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Abstract
In seismic risk assessment, the sources of uncertainty associated with building exposure 
modelling have not received as much attention as other components related to hazard and 
vulnerability. Conventional practices such as assuming absolute portfolio compositions 
(i.e., proportions per building class) from expert-based assumptions over aggregated data 
crudely disregard the contribution of uncertainty of the exposure upon earthquake loss 
models. In this work, we introduce the concept that the degree of knowledge of a building 
stock can be described within a Bayesian probabilistic approach that integrates both expert-
based prior distributions and data collection on individual buildings. We investigate the 
impact of the epistemic uncertainty in the portfolio composition on scenario-based earth-
quake loss models through an exposure-oriented logic tree arrangement based on synthetic 
building portfolios. For illustrative purposes, we consider the residential building stock of 
Valparaíso (Chile) subjected to seismic ground-shaking from one subduction earthquake. 
We have found that building class reconnaissance, either from prior assumptions by desk-
top studies with aggregated data (top–down approach), or from building-by-building data 
collection (bottom–up approach), plays a fundamental role in the statistical modelling of 
exposure. To model the vulnerability of such a heterogeneous building stock, we require 
that their associated set of structural fragility functions handle multiple spectral periods. 
Thereby, we also discuss the relevance and specific uncertainty upon generating either 
uncorrelated or spatially cross-correlated ground motion fields within this framework. We 
successively show how various epistemic uncertainties embedded within these probabil-
istic exposure models are differently propagated throughout the computed direct financial 
losses. This work calls for further efforts to redesign desktop exposure studies, while also 
highlighting the importance of exposure data collection with standardized and iterative 
approaches.
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1  Introduction

Epistemic uncertainties stem from the incomplete knowledge of the actual problem and its 
parameters, or simply from, often unavoidable, modelling and methodology errors (e.g., 
Vamvatsikos et al. 2010). The performance of earthquake loss models for large-scale resi-
dential building portfolios under the influence of such epistemic uncertainties, which are 
related to the lack of data describing the exposure composition, is the central aspect of this 
work. Exposure refers to the number, type, and monetary value of the elements (e.g., build-
ings) that are under threat from natural hazards and are subjected to potential loss (e.g., 
UNISDR 2009). Together with the hazard and vulnerability components, the exposure con-
tributes to most quantitative risk assessment applications. In such studies, the degree of 
knowledge of the hazard and exposure components plays a fundamental role since their 
associated uncertainties are propagated to the final loss estimates. Therefore, accurate 
estimates of the expected spatial distribution of seismic ground-shaking intensities for an 
earthquake scenario, together with increasingly consistent classifications of the building 
stock into suitable building vulnerability classes, will provide more accurate central met-
rics and minimize the variance of the final loss estimates over an area of interest. Being 
able to track and disaggregate the influence of the hazard and exposure is a crucial factor 
for decision making, urban planning, and finance (e.g., the insurance industry). In the lat-
ter, the smaller the variation in the mean loss values, the lower the risk is perceived (Wes-
son and Perkins 2001).

In exposure modelling, the buildings are classified into vulnerability classes which ulti-
mately describe their expected susceptibility to damage. The vulnerability-class definition, 
therefore, links the hazard intensities to the expected damage based on a clear understand-
ing of the building’s structural and non-structural characteristics (e.g., Calvi et al. 2006). 
Porter et  al. (2002) showed that the influence of uncertainties in ground shaking on the 
overall uncertainty in the seismic performance of individual buildings (repair cost) is 
similar to the influence of uncertainty in the capacity of a building to resist the damage. 
However, for large-scale seismic risk, it has been conventionally assumed that the rela-
tive uncertainty associated with the definition of building classes and their relative propor-
tions contributes much less to the final loss estimates than the aleatory components of the 
risk processing chain (i.e., ground motion variability in seismic hazard). This has led to 
the general practice of assuming that the collection of building exposure data is not as 
worthwhile compared to the more detailed assessment of the hazard component (Crowley 
and Bommer 2006). This practice implies further community-accepted assumptions, such 
as supposing fixed proportions over aggregated data (i.e., census-based desktop studies), 
without exploring their underlying uncertainties. Only in recent times have a few studies 
pointed out the exposure uncertainty is an area that would particularly benefit from further 
assessment (Crowley 2014; Corbane et al. 2017; Silva et al. 2019). Under this framework, 
there are several components of epistemic uncertainty that need further exploration, such 
as the basic reconnaissance of the building classes and their location while gathering their 
attributes, as well as exploring sensitivities in loss outcomes if more than a single set of 
building classes is used. Therefore, the assessment of a selected set of taxonomic attributes 
within a statistical exposure model while investigating the uncertainty in the class assign-
ment and their effects on the loss estimates is a pathway worth exploring within a seismic 
risk framework.

This work describes how the epistemic uncertainty associated with defining a build-
ing exposure model is correlated with the variance in the loss estimates in earthquake 
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scenarios. First, we briefly describe the current practices and limitations in the current 
state of the art in building exposure modelling for seismic risk (Sect. 2). Subsequently, 
we present a method for exploring the epistemic uncertainty of the building exposure 
models in earthquake loss models (Sect.  3). As a premise, in this work the building 
exposure model is visualized under the scope of compositional theory within a Bayes-
ian framework in three stages: (1) statistical modelling based on the collection of data 
about a building’s attributes and the configuration of synthetic building portfolios; (2) 
a novel method for obtaining the probabilistic compatibility-levels between two sets of 
building classifications; (3) the novel proposal of an exposure-oriented logic-tree that 
propagates and disaggregates some of the components that contribute to uncertainty 
in the loss estimates. These steps are exemplified for the residential building stock of 
Valparaíso, Chile (Sect. 4), to investigate how their associated variability impacts upon 
estimates of direct financial losses arising from a subduction earthquake scenario, 
while also considering both uncorrelated and spatially cross-correlated ground motion 
fields (GMF).

2 � Current state of the art in building‑exposure modelling for seismic 
risk assessment

In classical exposure models for large-scale seismic risk assessment, only some basic 
attributes are used to classify a building stock (e.g., the material of the lateral load 
resistance system (LLRS), height, and age). To date, few efforts to explore the associ-
ated uncertainties in the exposure composition have been made. For instance, Crowley 
and Pinho (2004) considered the spatial variation in the individual attributes as being 
random and less than the uncertainty induced by grouping different individual build-
ings into a single typology. Crowley et  al. (2005) later showed that there is a great 
variability in the damage loss ratios imposed by grouping certain typologies in terms 
of storey ranges over a portfolio, even when the buildings are assumed to have other 
homogenous attributes (e.g., in terms of material of the LLRS). These simplifications 
have led to the practice of representing the epistemic uncertainty in the classification 
of buildings into predefined typologies as aleatory uncertainty. However, the same 
study also pointed out that detailed inspections to collect attributes of all the build-
ings in a study area would allow this uncertainty to be treated as epistemic. This is 
relevant considering that the location of specific building attributes are, in reality, not 
aleatory within a building stock (e.g., Dell’Acqua et al. 2013; Martínez-Cuevas et al. 
2017) and can affect their seismic vulnerability (Lagomarsino and Giovinazzi 2006). 
Unfortunately, considering the extent and the evolution of the built environment, a 
full enumeration of the taxonomic features of the assets is a highly time and resource-
intensive task, and often simply unfeasible (Pittore et al. 2017). Furthermore, the asso-
ciated complexity in the building classification would increase and will lead to a more 
extensive set of classes in comparison to the available set of fragility functions (Haas 
2018; Martins and Silva 2020). However, if only a sample of the building structures 
within the entire stock is inspected, the epistemic uncertainly associated with the class 
assignment in exposure models could be accounted for, allowing then the investigation 
of their impact upon earthquake loss models. For this aim, the use of taxonomies is a 
conventional practice to describe the built environment.
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2.1 � The use of taxonomies for building exposure modelling

2.1.1 � Risk‑oriented taxonomies: schemes

Buildings are grouped into categories with expected similar performance when sub-
jected to ground shaking. These categories are actually risk-oriented taxonomies which 
describe vulnerability classes with respect to a specific natural hazard and are described 
by a set of mutually exclusive, collectively exhaustive, building classes. To refer to 
such a set of building classes, we will be using the word “scheme”. Some of the most 
common schemes include the European Macroseismic Scale 1998 (EMS-98, Grünthal 
1998), the USA specific HAZUS model (FEMA 2003), and PAGER-STR (Jaiswal et al. 
2010). These schemes classify large-scale exposure models often based on census infor-
mation and are spatially aggregated over specific administrative units. Given the lack of 
local models, these taxonomies have been applied outside their original geographical 
scope. This is the case for HAZUS, which has been used to classify building stocks and 
to estimate losses in other geographical contexts (e.g., in Chile, Aguirre et  al. 2018). 
Similar practices have been reported using the EMS-98 risk-oriented taxonomy in Cen-
tral Asia (e.g., Bindi et al. 2011; Pilz et al. 2013).

2.1.2 � Faceted taxonomies: taxonomic attributes

Faceted taxonomies, by contrast, provide an exhaustive and structured sets of mutu-
ally exclusive and well-described attributes. These taxonomies allow the description 
of individual structures in a standard way and are largely independent of specific fra-
gility or vulnerability models. The most widely used and well-established example is 
the GEM Building Taxonomy (GEM v.2.0, Brzev et al. 2013). This taxonomy has been 
adapted for a multi-hazard-risk initiative (GED4ALL, Silva et al. 2018) and for classify-
ing structures with special occupancies, such as schools, to assess their seismic vulner-
ability within the Global Library of School Infrastructure project (GLOSI) outlined in 
D’Ayala et al. (2020). Every building class within a given risk-oriented taxonomy can be 
disaggregated into attributes within a faceted taxonomy. This has been described in Pit-
tore et al. (2018) and has been noted in Pavić et al. (2020).

2.2 � Exposure modelling methods for large area spatially distributed buildings

Regardless of the type of taxonomy (either risk-oriented or faceted), there are two con-
ventional methods for the exposure modelling of large-scale spatially distributed build-
ings: (1) a top–down approach, which involves the analysis of aggregated data (e.g., 
census data) through expert elicitation, and (2) a bottom–up approach, which uses indi-
vidual observations. These two approaches classify the building stock by addressing a 
double expert elicitation process:

(1)	 To classify the building inventory into assumed building classes within a given study 
area.

(2)	 To obtain the building exposure composition (i.e., proportions in every building class).
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These approaches are briefly explained hereafter. An innovative approach that dynami-
cally combines these through statistical analyses will be introduced and discussed later in 
this work.

2.2.1 � Top–down approach: building class from the analysis of aggregated data

Recently, the implementation of the GEM “mapping schemes” for the analysis of aggre-
gated data has been outlined in Yepes-Estrada et al. (2017) and further implemented in the 
European exposure model (Crowley et al. 2020) and the Global Seismic Risk model (Silva 
et al. 2020). These mapping schemes classify a building stock through desktop studies and 
expert elicitation with respect to earthquake vulnerability classes. Each class is described 
by selected attributes from the GEM v2.0 faceted taxonomy. They rely on available region-
ally aggregated data (e.g., region-specific census data) while addressing socioeconomic 
characteristics for dwellings and not at the building level (Crowley 2014). Since there 
might be only a few very useful attributes for physical vulnerability assessment, these map-
ping-schemas have been customized to include other attributes by defining covariate rela-
tions between census descriptors and expected proportions per building class to ultimately 
use a single set of typologies to represent a building stock (e.g., Acevedo et al. 2020; Dab-
beek and Silva 2020). Therefore, the variation of taxonomic attributes is still being treated 
as being random within an aleatory uncertainty framework instead of a reducible and track-
able epistemic uncertainty. Moreover, exposure models derived from purely top–down 
desktop studies neglect the temporal evolution of the ancillary data. Since census data are 
neither standard across regions nor in time (including possible changing data formats), 
once the mapping schema is used, the resultant exposure model would remain static until 
new census information is generated (Silva et  al. 2019). Recent discussions about epis-
temic uncertainties in regional exposure models have been presented by Kalakonas et al. 
(2020). These authors observed negligible differences in the loss estimates when alterna-
tive exposure compositions were compared within a sensitivity analysis for probabilistic 
risk assessment. Notably, recent studies have highlighted the importance of the statistical 
nature of the exposure models by forecasting its dynamic spatiotemporal evolution (Rivera 
et al. 2020; Calderón and Silva 2021) as well as counting with efficient techniques for their 
spatial aggregation (Dabbeek et al. 2021).

2.2.2 � Bottom–up approach: individual building observations

When the composition of the portfolio is expected to be heterogeneous, data collection of 
attributes over a selected sample of individual buildings is required to constrain and validate 
the underlying assumptions imposed by a top–down vision. Freely available data products 
such as OpenStreetMap (OSM) may offer some descriptors (occupancy or footprint shape) 
that have been proved to be useful for constructing large scale exposure models with particular 
occupancies (e.g., Sousa et al. 2017). However, due to the lack of standardized data formats, 
including vulnerability drivers’ attributes within harmonized data formats is still required by 
volunteer mapping initiatives to describe more robust schemes. This harmonization has been 
addressed by data standards with taxonomic attributes. This is the case for FEMA 154 (2002), 
the SASPARM 2.0 project (Grigoratos et  al. 2016), CARTIS (Polese et  al. 2020); and ini-
tiatives for data collection of post-earthquake damage such as AeDES (Baggio et al. 2007; 
Nicodemo et al. 2020). Recently, Kechidi et al. (2021) presented a comprehensive compari-
son between census-based (using mapping schemes) and survey-based (inspecting a sample) 
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exposure models for risk assessment. The authors highlighted that the accuracy of the risk 
estimates is directly correlated with the number of surveys within a given region.

2.2.3 � Dynamic building exposure modelling based on data collection and statistical 
analyses

Some studies have proposed the association between building characteristics (dynamically 
collected) and their related vulnerability classes through statistical modelling. These type of 
approaches were first exemplified by Pittore and Wieland (2013) who employed Bayesian net-
works, and by Riedel et al. (2015) who made use of machine learning techniques. Moreover, 
a dynamic building exposure modelling method with a probabilistic nature has been recently 
suggested by Pittore et al. (2020), where it was proposed to define the portfolio’s vulnerability 
classes in a top–down manner, while the expected frequency of the related classes was con-
strained through a bottom–up approach by integrating attribute-based data collection. To the 
best of the authors’ knowledge, these statistical models have not yet been exploited to inves-
tigate the epistemic uncertainties in building exposure model composition, nor its impact on 
loss estimates. A detailed exploration of the epistemic uncertainty carried by statistical build-
ing exposure models upon scenario-based loss estimates is introduced hereafter.

3 � Methodology

3.1 � Probabilistic—exposure models: a Bayesian formulation

The building portfolio configuration is conceptualized by compositional theory within a fully 
probabilistic Bayesian framework, as initially suggested by Pittore et al. (2020). First, we intro-
duce the concept of the likelihood function, followed by the assumptions on the prior and the 
posterior distributions within this context. This formulation considers risk-oriented schemes 
that contain a finite set of building classes and their associated fragility functions.

3.1.1 � The definition of the likelihood function: the intra‑scheme compatibility levels

A suitable scheme containing k risk-oriented building classes is selected for the area of inter-
est, where we assume some data has also been collected through surveying (evidence). Fol-
lowing the proposal of Pittore et  al. (2020), we assume that a sample of n =

{
n1,… , nk

}
 , ∑

k ni = N building types are observed, where ni is the number of specimens of building type 
i . We assume that the statistical population of buildings from which the observed sample is 
drawn is characterized by k typologies, whose frequencies are characterised by a proportion 
� =

{
�1,… , �k

}
 , �i > 0 ∀i and 

∑
k �k = 1 . Assuming a Multinomial sampling model, the prob-

ability of observing n conditionals on � is given by:

We assume that the set of observations given their proportions is the likelihood distri-
bution of the Bayesian formulation for building exposure modelling. This emerges natu-
rally considering the bottom–up data collection of individual attributes. Subsequently, 
every risk-oriented building class (k within a given scheme (e.g.,TA

k
 ) is translated into basic 

(1)p(n��) = Mul(n��) N!
∏k

i=1
ni!

k�

i=1

�
ni
k
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taxonomic attribute values {F}m offered by a faceted building taxonomy. This is expressed 
by Eq. 2.

Triangular fuzzy values are assigned through expert criteria to score the compatibility 
degree between the observed attribute values and every building class, as formulated in 
Pittore et al. (2018), to constrain the actual proportion of every class within the exposure 
model. Subsequently, the data collection over individual buildings are used in the class 
assignment. Every attribute type j has an associated numerical weight, wj , that acknowl-
edges their relevance to the vulnerability assessment as well as their ability to be satis-
factorily identified during the survey. By evaluating the compatibility degree between the 
observed building attributes and the building class, a transparent assignment of the most 
likely class within a fully probabilistic framework is achieved.

3.1.2 � Prior and posterior distributions

As formulated in Pittore et al. (2020), the expected proportion �i for every building class is 
treated as a Dirichlet-distributed random variable:

where � =
{
�1,… , �k

}
 , 𝛼i > 0,∀i with �0 =

∑k

i=1
�i being termed the concentration factor. 

The Dirichlet hyper parameter �i is factorized as a product of a proportion ( �k ) and a com-
mon concentration factor such as:

where �0 increases the virtual counts for the category k . By Bayes theorem, and since the 
prior Dirichlet is the conjugate prior for the Multinomial likelihood, the posterior probabil-
ity distribution of �i will also be a Dirichlet distribution that can be described in terms of 
the likelihood p(n|�) and prior p(�):

When the number of observations increases, the probability estimate is dominated by 
the Multinomial likelihood. Therefore, the expert-based priors will be increasingly super-
seded by real data as it is continuously captured during surveys.

3.1.3 � Synthetic building portfolios for a logic tree construction and spatial allocation

We propose to further characterise the prior and likelihood terms to obtain customized pos-
terior distributions with proportions that represent the building stock composition. This is 
done through a logic tree. A similar approach was suggested by Riga et al. (2017) to high-
light the uncertainties at the vulnerability level. Within our scope, we propose it as a tool 
for exploring the epistemic uncertainty in the portfolio composition. It has four complexity 
levels, namely:

(2)
∑

m

p
(
TA
k
|{F}m

)

(3)Dir(�) =
Γ(
∑k

i=1
�i)

∏k

i=1
Γ
�
�i

�
k�

i=1

�
�i−1

i

(4)�i = �k�o

(5)p(�|n) ∝ p(n|�)p(�)
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(1)	 The selection of the building class scheme (group of building classes).
(2)	 The selection of the numerical weight, wj (per attribute type j), which scores and ranks 

the relevance of every attribute type in the vulnerability assessment and their ability for 
assessment during surveys. The set of wj is called the ‘weighting arrangement” (W.A).

(3)	 The definition of a prior distribution which describes the initial guess about the compo-
sition of the building portfolio in the form of a Dirichlet distribution. This composition 
describes the representability of every building class in the area and is driven by data 
collection, expert criteria, or aggregated data (e.g., census).

(4)	 The selection of the hyper-parameter �0 (concentration factor(s)) of the conjugate poste-
rior Dirichlet distribution obtained from Eq. 5. This selection acknowledges the degree 
of trust in the former assumptions. Larger values ( �0 ~ 50) represents a higher level of 
knowledge give similar compositions (almost unanimous consensus) whilst smaller 
ones ( �0 ~ 1) means low information content and hence low knowledge of the portfolio 
composition that result in sparser distributions (Hastie et al. 2015). For each selected 
�0 , a number of samples must be selected to represent stochastic compositions within 
synthetic building portfolios.

With this formulation, we retain the statistical nature of the exposure modelling while 
overcoming the top–down vision of having a fixed composition. To spatially distribute every 
synthetic building portfolio, a dasymetric disaggregation from population counts is followed 
as proposed in Pittore et al. (2020). This approach is suitable for a differential spatial alloca-
tion of the synthetic building portfolios whose composition is being reconfigured with every 
sample. Population counts reported in any aggregated data source (e.g., LandScan; WorldPop; 
GPWv4) can be used.

It should be noted that the former steps regard the use of a single group of building classes 
(scheme TA

k
 ). However, for the exposure modeller, there might be more than one suitable 

scheme to describe the building stock of a given area (e.g., TB
j
) . Although subjective compat-

ibility relations between building classes contained in two different schemes have been already 
proposed (e.g., between HAZUS and EMS-98 in Hancilar et al. 2010), there is still the ques-
tion of how to obtain some of the basic metrics for this alternative exposure model TB

j
 (i.e., 

their proportions, average night-time residents, and replacement costs). This is not a trivial 
task since this information might be only available in terms of one reference scheme. Thereby, 
we propose to obtain these metrics for other suitable schemes through the formulation of prob-
abilistic inter-scheme compatibility matrices. This method is described in the following.

3.2 � Probabilistic inter‑scheme compatibility matrix

As presented in Eq. 2, we assume that each building class k within a given scheme ( TA
k
) can 

be disaggregated into observable taxonomic features of a faceted taxonomy {F}m . This pro-
cedure is also followed for the target scheme (TB

j
) of interest. A straightforward application 

of the total probability theorem and a probabilistic description of the building type in taxo-
nomic features allow us to define Eq. 6. This formulation allows us to obtain their probabil-
istic compatibility degree p

(
TA
k
|TB

j

)
 as a matrix.

(6)p
(
TA
k
|TB

j

)
=
∑

m

p
(
TA
k
|{F}m ∩ TB

j

)
p
(
{F}m|TB

j

)
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Since we assume that the representations of a building within the two considered 
schemes are conditionally independent ( ) given the information on taxonomical features, 
we can describe the source scheme ( TA

k
) as being modelled in terms of the taxonomic 

attributes that also compose the target-scheme ( TB
j
∶ , the former equation 

can also be expressed as a product, as expressed in Eq. 7.

We obtain a probabilistic representation of the compatibility degree across the two con-
sidered building classes in an alternative Bayesian formulation, as presented in Eq. 8.

Synthetic surveys based on the possible combinations of attributes that may describe 
every building class are input to solve the compatibility scores and are integrated through 
the selection of the weighting arrangement for every commonly considered attribute. ( wj , 
see Sect. 3.1.1). Using this matrix, we can obtain the missing normalized values (i.e., dis-
tribution of prior proportions) of the target scheme ({R}TB

j
) by simply applying a dot prod-

uct between the obtained matrix and the equivalent quantities of the source scheme 
( {R}TA

k
) , as illustrated in Eq. 9.

For non-normalized metrics (e.g., average night-time residents and replacement cost of 
every class), the associated value with the most compatible class of the source scheme ( TA

k
) 

is proposed to be selected. Examples of this procedure have been recently reported in Gomez-
Zapata et al. (2021a, c). Once we have the number of residents and prior compositions of the 
alternative portfolio, we can once again perform the formerly described dasymetric disaggrega-
tion procedure from population counts (end of Sect. 3.1.3) to obtain an exposure model for TB

j
.

3.3 � Scenario‑based earthquake risk assessment with spatially distributed ground 
motion fields

An earthquake scenario is selected for the construction of a seismic rupture and the 
simulation of spatially distributed ground motion from suitable ground motion predic-
tion equation(s) (GMPE). At least 1000 ground motion simulations must be computed 
for the considered earthquake rupture scenario to address its aleatory uncertainty (Silva 
2016). Each realisation generates a spatially and inter-period cross-correlated GMF that 
is estimated based upon the GMPE-based intra-event variance. The actual selection of the 
cross-correlation model (among the currently available ones) is naturally also subject to 
epistemic uncertainties and its study is beyond the scope of this work. It is important to 
generate spatially cross-correlated ground motion fields for the same intensity measures 
that are required by the fragility functions and its use is transversal to all the logic tree 
levels explained in Sect.  3.1.3 To complement the vulnerability analysis, a consequence 
model that includes the total replacement cost for the building class and their loss ratios for 

(7)

(8)p
(
TA
k
|TB

j

)
=
∑

m

p
(
TA
k
|{F}m

)
p
(
TB
j
|{F}m

)p
(
{F}m

)

p
(
TB
j

)

(9){R}TB
j
= p

(
TA
k
|TB

j

)
.{R}TA

k
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every damage state must be selected. The investigation of the epistemic uncertainties asso-
ciated with these choices is not within the scope of this work.

3.4 � Epistemic uncertainty exploration of the building exposure definition 
in earthquake loss models

Once all of the aforementioned components are gathered, each synthetic portfolio custom-
ised within the logic tree (Sect. 3.1.3) is used to investigate the impact of the differential 
building exposure composition on scenario-based earthquake loss models through Monte 
Carlo simulations. This allows us to differentially propagate and disaggregate the influ-
ence of each of the four components listed in Sect. 3.1.3. Sensitivity analyses are done to 
compare their respective loss estimates (replacement cost values) with each other and to 
explore their related individual uncertainties.

4 � Application

4.1 � Context of the study area: Valparaíso, Chile

The study area comprises the communes of Valparaíso and Viña del Mar (see Fig. 1). Hereaf-
ter, for simplicity, both communes will be called ‘Valparaíso’. It is the second-largest Chilean 
urban centre, with its port being the main container and passenger port in Chile and hence, is 
vital for the country’s economy. As described by Indirli et al. (2011), Valparaíso shows a very 
heterogeneous building inventory, with its historic district being declared a World Heritage 
Site by UNESCO in 2003 after recognizing its diverse urban layout and architecture (Jiménez 
et al. 2018). Notably, Geiß et al. (2017) investigated the usefulness of training segments from 
OSM data for exposure data extraction and modelling from satellite imagery for Valparaíso.

Fig. 1   Location of the study area within a Chile, b the communes of Valparaíso and Viña del Mar (red) 
within the Valparaíso Region, and c the locations of the 604 surveyed buildings. Map data: ©Google Earth 
2021
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The Central Chile area, and in particular Valparaíso, have been hit by powerful histori-
cal earthquakes. One of the few with a description is the 1906 earthquake, with an inferred 
magnitude of Mw 8.0–8.2 (Carvajal et al. 2017), which caused widespread damage (Mon-
tessus de Ballore 1914). In 1985, a Mw 8.0 event with an epicentre located just 120 km 
west of the city destroyed 70.000 houses and damaged an additional 140,000 dwellings, 
leaving 950,000 persons homeless, and caused losses of about $1.8 billion (Comte et al. 
1986). The 2010 Mw 8.8 earthquake caused structural damage to some buildings in Viña 
del Mar (de la Llera et al. 2017) and impacted the labour market recovery and the overall 
economy (Jiménez Martínez et al. 2020). Furthermore, recent seismic activity was noticed 
in the region during the 2017 Mw 6.9 event, which was triggered by a slow slip event 
and led to an important clustered aftershock sequence (Ruiz et al. 2017). It is notable that 
the MARVASTO project (Indirli et al. 2011) developed earthquake scenarios to obtain the 
expected seismic ground motions and the structural performance of three churches in the 
city. Nonetheless, to the best of the authors’ knowledge, no scenario describing seismic risk 
for the residential building stock of Valparaíso has been reported in the scientific literature.

4.2 � Probabilistic exposure model construction for Valparaíso

4.2.1 � The definition of the likelihood function: The intra‑scheme compatibility levels

Two earthquake-oriented schemes, namely SARA and HAZUS, have been considered to 
represent the building portfolio in Valparaíso. Both schemes have already been proposed 
for exposure modelling at the third administrative division, “commune”, in Chile in earlier 
works. SARA constitutes an effort to harmonize and define all the building types in the 
South American Andes region (GEM 2014), largely based on the World Housing Ency-
clopaedia reports (WHE 2014) through expert judgment that carefully designed local map-
ping-schemas at the country level (Yepes-Estrada et al. 2017). Thus, on the one hand, we 
can infer 17 SARA building classes for Valparaíso, combining the storey ranges when it 
was possible (Table  1). On the other hand, according to Aguirre et  al. (2018), HAZUS 
addresses 11 residential classes for another Chilean city with similar construction practices 
as Valparaíso (see Table 2). Short descriptions of the typologies enclosed in both schemes 
are provided in these two tables. Notably, SARA implies the assumption that the residen-
tial buildings in Chile can only comprise up to 19 storeys, does not include steel types, 
and only considers wall structure for reinforced concrete structures. The latter expert-based 
assumptions do not coincide with local studies for the city (e.g., Jiménez et al. 2018).

604 randomly distributed buildings in the urban area of Valparaíso (Fig.  1) were 
inspected by local structural engineers from the Chilean Research Centre for Integrated 
Disaster Risk Management (CIGIDEN) to test the actual plausibility of the selected 
schemes in the study area. To construct the customized likelihood terms that regard the 
building proportions of the surveyed sample, as presented in Sect. 3.1.1, the building stock 
is assumed to follow a Multinomial distribution. This data collection of their attribute val-
ues was done in terms of the GEM v.2.0 taxonomy through the RRVS web-platform (Haas 
et al. 2016) and is available in Merino-Peña et al. (2021).

Every building class in the two schemes is disaggregated into attribute types and values 
of the GEM v.2.0 taxonomy. The corresponding fuzzy compatibility levels between the 
attribute values and building classes are assigned through expert elicitation (see Sect. 3.1.1 
as proposed in Pittore et  al. 2018). Their graphical representation is depicted in Fig.  2. 
The complete description of these taxonomic attributes can be found in the web version 
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of the Glossary for GEM taxonomy (https://​taxon​omy.​openq​uake.​org/). Descriptions of 
the HAZUS typologies in terms of the GEM v.2.0 taxonomy are available in https://​platf​
orm.​openq​uake.​org/​vulne​rabil​ity/​list as part of the initiative started by Yepes-Estrada et al. 
(2016). A python code to generate these schemes in JSON format along with these figures 
has been made available in Gomez-Zapata et al. (2021b).

As outlined in Sect. 3.1.1, numerical weights to rank the importance of the considered 
taxonomic attribute types are required. This selection is based on expert elicitation and 
carries epistemic uncertainties. For SARA and HAZUS, four common attribute types are 
selected for two weighting arrangements, W.A-1 and W.A-2, as depicted in Table 3 (Fig. 3).

Subsequently, the observed attribute values over the surveyed building sample are clas-
sified using the two selected weighting arrangements. This process leads to different build-
ing typology distributions, as shown in Fig. 4. This is because the LLRS ductility was, in 
most of the cases, not correctly assigned during the surveys, resulting in the misidentifica-
tion of unreinforced (W.A-1) and reinforced structures (W.A-2).

4.2.2 � Prior and posterior distributions

Priors have been considered as (1) informative if the portfolio composition is derived from 
expert elicitation (GEM 2014) and (2) uninformative if the portfolio has equal proportions 
per class. Since informative prior proportions, average night-time occupancy, and replace-
ment costs are only known for the source scheme SARA (Table 1), we follow the method 
presented in Sect.  3.2 (inter-scheme compatibility matrix) to obtain these quantities for 
HAZUS (target scheme). This is obtained by generating all possible combinations of attrib-
ute values per scheme (see the horizontal axis of Fig. 2). The two sets of weights reported 
in Table 3 are used to obtain the inter-scheme compatibility matrices presented in Fig. 5. 
The scripts and related inputs to produce these two matrices are provided in Gomez-Zapata 
et al. (2021b). The application of Eq. 9 allows us to obtain the two sets of informative pri-
ors’ proportions for the HAZUS building classes that are reported in Table 4.

Table  4 also reports the replacement costs and night-time residents for each of the 
HAZUS target classes. These quantities are assigned from the SARA source class with the 
largest compatibility in the inter-scheme compatibility matrices. Therefore, identical values 

Table 2   Building classes and short description of the HAZUS scheme (FEMA, 2012) proposed for Val-
paraíso

HAZUS building class Description

W1 Wood, light frame < 5000 sq. ft2. (~ 465 m2), between 1–2 stories
S2L Steel braced frame, between 1–3 stories
S3 Steel light frame. Does not specify a storey range
S5H Steel frame, unreinforced masonry infill walls, high rise
C2L RC shear walls, between 1–3 stories
C2M RC shear walls, between 4–7 stories
C2H RC shear walls, high rise
C3L RC frame buildings, unreinforced masonry infill walls, between 1–3 stories
RM1L Reinforced masonry walls; wood or metal deck diaphragms, 1–3 stories
RM1M Reinforced masonry walls; wood or metal deck diaphragms, 4–7 stories
URML Unreinforced masonry bearing walls, between 1–3 stories

https://taxonomy.openquake.org/
https://platform.openquake.org/vulnerability/list
https://platform.openquake.org/vulnerability/list
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Fig. 2   Graphical representation of the a SARA and b HAZUS building classes. The colours encode the 
compatibility value with extremes in red and blue, representing high and low compatibilities, respectively. 
Grey indicates neutral and white refers to no explicit compatibility value being assigned

Table 3   Sets of weighting 
arrangements that score the 
common attribute types of the 
SARA and HAZUS schemes

Taxonomic attribute W.A-1 W.A-2

Material type 0.40 0.30
Material technology 0.10 0.10
LLRS (lateral load resistance 

system)
0.15 0.20

LLRS ductility 0.25 0.10
Storey range 0.10 0.30
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of replacement costs and night-time residents are obtained across the HAZUS scheme for 
both W.A-1 and W.A-2, except for the classes C3L, RM1L, RM1M, and URML.

Fig. 3   Pictures of some selected buildings’ façades surveyed in Valparaíso. Their classifications in terms 
of the SARA and HAZUS schemes are displayed considering the two weighting arrangements presented 
in Table 3. No distinction is made when both weights led to the same class. ©Google Street View, digital 
images, 2021

Fig. 4   Distributions of the most likely vulnerability classes of the 604 buildings surveyed in Valparaíso. 
This was achieved by evaluating the compatibility levels between the observed taxonomic building attrib-
utes and the typologies within each scheme: a SARA and b HAZUS. For each scheme we consider the two 
weighting arrangements (W.A-1, W.A-2) presented in Table 3
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Once we have obtained the prior and likelihood terms for every building class, the poste-
rior distributions are constructed following Eq. 5 and are shown in Fig. 6. Since the assign-
ment of priors through expert elicitation has been at the commune level (GEM 2014), the 
obtained posterior distributions are up-scaled to represent different exposure models with 
various building compositions in Valparaíso.

Fig. 5   Inter-scheme compatibility matrices for SARA (source) and HAZUS (target) for the residential 
building stock of Valparaíso. They are obtained from the weighting arrangements a W.A-1 and b W.A-2 for 
their common attributes (Table 3)

Table 4   Building classes in terms of the HAZUS scheme proposed for Valparaíso together with the prior 
proportions per building class; obtained from the inter-scheme compatibility matrices shown in Fig. 5

Two sets of average night-time residents (Res /bdg.) and replacement cost (Repl. Cost (USD/bdg.) are pro-
vided. They are assumed to be the same as the highest compatibility score with respect to a class of SARA 
from every inter-scheme compatibility matrix displayed in Fig. 5

HAZUS 
building 
class

W.A-1 W.A-2

Prior prop Res. /bdg Repl. Cost (USD/bdg) Prior prop Res. /bdg Repl. Cost (USD/bdg.)

W1 0.384 4 43,750 0.204 4 43,750
S2L 0.039 15 336,000 0.091 15 336,000
S3 0.044 54 1,260,000 0.061 54 1,260,000
S5H 0.033 173 4,032,000 0.026 173 4,032,000
C2L 0.046 18 336,000 0.114 18 336,000
C2M 0.028 54 1,260,000 0.022 54 1,260,000
C2H 0.027 173 4,032,000 0.021 173 4,032,000
C3L 0.033 14 288,000 0.100 15 336,000
RM1L 0.112 18 360,000 0.120 18 420,000
RM1M 0.094 18 360,000 0.046 54 1,080,000
URML 0.160 5 43,750 0.196 6 52,500

∑ 1.0 ∑ 1.0
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4.2.3 � Synthetic building portfolios for a logic tree construction and spatial allocation

Each of the four types of posterior distributions per considered scheme are explored by 
considering three concentration factors ( �o ), namely: �01 = 1.0; �02 = 15, and �03 = 50 (see 
Eq. 4). They describe three different degrees of confidence in the assumptions beneath the 
construction of the posterior distribution: very low, moderate, and very high, respectively. 
Since we assume conjugacy (Eq.  5), we generate 300 random samples from the twelve 
Dirichlet posterior distributions per scheme. Each of these samples represents a synthetic 
building portfolio. They can also be interpreted as 300 different criteria (e.g., a pool of 
virtual experts) regarding the portfolio composition: very divergent opinions, moderately 
similar, and very similar, with respect to the average proportions in the posteriors. A logic 
tree with four branches was ultimately constructed, as shown in Fig. 7.

Dasymetric disaggregation of the gridded population product GPWv4, with a 30 arc-
second grid resolution model and population projections for 2020 (CIESIN 2018) was car-
ried out to obtain the spatial distribution of the building counts per synthetic buildings 
portfolio. For this process, we have used the occupancy (residents per building class) of the 
SARA (Table 1) and HAZUS schemes (Table 4).

The corresponding expected total building counts in terms of SARA and HAZUS 
schemes assuming equally composed portfolios, as well as expert-based are shown in the 
first column of Fig. 8. Since the number of residents in every HAZUS building class is dif-
ferent for W.A-1 and W.A-2, the building counts vary accordingly. It can be seen that in the 
top–down approach, the total building counts in Valparaíso are almost identical, regardless 
of the scheme implemented. The plots in the other four columns of Fig. 8 display the asso-
ciated variabilities in the estimations of the total number of buildings for the synthetic port-
folios constructed from the 300 samples. Regardless of the scheme used, it is evident that 
the total building counts from synthetic portfolios obtained from posterior distributions 
with flat priors present a much lower variability than their counterparts with informative 
priors. Of course, results assuming equally composed portfolios from prior distributions 

Fig. 6   Posterior distributions obtained for the a SARA and b HAZUS schemes for the 604 inspected build-
ing surveyed in Valparaíso while considering different weighting arrangements (W.A.) and flat and informa-
tive priors
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are not realistic for our study area. These related subplots are only shown to raise aware-
ness that a careful first assumption on the prior is vital, otherwise the next step (defin-
ing �0 ) may lead to very different building proportions with respect to the ones based on 
informative assumptions (e.g., expert-based).

Moreover, it is interesting that when both informative priors and �0 = 50 (high degree 
of confidence) are jointly addressed, the resultant variability in the building counts pro-
vide a range that contains the value of the unique composition that was assigned by the 
top–down approach. This type of similarity is more evident in the HAZUS scheme, whilst 
a larger variability appears in the SARA scheme. This might be due to the comparatively 
larger sensitivity of SARA to the individual building assessment during the surveys (in 
terms of the weighting arrangement, see Fig. 4) which also impacted upon the construc-
tion of their respective likelihood distributions. Also, for both schemes, we observe that 
the selection of W.A-2 imposes a larger number of observations of ductile buildings (with 
a larger number of residents, see Tables 1 and 4). Therefore, there is a consequent reduc-
tion in the variance of building counts when these distributions are obtained from W.A-2 in 
comparison to when they are generated using W.A-1. The reduction in this variability does 

Fig. 7   Logic tree with four levels constructed to explore the impact of the building exposure composition 
modelling in Valparaíso. The twelve branches result from every considered scheme. The entire one is shown 
only for SARA, however, the same procedure has been carried out for HAZUS
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not necessarily mean that the third boxplot in Fig. 8j better represents the entire building 
counts for the exposure model of Valparaíso than its counterpart in Fig. 8h. Rather, it is 
pointing to the underlying assumptions in deriving total building counts from dasymetric 
disaggregation, fully relying on top–down approaches (without integrating any evidence). 
Instead of having a fixed total buildings count (Fig.  8a, f), we are obtaining a range of 
total building count values whose variation is consistent with prior assumptions and obser-
vations (third boxplots in Fig. 8c, e, j, and h). These ranges are also consistent with the 
degree of variation observed in Geiß et al. (2017), that assessed the likely range of building 
counts for Valparaíso (i.e., 64,803–72,412 building units) by a combination of remote sens-
ing data products and OpenStreetMap building footprints.

4.3 � Scenario‑based earthquake risk assessment with spatially distributed ground 
motion fields

An earthquake scenario with a magnitude Mw 8.2, similar to the 1906 Valparaíso event, 
is used throughout this example. Given the lack of instrumentation at that time, its exact 
location and other parameters are uncertain. A finite fault model was generated mak-
ing use of the OpenQuake Engine (Pagani et  al. 2014). The basic parameters used in 
the simulations are: hypocentral location (longitude = −  72.25°; latitude = −  33.88°; 
depth = 28  km), strike = 9°, dip = 18°, and rake = 90°. The spatial distribution of the 
expected ground motion values is modelled using the GMPE developed for the Chilean 
inter-plate subduction area reported in Montalva et al. (2017). This GMPE considers in 

Fig. 8   Dependency between the portfolio composition and the spread of the estimated total building counts 
(from dasymetric disaggregation of the population and occupancy). The subplots on the first column (top–
down approach) comprises a single value of expected building counts either equally composed (i.e., with 
equal proportions) or as defined by the SARA model (GEM 2014) and the respective weighting arrange-
ments. The distributions presented in the other subplots correspond to every case of the logic tree depicted 
in Fig. 7
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the “site” term the shear wave velocity in the uppermost 30 m depth (Vs30). We used the 
topography-based Vs30 values (Allen and Wald 2007) and replaced them when possible 
with the seismic microzonation study reported in Mendoza et al. (2018). The final Vs30 
gridded values are displayed in Fig. 9.

As a first step, we generate the GMPE-based median ground motion fields (GMF) for 
PGA; S.A. (0.3 s); S.A. (1.0 s) for the selected earthquake scenario. They are shown in 
Fig.  10a–c, respectively. To account for spatial variability, we follow two approaches 
where we generate these fields: (1) uncorrelated random fields (No Corr) and (2) spa-
tially and inter-period cross-correlated random fields using the Markhvida et al. (2018) 
cross-correlation model (Corr). The aleatory uncertainty in the simulated ground motion 
has been addressed by generating 1000 realisations in every case. Single realisations of 
cross-correlated GMF per spectral acceleration are shown for the study are (Fig. 10d–f).

The selection of the aforementioned GMFs is related to the IM required by the SARA 
fragility functions (Villar-Vega et al. (2017). It should be noted that, although HAZUS 
(FEMA 2012) provides fragility functions at the fundamental period of the structure, 
we have considered the common assumption of using PGA as the only IM for the entire 
set of curves (e.g., Aguirre et al. 2018). The seismic design standard for moderate-code 
(MC) is selected for the HAZUS classes for which this category is available (i.e., 8 
types out of 11) and low-code (LC) is assumed for the remaining 3 types (S5H, C3L, 
and URML). This decision stems from the fact that the construction of most of the cur-
rently inhabitable residential buildings in Valparaíso took place between the establish-
ment of two major Chilean seismic codes (NCh433 Of.72, INITN 1972, and NCh433 
Of.96, INN 1996). Their development was motivated by the 1960 Mw 9.5 Valdivia 
earthquake and the 1985 Mw 8.0 Valparaíso earthquake respectively.

The consequence model for vulnerability assessment is complemented with the selec-
tion of loss ratios. For the four damage states considered by these two sets of fragility mod-
els, we assume loss ratios of 2%, 10%, 50%, and 100% of their replacement costs (Tables 1, 
4). Similar loss ratios have been recently proposed for generic seismic risk applications 
(e.g., Martins and Silva 2020). A sensitivity analysis of this selection is out of the scope of 
this study.

Fig. 9   Left: distribution of the slope-based Vs30 values in Central Chile (Allen and Wald 2007) as provided 
by the USGS. Right: refined values within the study area using the former and the seismic microzonation 
reported in Mendoza et al. (2018)
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4.4 � Results: epistemic uncertainty of exposure compositions in seismic risk 
scenario

The influence of the epistemic uncertainty in the residential building portfolio composition 
of Valparaíso to loss assessment is carried out while performing a sensitivity analysis for 
the selected earthquake scenario (Mw 8.2) and the various exposure compositions consid-
ered. Two comparisons are presented:

(1)	 The direct financial losses are computed only for the portfolios whose composition is 
given by the posterior distributions (Fig. 6), and whose median building counts are 
given by the value in red on the boxplots when �0 ~ 50 in Fig. 8). These results are 
reported in Fig. 11.

(2)	 The direct financial losses for every complete distribution of Fig. 8 are computed, and 
their results are presented in the form of normalized loss exceedance curves (LEC).

Figure  11 also shows the overall variability in the losses imposed by the epistemic 
uncertainty related to the consideration of using or not spatially cross-correlated GMF. 
There is a very low variability in the resulting losses when 1000 uncorrelated GMF were 
generated (No Corr). In fact, for such a dense, spatially aggregated building portfolio, the 

Fig. 10   First row: median values of the Mw 8.2 earthquake rupture for three IMs a PGA, b S.A. (0.3 s), and 
c S.A. (1.0 s) using the Montalva et al. (2017) GMPE. The earthquake hypocentre is depicted by a white 
square. The rupture plane is displayed by a green rectangle. The study area is shown by a yellow square. 
Second row: details of the study area with a single realisation of the cross-correlated seismic GMF for their 
corresponding spectral periods using the Markhvida et al. (2018) model
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effect of spatially uncorrelated variations in the ground motion will eventually average out, 
leading to very little dispersion in the loss estimates. Similar evidence on the impact of cor-
relation models and the size of the building portfolios have been noted by other researchers 
(i.e., Bazzurro and Luco 2005; Sousa et al. 2018; Silva 2019). Figure 11 also shows that, 
for a single composition, using either cross-correlated GMF (for SARA) or only spatially 
correlated GMF (for HAZUS), similar uncertainty ranges are expected. A similar feature 
was noted by Michel et al. (2017) performing sensitivity analyses to the IM of the fragility 
functions for various spatially correlated GMF.

Subsequently, we present loss exceedance curves (LEC) from the earthquake scenario 
considering the SARA and HAZUS schemes for the complete distribution of building 
counts presented in Fig. 8. They are illustrated in Figs. 12 and 13, respectively. They are 
obtained considering the 300 synthetic portfolios for each of the 12 posteriors distributions 
as presented in Fig. 7. LEC are displayed in blue if cross-correlated GMF were addressed 
and in yellow considering spatially uncorrelated GMF. There are another three sets of LEC 
included in each subplot:

(1)	 A pair of curves that represent the direct losses obtained from a unique composition 
according to the joint expert elicitation at the Commune level (GEM 2014) and the use 
of mapping-schemas over census data (Yepes-Estrada et al. 2017). They are coloured 

Fig. 11   Comparison of the scenario-based direct financial losses (USD) on the residential building stock in 
Valparaíso considering SARA and HAZUS (moderate code) using the 1000 GMF for each case: with a spa-
tially cross-correlation model (Corr.) and spatially uncorrelated (No Corr.). Different portfolio compositions 
are considered: top–down vision and expert elicitation (first column), equally composed portfolios (second 
one), and the customized posterior distributions of Fig. 6
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in purple when cross-correlated GMF are accounted for and in red when spatially 
uncorrelated GMFs were not addressed.

(2)	 A pair of curves generated considering the portfolio composition, as described by the 
posterior distributions (Fig. 6), are represented by non-continuous white curves.

(3)	 A pair of curves while foreseeing the portfolio with equally composed proportions are 
shown by black curves.

The white and black curves have not been distinguished by colours on whether spa-
tially cross-correlated GMF are or not included. Nonetheless, when they were addressed, 
these two sets of curves are always within the range of the blue and the purple curves (i.e., 
smoother shape and shorter initial plateau). Similarly, when spatially uncorrelated GMF 
are accounted for, they fall within the range of the yellow and red curves (sharper shapes). 
A decision to normalise the direct financial losses (repair cost) in all LEC results with 
respect to the maximum loss values obtained from the use of GMF with spatially uncor-
related residuals has been taken. Then, the metric in these two plots is the “normalized 
number of losses”. This decision is supported by the work of Vamvatsikos et  al. (2010) 
who argued that, due to continuously evolving exposure over time and location, erroneous 
physical damage predictions can arise if the losses are shown as absolute instead of nor-
malized. This procedure is useful to compare the uncertainties that arise from the different 
exposure composed by synthetic portfolios.

The axes are not identical for the SARA (Fig. 12) and HAZUS (Fig. 13) results. For 
the latter, the horizontal axis starts at 0.7 to graphically highlight some differences. These 
curves are the joint result of the epistemic uncertainty in the selection of the basic scheme 
(set of buildings), its degree of confidence, the IM of the fragility functions and whether 
using a correlation model or not. The role of these involved components within this seismic 
risk modelling exercise is discussed separately hereafter.

4.4.1 � The role of the concentration factor ̨
0

The plots in the first column of Fig.  12 (SARA) and Fig.  13 (HAZUS) show a greater 
dispersion (and therefore uncertainty in the results) when �01=1.0 is addressed. This repre-
sents a lower degree of confidence in the portfolio compositions which is perceived as an 
“increased spread” around the mean value. This variability decreases for �02 = 15 (inter-
mediate degree of confidence) in the second column, being the lowest when �03 = 50 is 
considered (third column), which simulates very similar compositions as the customized 
posterior distributions (an almost unanimous consensus on the portfolio composition).

4.4.2 � The role of the identification of buildings attributes (evidence) in the likelihood 
term.

The selection of the numerical weight, wj , which score and integrate the taxonomic attrib-
ute types, and that together with the collected data evidence construct the likelihood term 
(see Sect.  3.1.1), does not show a relatively large impact on the resultant LEC for the 
SARA scheme. This could be inferred from Fig. 6 where the weighting arrangement did 
not impose such a large difference upon the construction of posterior distributions as the 
prior definition did. Nonetheless, these weights did heavily impact upon the construction 
of the inter-scheme compatibility matrices for HAZUS (Fig. 5). The former ones are used 
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to obtain the informative prior and replacement costs for HAZUS (see Table 4), and hence 
also impacted upon their respective loss estimates. This feature is evident in the different 
importance assigned to the ductility level (Table 3) which led to the assignment of a larger 
proportion of non-ductile building classes for W.A-1 (Fig.  4). This is also linked to the 
fact that the fragility functions of W.A-1 driven classes (non-ductile: DNO), require lower 
acceleration values to reach the same damage state than the W.A-2 driven classes (ductile: 
DUC) (e.g., MCF-DNO-H1-3 vs. MCF-DUC-H1-3 in SARA; and URML vs. RM1L in 
HAZUS).

Fig. 12   Normalized loss exceedance curves (LEC) for different exposure compositions as depicted in the 
logic tree (Fig. 7) for the SARA scheme. Curves are displayed in blue if the ground motion cross-corre-
lation model was addressed and in yellow with spatially uncorrelated ground motions. LEC from their 
respective customized posterior distributions are displayed in non-continuous white curves. The single com-
position vision as informative priors (as defined by GEM) are depicted in purple when the spatially cross-
correlated GMF were addressed and in red with spatially uncorrelated GMF. Black curves represent the 
losses of a portfolio whose composition is assumed to have equal proportions
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4.4.3 � The role of the selection of the prior distribution type

LEC obtained from posterior distributions which were constrained using a flat prior (non-
continuous white curves in the first and third rows) always led to lower values than assum-
ing equally composed portfolios (respective black curves) and assuming unique top–down 
vision using the GEM mapping-schemes (purple and red curves). Posteriors created with 
flat priors tend to concentrate lower loss values at the lowest probabilities of exceedance 
(p.o.e). The opposite is observed when informative priors are addressed. Since for both 
types of posteriors there was an incorporation of evidence (surveys) into the construction 

Fig. 13   Normalized loss exceedance curves (LEC) for different exposure compositions as depicted in the 
logic tree (Fig. 7) for the HAZUS scheme. Curves are displayed in blue if the ground motion cross-cor-
relation model was addressed and in yellow with spatially uncorrelated ground motions. LEC from their 
respective customized posterior distributions are displayed in non-continuous white curves. The single com-
position vision as informative priors (from the inter-scheme conversion matrices in Fig.  5) are depicted 
in purple when the spatially cross-correlated GMF were addressed and in red with spatially uncorrelated 
GMF. In every plot, the LEC values from their respective posterior distributions are displayed in non-con-
tinuous white curves. Black curves represent the losses of a portfolio whose class composition is assumed 
to have equal proportions
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of the likelihood term, these differences come from the selection of the type of prior (unin-
formative vs. informative). Similar features could be observed in Fig. 6 where flat priors 
largely impacted upon the creation of the posterior distributions. We recall once again that 
flat priors are only introduced herein for illustrative purposes and their use is never recom-
mended. The greater dispersion in SARA’s LEC might be due to the joint effect of the 
prior definition and the variability induced by using the cross-correlation model for the 
GMF generated for the three spectral periods required by SARA. This aspect is discussed 
hereafter.

4.4.4 � The role of the spatially cross‑correlated ground motion residuals

Regardless of the building portfolio composition, when the cross-correlation model is con-
sidered, their corresponding LEC shows a greater variability. This is not surprising and is 
aligned with the findings of Crowley et al. (2008) in relation to the log-normal distribution 
of the seismic ground motion induced by the GMPE. Moreover, considering that the spatial 
correlation of ground motion IMs decreases rapidly with distance (e.g., Schiappapietra and 
Douglas 2020), its effect on loss-estimations is maximized when it is applied to a dense 
and large exposure model such as ours (aggregated building portfolio on a 1 km × 1 km 
grid), since buildings within a grid cell are treated as if the inter-station distance was zero. 
Moreover, because we have utilised the HAZUS fragility functions as functions of the 
structural demand for a single intensity (PGA), in reality only the spatially cross-correlated 
GMFs for PGA are utilised for that scheme. This leads to a comparatively lower variability 
in the HAZUS’ LEC that only starts to be perceptible, for greater p.o.e, at significantly 
larger values of their normalized metric (i.e., 0.7). Interestingly, whether we decide to use 
spatially uncorrelated or cross-correlated GMF, when we employ a single IM in the vul-
nerability analyses, as assumed for HAZUS, we observe that as the level of knowledge in 
the exposure composition increases (with increasing �0 ), the bias in the LEC (made up of 
the stochastic portfolios) is accordingly reduced. Contrary, this point of convergence with 
respect to the composition of each posterior distribution is never reached by the SARA’s 
LEC.

Considering that PGA alone is not a sufficient IM to model the various structural fragil-
ity functions that a real heterogeneous building portfolio requires (Luco and Cornell 2007), 
when we decide to use more realistic fragility functions for the heterogeneous portfolio, the 
spatial variation in the ground motion places a lower limit on the uncertainty in the loss 
estimates that cannot be entirely reduced (Bal et al. 2010; Michel et al. 2017). This remain-
ing embedded uncertainty in the loss estimations will be present even when the composi-
tion of the building portfolio is well known (i.e., �03 = 50 ). We remark that in this study, 
the variability in the GMF is brought by the selection of using (or not) a correlation model, 
and not by employing various GMPE, as more conventional sensitivity analyses apply. A 
note about this aspect is presented in the discussion section.

Furthermore, in Fig.  14 we present normalized loss curves using the results 
obtained from the top–down assumption (single exposure composition) and without 
correlation per scheme. This benchmark (black dashed line) is used not because it is 
the most acceptable model, but because it is the most conventionally used in standard 
approaches (see Sect.  2.2.1). Only posterior distributions designed with informative 
priors and with W.A-2 (for ductile structures in the surveys) are used and are shown 
by purple lines. Blue lines represent the stochastic portfolios either with �02 = 15 or 
�03

= 50 . As expected, it can also be seen that as �0 increases, there is a continuous 
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reduction in the biases. For similar �0 , we see the larger variability in the normalized 
loss given by the posterior proportions of SARA in comparison with HAZUS. This 
once again shows the impact of the cross-correlated GMF.

Figure  15a displays the sensitivity resulting from the selection of the weighting 
arrangement ( wj ) for both schemes. Its benchmark is the HAZUS loss curve which was 
obtained by assuming the portfolio composition as the posterior proportion for W.A-1 
(Fig. 6) and with spatially cross-correlated GMF. Similarly, as shown in Fig. 11, the 
largest values are obtained for HAZUS with W.A-2. Figure 15-b shows the impact of 
foreseeing the portfolio composition either exclusively from a top–down vision (Prior) 
or when the evidence from surveys is included (Post.). Its benchmark is the HAZUS 
loss curve assuming a portfolio that is entirely composed as the prior proportion for 
W.A-1 (Table  4) and with spatially cross-correlated GMF. Although the posterior 
always led to larger losses, it is noted that such differences are comparative lower for 
SARA than for HAZUS. Interestingly, in both figures, we observe that for the HAZUS 
model, the spatially correlated GMF for PGA used by its fragility functions led to cer-
tain variations around the same value with respect to the benchmark, but still consider-
ably lower than using uncorrelated random residuals.

Fig. 14   Normalized losses a, b SARA and c, d HAZUS schemes for the exposure compositions in Val-
paraíso for two selected �0 values. The loss curve from the top–down assumption (from expert-based priors) 
is used as benchmark
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5 � Discussion and future outlook

In this study we have considered that, within a Bayesian approach for exposure model-
ling, the Dirichlet distribution is suitable for representing the composition (i.e., the rela-
tive proportions) of spatially distributed residential building portfolios. To consider the 
integration of empirical (e.g., field-based) observations into the model, we have assumed 
the likelihood term to follow a multinomial distribution. Due to conjugacy of multinomial 
and Dirichlet distributions, prior and posterior are both Dirichlet distributions that differ 
only by the empirical contribution inferred from the frequency observed in the field. It is 
also worth pointing out that this data collection does not need to be exclusively derived 
from surveys (as herein exemplified), but complementary exploiting emerging technolo-
gies such as remote sensing and image reconnaissance for exposure modelling (e.g., Liuzzi 
et al. 2019; Torres et al. 2019). Furthermore, we have proposed to factorize the Dirichlet 
hyperparameter �i through the so-called concentration factor, �0 , that “weights” and adjusts 
the prior proportions to the observed frequencies. This parameter is useful for describing 
the extent of confidence in the building portfolio’s initial assumptions while still lacking a 
consistent number of empirical observations. With the increase in the number of observa-
tions, the influence of the concentration factor on the posterior distribution will promptly 
decrease.

In such a probabilistic framework, we have proposed to arrange the components involved 
into a logic tree approach (Fig. 7). It has allowed us to explore individually how the related 
uncertainty to their individual components are propagated throughout scenario-based seis-
mic risk and ultimately be reflected in the biases of the direct loss estimates (replacement 

Fig. 15   Normalized losses for the earthquake scenario in Valparaiso for SARA and HAZUS schemes. Plots 
show sensitivity on a the selection of the weighting arrangement ( wj ), and b the portfolio composition, 
either from a top–down vision (Prior) or including surveyed evidence (Post.). The normalization nomencla-
ture (i.e., || ||) is used to distinguish the benchmarks
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cost). For the sake of simplicity in illustrating the proposed approach, we have considered 
only some uncertainties in the parameters employed throughout its development. Thus, the 
application part of this work has several limitations that are clearly beyond its scope. How-
ever, they could be addressed in future research. We list some of them hereafter.

•	 The fixed number of population counts projected for 2020 reported by GPWv4 
(CIESIN 2018) was spatially disaggregated to estimate the distribution of total building 
counts per stochastic exposure model (Fig. 8). This was based on the average number 
of night-time residents (for each building class) that we have assumed to be statistical 
values. However, accounting population projections as well as the number of inhabit-
ants per building as random variables that may follow local distributions (e.g., Calde-
rón and Silva 2021) will certainly contribute to creating more comprehensive probabil-
istic exposure models.

•	 The assessment of the replacement cost for each building class as well as the selection 
of cost ratios per damage state (within the economic consequence model for vulner-
ability assessment) are an important source of uncertainties in seismic risk assessments 
that will benefit from further study (Martins et  al. 2016; Michel et  al. 2017). In this 
sense, the relative importance of the selection of loss ratios as a function of the build-
ing classes, as investigated by Kalakonas et al. (2020), could be further explored.

•	 A larger set of prior distributions could also be obtained in future studies by knowl-
edge-elicitation of a pool of domain experts. This process could be done more rigor-
ously to constrain the prior assumptions for smaller sectors within a large study area.

•	 The choice of GMPE(s) influences the resulting cross-correlated ground motion fields 
for earthquake scenarios. This comes from the manner in which the residuals and soil 
nonlinearity are accounted for in the functional form of the selected attenuation model 
(Weatherill et al. 2015). Hence, it is worth conducting sensitivity analyses in the future 
that provide us a more complete picture about their differential impact within the pro-
posed method (e.g., Kotha et al. 2018). However, it is remarkable that for the subduc-
tion regime upon which Valparaíso is located, there are few adequate GMPE models 
available which follow similar functional forms (i.e., Abrahamson et  al. 2016; Mon-
talva et al. 2017). In fact, Hussain et al. (2020) found negligible differences in direct 
loss estimates for the residential building stock of another Chilean city after making use 
of these two GMPE to simulate some the associated GMF from subduction earthquake 
scenarios.

•	 The subjective selection of the type of spatial cross-correlation model used to generate 
the GMF carries epistemic uncertainties (Weatherill et al. 2015). Although the selected 
model proposed by Markhvida et al. (2018) has been already implemented for subduc-
tion earthquakes for the South American context by Markhvida et al. (2017), more rig-
orous practices could include the incorporation of a locally constrained spatial corre-
lation model (Candia et  al. 2020, study published after the elaboration of our work). 
Furthermore, it is important to have in mind the simplifications induced by applying 
generic correlation models without having performed local wave-form analyses (Staf-
ford et al. 2019; Schiappapietra and Smerzini 2021). These assumptions might induce 
overestimations in the risk estimates as observed in Abbasnejadfard et al. (2021).

To analyse more rigorously the contribution of the aforementioned components, the 
logic tree proposed in this work could be extended. To improve the validation of the pro-
posed theoretical framework, a larger sample of inspected building attributes would be 
beneficial. Also, post-damage damage surveys (according to taxonomic data standards) 



2430	 Bulletin of Earthquake Engineering (2022) 20:2401–2438

1 3

should be carried out in the aftermath of a damaging event, along with suitable recordings/
observations of the macroseismic/instrumental intensity to analyse the differences between 
the observed levels of damage and theoretical earthquake loss models. In fact, it is only 
recently that such validation issues have started to be comprehensively investigated (Riga 
et al. 2021).

We emphasize that the test site we have selected (Valparaíso, Chile) has been only pre-
sented to discuss the role of uncertainty in the exposure model definition on scenario-based 
earthquake loss models using the methodology herein presented. Likewise, it should be 
noted that the resulting direct loss estimates that we obtained from flat-prior, as well as 
those from spatially uncorrelated GMF, are unrealistic and have been presented only as a 
part of the sensitivity analyses included in the methodology. The study presented does not 
argue whether one scheme (SARA or HAZUS) is better suited for representing the residen-
tial building stock of the city. Although the use of the set of SARA building classes is not 
completely validated from the surveyed data (Fig. 3) and is more sensitive to the non-iden-
tification of certain attributes (Fig. 4), their associated fragility functions (Villar-Vega et al. 
2017), unlike HAZUS (FEMA 2012), provide some advantages for risk assessment. For 
instance, they were derived from the analysis of some regional records within the tectonic 
setting of the study area and also provided a clearer link between GMF with spatially and 
inter-period cross-correlated IM required to model the seismic vulnerability of heterogene-
ous building stocks. However, considering that that set of fragility functions was derived 
using a regional database of records, they lack hazard-consistent ground motions records 
as recently discussed by Hoyos and Hernández (2021). Interestingly, these authors also 
agreed on the possibility of implementing logic trees for various stages within the deriva-
tion of vulnerability functions. Such advice emerged as a justification after they found large 
differences in the risk metrics for a local (city-scale) building portfolio imposed by using 
the regionally derived SARA fragility functions compared to their subsequent parametri-
sation (i.e., accounting for local structural characteristics and a locally-consistent record 
selection). Similar findings, along with the importance of having sufficient IM, were also 
recently reported in Kohrangi et al. (2021). Although these kinds of approaches are beyond 
the scope of our study, drawing attention to this topic adds another layer to the explora-
tion of epistemic uncertainties in earthquake loss models for local building portfolios. The 
integration between the aforementioned optimisation procedures in the vulnerability com-
ponent along with probabilistically modelled building exposure models is definitely worth 
exploring in future risk assessment studies.

It is worth noting that, contrary to the two studies cited above, our Bayesian exposure 
modelling approach has been only tested herein for scenario-based risk calculations and not 
on probabilistic risk assessment. For the latter, it is also worth exploring in future studies 
how metrics such as the Average Annual Loss (AAL, which is more relevant to the insur-
ance industry) may vary when Bayesian-derived exposure models are considered to repre-
sent specific portfolio of assets to be insured. However, since we were able to successfully 
propagate some uncertainties implicit in the exposure modelling processes along the risk 
chain, the range of variation obtained in the results for the most optimal combination (i.e., 
the adoption of cross-correlated GMF together with a high level of knowledge of the port-
folio in terms of the SARA scheme and vulnerability functions) could provide useful input 
for risk communication strategies. For instance, in the framework of the RIESGOS project 
(https://​www.​riesg​os.​de/​en/), the assumptions involved within our modular approach have 
already been discussed with local scientists and end-users. Furthermore, as discussed by 
Beven et al. (2018), the use of branched explorative frameworks such as the one we have 
proposed here for probabilistic exposure modelling (not necessarily identical to the one we 

https://www.riesgos.de/en/
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present in Fig. 7) provides an structured summary of the related assumptions that simplify 
the communication of the underlying uncertainties to local experts, who can then evaluate 
and compare them with continuously evolving exposure models for seismic risk.

6 � Conclusions and recommendations

This study argues that most large-area portfolios within an exposure model are affected 
by epistemic uncertainties, resulting in a range of possible total building counts and class 
compositions. Expert-elicited models used by top–down approaches, even when carefully 
crafted (e.g., Ma et al. 2021) may often provide only a partial perspective of the real com-
position of the building stock, while bottom–up approaches based on field-surveys are usu-
ally resource-intensive and are seldom carried out systematically.

To tackle these limitations, an exploratory Bayesian framework to study the epistemic 
uncertainty in seismic risk loss estimates associated with the probabilistic nature of the 
building exposure model has been presented. This approach allows the seamless integra-
tion of desktop-based and expert-elicited approaches (Sect.  2.2.1) with empirical field-
based (and remote) observations (Sect. 2.2.2). In the proposed Bayesian formulation, these 
uncertainties can decrease by improving the number of observations and the quality of 
prior assumptions. The influence of the epistemic uncertainties to the resulting loss esti-
mation has been explored through the systematic simulation of the individual parameters 
based on a logic tree approach for which we have considered four hierarchical components:

(1)	 Considering the selection of risk-oriented building class schemes, fragility functions 
should be available for each of them.

(2)	 The selection of the weighting arrangement ( wj ) that rank relevance of taxonomic build-
ing attributes upon vulnerability assessment, as well as their ability of reconnaissance 
by the surveyor, are not only used to probabilistically assign the building classes of the 
observed sample (Fig. 4) and to configure the likelihood terms to update the propor-
tions of building composition, but also to obtain inter-scheme compatibility matrices 
(Fig. 5) when two schemes are intended to represent the same building stock.

(3)	 The selection of prior distributions about the composition of the building portfolio 
from expert-based knowledge (e.g., conventional top–down desktop studies). This is 
assumed to follow a Dirichlet distribution.

(4)	 The selection of the concentration factor �0 of the resultant posterior Dirichlet distribu-
tion. This parameter represents the degree of confidence in the underlying assumptions 
when little empirical evidence is available.

While valuable information can be retrieved from aggregated data sources (e.g., cen-
sus data) and mapping schemes in order to gather expert-based priors, they should not 
be used to represent a given building stock (Sect. 2.2.1) without exploring the under-
lying uncertainties. Moreover, such top–down approaches, including the expert-based 
elicitation of the prior distributions, should be integrated by empirical observations 
whenever possible. Within this framework, the expert-based priors will be increasingly 
superseded by real data in the statistical exposure models. An iterative process can thus 
be envisaged which aims at continuously updating the model rather than employing 
static modelling. This foreshadows new avenues of research in exposure modelling for 
seismic risk, as recently discussed by other authors (Calderón and Silva 2021). Hence, 
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collected evidence (e.g., surveys) that can support these assumptions is needed, and pro-
vides a clearer picture of the uncertainties in risk loss estimates (Kechidi et al. 2021).

The description of building classes in terms of taxonomic attribute types has been 
shown to be instrumental in identifying the most likely classes of a selected observed 
sample (within a predefined scheme). Considering the presence of certain taxonomic 
attributes within a probabilistic exposure model as part of a reducible epistemic uncer-
tainty framework allows better links between the observed structural features of build-
ings with their most likely vulnerability classes. Such data collections, in terms of a fac-
eted taxonomy, allows us to assess the degree of compatibility of each surveyed building 
with respect to a set of risk-oriented building classes (Sect.  3.1.1). Furthermore, this 
description is also an input for a novel probabilistic inter-scheme conversion (Sect. 3.2). 
That approach is useful for obtaining exposure descriptors (i.e., number of buildings 
belonging to a certain class, night-time residents, and replacement costs) under another 
reference (target) scheme in large-area exposure modelling applications. This can be 
done in terms of vulnerability descriptors for other hazard-reference schemes (e.g., 
Gomez-Zapata et al. 2021a), thus extending its application beyond the field of seismic 
risk.

The findings suggest that the direct losses (repair costs) for the residential building 
stock of Valparaíso subjected to the considered earthquake scenario (Mw 8.2) largely 
depend upon the decisions made when modelling the building stock under one preferred 
scheme, as well as upon the range of variation in the total buildings count. This is then 
a reducible uncertainty that is still accordingly propagated throughout the vulnerabil-
ity assessment. The blue LEC (accounting spatially cross-correlated GMF) shown in 
subplots Figs.  12f,l and 13f,l display the ideal, yet hypothetical results, that might be 
obtained in the case of high quality expert-based priors assumptions, along with taxo-
nomic data collection (at the individual building level) embedded within the proposed 
statistical modelling approach. Furthermore, the differences in the loss estimates after 
using the two schemas call for caution when using exposure and vulnerability models 
originally developed for other regions (e.g., HAZUS for the US), rather than choosing 
more local ones (SARA). This further highlights the importance of developing exposure 
models that reflect local construction practices attached to suitable fragility functions 
designed from local ground motion records. Finally, well-structured standards for con-
tinuous exposure data collection, based on vulnerability-independent standard taxono-
mies, combined with sound probabilistic modelling, are instrumental for more robust 
risk assessment practices.
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