumption. Still, the inherent damping of buildings under seismic excita-
tion is commonly taken within 2% ≤ ξs ≤ 5% which falls within the class of lightly damped 
structures. For such structures, the use of analytical approaches for optimal TMD tuning 
derived under the assumption of zero damping may be regarded as approximately valid 
with little loss of accuracy (see e.g. Ghosh and Basu 2007). To this end, in this Section, the 
accuracy of the analytical expressions in Eqs. (33)–(35), which hold for optimal NTMDI 
tuning for ξs = 0 as detailed in Sect. 4.3, is assessed against data obtained for ξs ≠ 0 using 
the numerical method in Sect.  4.2. Assessment is herein provided in terms of optimal 
damping NVD ratio copt

NL
∕c

opt
e  , as well as motion control performance quantified by �2

xid
∕�2

o
 , 

where normalization corresponds to displacement response variance of the uncontrolled 
SDOF structure in Fig. 2 with ξs = 1%.

Figure 9 presents data for NTMDI with grounded inerter implementation (i.e.Δ� = 1 ) 
and NVD damping exponent α = 0.5 for varying inertance. It is seen in Fig. 9a that there 
is small deviation of the optimal damping ratio copt

NL
∕c

opt
e  for ξs < 5% which reduces as the 

inertance increases. In fact, for medium to large inertance (e.g. β > 40%) the analytically 
obtained optimal damping ratio for ξs = 0 is applicable to treat systems with even ξs = 5% as 
the difference (error) drops well below 5%. Notably, similar trends and comments apply for 
the differences in the motion control performance estimation in Fig. 9b. The data in the lat-
ter figure are considered to reinforce the confidence of using the analytical NTMDI tuning 
for ξs = 0 to treat cases with non-zero, but small, ξs values.

Similar conclusions can be drawn in view of Fig. 10 which plots the same data as in 
Fig. 9 for same excitation and system parameters but for varying damping exponent with 
β = 50%. The effect of the damping exponent to the accuracy of using the NTMDI tuning 
for ξs = 0 to treat lightly damped structures is very high. In fact, for α < 1.5 the tuning for 
ξs = 0 can be used for damped structures with damping ratio up to at least 5% for practi-
cal applications. Nevertheless, results plotted in Fig. 10a pertaining to the same excitation 

Fig. 9  Assessment of the accuracy of analytical NTMDI tuning for undamped structures against different 
inherent damping ratios for varying inertance: a optimal NVD damping ratio, b displacement performance. 
System parameters: ωs = 2π, α = 0.5, μ = 5%, Δ� = 1 ; Excitation parameters: white noise, PGA = 0.3 g
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and system parameters with varying modal connectivity factor Δ� demonstrate that the 
difference of the optimal NVD damping for ξs = 0 and for ξs > 0 increases as Δ� reduces 
and errors become unacceptable for Δ� < 0.3, even for small inherent damping ratios (e.g. 
ξs = 1%). This is further ascertained by the data in Fig. 10b, though it is noted that the dif-
ferences in terms of structural system response are smaller compared to the tuning param-
eters. Still, it is clear that the use of the analytical tuning for ξs = 0 requires caution and 
should not be preferred for values of Δ� below about 0.3, in combination with relatively 
low inertance values (e.g. below 40%).

7  Illustrative case‑study application and nonlinear response history 
analysis assessment

In previous sections, the NTMDI optimal tuning and motion control effectiveness for dif-
ferent damping exponents was discussed in conjunction with the 2-DOF system in Fig. 2 
which accounts only for the single (dominant) mode of multi-storey building structures and 
only under stationary ground excitations. It is thus deemed essential to extend this quanti-
fication for NTMDI equipped multi-modal MDOF structural models under non-stationary 
recorded earthquake excitations using nonlinear response history analyses (NRHA). To 
this aim, pertinent numerical data for the 9-storey steel benchmark building developed by 
Ohtori et al (2004) are herein presented and discussed. The considered benchmark struc-
ture has a rectangular plan with dimension 45.73 m with lateral load resisting system com-
prised of two perimetric five-bay steel moment-resisting frames (MRFs). The total building 
height is 37.19 m with 1st floor height being 5.49 m and the height of all other floors being 
3.96 m. The seismic mass of the structure which defines the diagonal mass matrix Ms in 
Eq. (2) is 1.01 ×  106 kg for the 1st floor, 9.89 ×  105 kg for the typical floor and 1.07 ×  106 kg 
for the top (9th) floor. The total seismic mass of the structure is 9.00 ×  106 kg. The full 
stiffness matrix, Ks in Eq.  (2), of a linear planar dynamic model along a horizontal axis 
of symmetry of the benchmark building is derived as detailed in Patsialis and Taflanidis 
(2020). The structure fundamental period is 2.27 s ( �s = 2.76 rad/s). For the specification 

Fig. 10  Assessment of the accuracy of analytical NTMDI tuning for undamped structures against differ-
ent inherent damping ratios for varying damping exponent: a optimal NVD damping ratio, b displacement 
performance. System parameters: ωs = 2π, β = 50%, μ = 5%, Δ� = 1 ; Excitation parameters: white noise, 
PGA = 0.3 g



1528 Bulletin of Earthquake Engineering (2023) 21:1509–1539

1 3

of the damping matrix, Cs in Eq. (2), the assumption of Rayleigh damping is taken with 
modal damping ratio equal to 5% for the first and second modes.

Note that the potential of the linear TMDI (i.e. α = 1 in Eq. (1)) for the seismic protec-
tion of buildings have been comprehensively demonstrated in previous studies by Taflan-
idis et al. (2019) and Patsialis et al. (2021) using the above described benchmark structure 
and model. Therefore, as in previous sections, the focus here is on examining the influence 
of different NVD damping exponent α in Eq. (1) to the response of the benchmark struc-
ture equipped with optimally tuned NTMDI. To this end, all comparisons are established 
against the linear TMDI case (α = 1). Further, the herein considered NTMDI implementa-
tions to the case-study benchmark structure serve well for illustrating the practicality and 
applicability of the optimal NTMDI tuning approach developed in Sect. 4 to real-life build-
ing structures. Specifically, two different top-floor NTMDI implementations (i.e. id = 9 in 
Fig.  1) are studied for various damping exponents. In the first NTMDI implementation, 
the inerter spans two stories and connects to the 7th floor of the structure (i.e. ib = 7) with 
modal connectivity factor Δ� = 0.1767 . In the second NTMDI implementation, the inerter 
spans one story and connects to the 8th floor of the structure (i.e. ib = 8) with modal con-
nectivity factor Δ� = 0.0765 . In all cases, NTMDI tuning for white noise excitation and 
for PGA = 0.3 g is considered using the numerical method in Sect. 4.2 due to the relatively 
low values of Δ� in combination with ξs = 5% for which the analytical tuning in Sect. 4.3 
deviates from the exact solution as seen in Fig. 11. Figure 12 plots typical results from the 
numerical optimal tuning for both the implementations and for α = 0.5 and α = 1.5.

Performance assessment of the benchmark structure equipped with the optimally tuned 
NTMDIs is considered by application of NRHA to Eq.  (2) for the four recorded ground 
motions (GMs) in Fig. 13. These GMs are specified in Ohtori et al. (2004) as part of the 
benchmark structural vibration control testbed problem. The El Centro and the Hachinohe 
records are far-field GMs, while the Northridge and the Kobe records are near-field GMs 
(see Ohtori et al. 2004 for further details). Herein, the GMs are uniformly scaled in time 
such that their PGA equals 0.3 g used in the optimal NTMDI tuning, and a built-in MAT-
LAB Runge–Kutta algorithm is used for numerical integration of Eq. (2).

Table 2 reports peak absolute response quantities of practical interest for each GM, for 
both the NTMDI implementations and for four different values of the damping exponent. 

Fig. 11  Assessment of the accuracy of analytical NTMDI tuning for undamped structures against differ-
ent inherent damping ratios for varying modal connectivity factor: a optimal NVD damping ratio, b dis-
placement performance. System parameters: ωs = 2π, α = 0.5, β = 50%, μ = 5%; Excitation parameters: white 
noise, PGA = 0.3 g
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Specifically, the peak absolute top (9th) floor displacement, u9, is reported which is rel-
evant to the optimal NTMDI tuning criterion in Eq.  (28). This is because the structural 
displacement in the low-order 2-DOF approximates the relative displacement of the 9th 
floor in the dynamic system of Fig. 1 for both NTMDI implementations (id = 9). Further, 

Fig. 12  Illustration of optimal tuning of NTMDI for the case-study 9-storey building structure for different 
connectivity and damping component values

Fig. 13  Considered recorded ground motions in the NRHA
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the relative displacement (stroke) of the secondary mass, uk, is also included in Table 2 as 
it relates to NTMDI practical implementation and costs. These include the required clear-
ance for the secondary mass so no collisions occur during severe earthquake shaking and 
the damper stroke which are proportional to the upfront device cost (see e.g. Ruiz et al. 
2015 and Berquist et al. 2019). Lastly, the control forces exerted by the inerter, Fb, and by 
the damper, Fd, are given in Table 2, defined in Eqs. (3) and (4), respectively. Both are pro-
portional to the NTMDI upfront cost as they relate to the inerter and device costs as well 
as to the design of local device-to-structure connections (Ruiz et al. 2018; Taflanidis et al. 
2019; Pietrosanti et al. 2021).

The results in Table 2, evidence that the effect of the NVD damping exponent to the 
seismic structural performance, measured in terms of peak top floor displacement, 
max{|u9|}, and its significance vary from record-to-record. This effect is insignificant for 
most records and NTMDI implementations (i.e. max{|u9|} differences between α = 1.5 
to α = 0.1 are about 5%) with very few exceptions. Exceptions include an increase of 
max{|u9|} by 25% for the Hachinohe record for the ib = 7 implementation as the damping 
exponent reduces from α = 1.5 to α = 0.1 (note though that the same is about 6% for the 
ib = 8 implementation), while it reduces by 13% for the Kobe record for the same change in 
the damping exponent. Nevertheless, consistent and, in most cases, significant (i.e. above 
10%) reductions of the peak NTMDI stroke and inerter force are noted as the damping 
exponent reduces from α = 1.5 to α = 0.1 for all the records and for both the implementa-
tions studied. This observation suggests that it is advantageous to adopt reduced values in 

Table 2  Peak absolute response of optimal NTMDI-equipped benchmark structure under the ground 
motions in Fig. 13

Records Peak absolute 
response

ib = 7 ib = 8

α = 0.1 α = 0.2 α = 0.5 α = 1.5 α = 0.1 α = 0.2 α = 0.5 α = 1.5

El Centro (1940) max
{||u9||

}
 (m) 0.260 0.257 0.247 0.242 0.305 0.303 0.297 0.290

max
{||uk||

}
 (m) 0.086 0.094 0.113 0.134 0.100 0.108 0.133 0.174

max
{||Fb

||
}
  (MN) 1.877 1.939 2.071 2.169 2.195 2.268 2.481 3.038

max
{||Fd

||
}
  (MN) 0.728 0.711 0.659 0.463 0.472 0.448 0.391 0.245

Hachinohe 
(1968)

max
{||u9||

}
 (m) 0.360 0.353 0.333 0.300 0.440 0.436 0.428 0.415

max
{||uk||

}
 (m) 0.196 0.200 0.213 0.243 0.239 0.2497 0.2735 0.3211

max
{||Fb

||
}
  (MN) 3.761 3.757 3.780 4.027 4.165 4.264 4.504 5.108

max
{||Fd

||
}
  (MN) 0.755 0.761 0.751 0.633 0.502 0.507 0.522 0.572

Northridge 
(1994)

max
{||u9||

}
 (m) 0.279 0.277 0.273 0.269 0.291 0.291 0.289 0.287

max
{||uk||

}
 (m) 0.103 0.115 0.140 0.181 0.128 0.140 0.166 0.2144

max
{||Fb

||
}
  (MN) 2.323 2.405 2.601 2.987 2.504 2.627 2.939 3.650

max
{||Fd

||
}
  (MN) 0.723 0.705 0.653 0.491 0.475 0.457 0.419 0.335

Kobe (1995) max
{||u9||

}
 (m) 0.157 0.160 0.168 0.180 0.182 0.184 0.190 0.197

max
{||uk||

}
 (m) 0.058 0.059 0.063 0.083 0.052 0.056 0.063 0.080

max
{||Fb

||
}
  (MN) 1.477 1.456 1.394 1.483 1.495 1.509 1.521 1.600

max
{||Fd

||
}
  (MN) 0.711 0.682 0.606 0.434 0.474 0.447 0.372 0.176
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the NVD damping exponent. This is especially true with regards to the peak inerter force 
which typically takes on large values and, in this regard, it dominates the TMDI design 
for the seismic protection of buildings as detailed in the literature (Ruiz et al. 2018; Tafla-
nidis et al. 2019; Patsialis et al. 2021). Indeed, it is seen that reductions higher than 15% 
to the peak inerter force are achieved for the first 3 GMs listed in Table 2 as the damp-
ing exponent is reduced from α = 1.5 to α = 0.1. For the Kobe GM the inerter force reduc-
tions are lower, but the inerter force for α = 1.5 is appreciably lower compared to the other 
GMs. Further, it is important to note that lower NVD damping exponent yields higher peak 
damping forces: about 60% increase of max

{||Fd
||
}
 is noted across all GMs and NTMDI 

implementations between α = 1.5 and α = 0.1. Still, even for the lowest α = 0.1 value exam-
ined, the damping forces are appreciably lower than the inerter forces. Therefore, from a 
practical viewpoint, the effect of lower the NVD damping exponent should be interpreted 
positively as it achieves a better balance between the control forces exerted to the host/
building structure at the two NTMDI attachment locations. In this context, the damping 
exponent regulates the relative amplitude of the two control forces in Eqs. (3) and (4).

The above trends and conclusions are further verified by examining the time-histories 
of all the quantities included in Table 2 provided in Figs. 14 and 15, for the El Centro and 
the Hachinohe GMs, respectively (similar trends hold for the other two GMs, not provided 
here for brevity). Specifically, response histories for various damping exponents and for 
both NTMDI implementations are plotted in Figs. 14 and 15, including the linear TMDI 
case (α = 1). The latter case has been extensively studied in the literature (e.g. Giaralis and 
Taflanidis 2018; Ruiz et  al. 2018; Taflanidis et  al. 2019), and is hereafter treated as the 
base-line case to draw comparisons with NTMDIs featuring NVDs with different damping 
exponents. Significant reduction to the NTMDI stroke and to the inerter forces are noted as 
the damping exponent takes on lower and lower values (α < 1), not only in terms of peak 
values, as seen in Table 2, but also throughout the duration of the response histories. At 
the same time, top floor response displacement histories do not change much, while the 
amplitude of damper force time-histories increase as α values lower, accomplishing a bet-
ter balanced set of NTMDI control forces exerted to the top floor (id = 9) of the case-study 
structure and to the ib floors, as previously discussed.

To gain a further appreciation on the importance of the above trends, Fig. 16 provides 
bar plots of all the peak response quantities included in Table 2 averaged across the GMs 
of the adopted benchmark structure and normalized to the base case of the linear TMDI 
(α = 1). It is confirmed that significant reductions are achieved in terms of peak stroke and 
peak inerter forces with little change to the average peak top floor displacement for NTMDI 
with α < 0.5 compared to the linear TMDI. Reduction of peak stroke is about 30% across 
the two NTMDI implementations, while reduction of peak inerter force is about 14%. 
Meanwhile, the average peak damper force increases appreciably such that the ratio of peak 
damping over inerter forces (rightmost bar plot in Fig. 16) increases with α which effec-
tively regulates the trade-off between the control forces for a given NTMDI connectivity.

Finally, the seismic performance of NTMDI with different NVD damping exponent 
is assessed in Fig.  17 in terms of peak absolute storey drifts and floor accelerations along 
the height of the benchmark building, averaged over the GMs in Fig. 13. Here, the provided 
plots are normalized by the peak top floor responses of the uncontrolled structure to further 
highlight the effectiveness of NTMDI for improving the seismic performance of buildings. 
It is found that optimal NTMDI achieves peak normalized responses below one for all NVD 
damping exponents with ib = 7 NTMDI configuration accomplishing consistently better per-
formance than the ib = 8 NTMDI configuration. Interestingly, peak floor accelerations in 
Fig. 17a are significantly more sensitive to the variation of the NVD damping exponent than 
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the storey drifts in Fig. 17b. For all the floors, better floor acceleration performance is achieved 
for damping exponent α < 1. Nevertheless, in many cases adopting a very low nonlinear damp-
ing exponent (i.e. α = 0.2 as opposed to α = 0.5) may be detrimental for floor accelerations. 
Therefore, caution needs to be exercised on the choice of the NVD exponent for applications 
that floor accelerations are an important design consideration (e.g. when potential seismic loss 
to secondary equipment and acceleration-sensitive non-structural components are expected to 
be critical). On the other hand, the NVD damping exponent has little influence in case storey-
drifts requirements dominate the seismic design and performance. In these cases, it is recom-
mended that the lowest possible damping exponent is adopted in the NTMDI design for all the 
previously discussed reasons in view of Fig. 16.

Fig. 14  Response time-histories of benchmark structure equipped with different optimal NTMDI under the 
El Centro GM: a and b Top floor displacement, c and d NTMDI stroke, e and f inerter force, g and h damp-
ing force
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8  Concluding remarks

Motivated by the fact that commercially available viscous dampers follow a nonlinear 
velocity-dependent power law, a comprehensive numerical investigation of the poten-
tial of the TMDI with NVD (NTMDI) for the seismic protection of multi-storey build-
ings has been herein undertaken, focusing on the effect of the NVD damping exponent. 
This has been supported by a novel computationally efficient tuning approach, yield-
ing optimal NTMDI frequency and nonlinear damping coefficient for any given NVD 
damping exponent. The tuning approach relies on a single-mode low-order modelling 
of NTMDI-equipped multi-storey buildings, accounting for any NTMDI configuration 
through a modal connectivity factor. Additionally, it employs an approximate statistical 
linearization technique for the efficient mathematical treatment of the nonlinear damp-
ing term. In this respect, Monte Carlo simulation based results were provided to estab-
lish the accuracy of statistical linearization to the optimal NTMDI tuning. Moreover, 

Fig. 15  Response time-histories of benchmark structure equipped with different optimal NTMDI under the 
Hachinohe GM: a and b Top floor displacement, c and d NTMDI stroke, e and f inerter force, g and h 
damping force
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for the special case of undamped primary structures, the optimal tuning parameters 
were derived in closed form and numerical data were furnished to explore the range of 
applicability of the analytical tuning for the class of lightly-damped primary/host build-
ing structures. Using the developed optimal NTMDI tuning approach, comprehensive 
parametric investigation was performed to gauge the effect of different structural sys-
tem and NTMDI parameters to the optimal NVD properties drawing comparisons with 
the NTMD case. A case-study application to a benchmark 9-storey steel structure has 
been further considered and the efficacy of optimal NTMDI potential has been assessed 
through nonlinear response history analyses applied to a MDOF model of the bench-
mark building equipped with optimal NTMDI.

The main conclusions of this study are as follows.

• Both the inertance and the modal connectivity factor have the same impact to the 
NVD optimal damping ratio for all practical ranges of the damping exponent. That 
is, for a < 0.5 the optimal nonlinear damping coefficient reduces compared to the 
optimal equivalent linear damping coefficient as inertance and/or modal connectivity 
increases, while the opposite happens for a > 1.

• The closed form optimal tuning expressions can be used for lightly damped systems of 
up to about 2% damping ratio, as long as the modal connectivity factor is less than 0.4.

Fig. 16  Peak response quantities of Table 2 normalized to the base-case of the linear TMDI (α = 1), aver-
aged over all GMs in Fig. 13
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• It is advantageous to adopt a low value for damping exponent (e.g. α < 0.2) since this 
reduces NTMDI stroke and inerter force, thus leading to a more balanced control force 
between damping force and inerter force with practically negligible change to the struc-
tural response performance.

Overall, it is expected that this work makes a further step to bringing inerter-based 
vibration control closer to practical applications in which the nonlinear behavior of the 
NVD may need to be considered in design and assessment.

Appendix

The displacement response variance �2
xid

 in Eq. (31) is derived by application of standard 
frequency domain linear random vibration analysis to the ELS in Eq. (11). First, the fre-
quency response function in terms of xid is obtained from Eq. (11) under the assumption of 
harmonic base excitation with frequency ω as

where i =
√
−1 , g = ω/ ωs, and Xid and YG are the Fourier transforms of xid and ÿG in terms 

of g. The constant coefficients in the denominator of Eq. (37) are given as

(37)
Xid(g)

YG(g)
/
�2
s

=
−g2b2 − igb1 − b0

a0 + iga1 − g2a2 − ig3a3 + g4a4

Fig. 17  Peak response quantities of optimal NTMDI-equipped case-study structure for various damping 
exponents averaged over all GMs in Fig. 13: a floor accelerations b storey-drifts
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and in the numerator as

Next, the response variance �2
xid

 is expressed as

from which Eq. (31) is derived after setting Sw = 1 (Newland 1993).
Similarly, the velocity response variance 𝜎2

ẋk
 in Eq. (35) is derived by obtaining first the fre-

quency response function in terms of ẋk from Eq. (11) under the assumption of harmonic base 
excitation as

where Ẋk is the Fourier transform of ẋk in terms of g and

Next, the response variance �2
xid

 is expressed as

from which Eq. (35) is derived after setting Sw = 1 (Newland 1993).
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