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Abstract
This paper focuses on the probabilistic analysis of Intensity Measures (IMs) and Engineer-
ing Demand Parameters (EDPs) in the context of earthquake-induced ground motions. 
Several statistical properties, which are desirable in IMs when they are used to predict 
EDPs, have been analysed. Specifically, efficiency, sufficiency and steadfastness have been 
quantified for a set of IMs with respect to two EDPs: the maximum inter-storey drift ratio, 
MIDR, and the maximum floor acceleration, MFA. Steadfastness is a new statistical prop-
erty proposed in this article, which is related to the ability of IMs to forecast EDPs for large 
building suites. In other words, this means that efficiency does not significantly vary when 
different types of buildings are simultanously considered in the statistical analyses. This 
property allows reducing the number of calculations when performing seismic risk esti-
mations at urban level since, for instance, a large variety of fragility curves, representing 
specific building typologies, can be grouped together within a more generic one. The main 
sources of uncertainty involved in the calculation of the seismic risk have been considered 
in the analysis. To do so,  the nonlinear dynamic responses of probabilistic multi-degree-
of-freedom building models, subjected to a large data set of ground motion records, have 
been calculated. These models have been generated to simulate the dynamic behavior of 
reinforced concrete buildings whose number of stories vary from 3 to 13. 18 spectrum-, 
energy- and direct-accelerogram-based IMs have been considered herein. Then,  from 
clouds of IM-EDP points, efficiency, sufficiency and steadfastness have been quantified. 
For MIDR, results show that IMs based on spectral velocity are more efficient and steadfast 
than the ones based on spectral acceleration; spectral velocity averaged in a range of peri-
ods, AvSv, has shown to be the most efficient IM with an adequate level of steadfastness. 
For MFA, spectral acceleration-based-IMs are more efficient than velocity-based ones. A 
comparison is also presented on the use of linear vs quadratic regression models, and their 
implications on the derivation of fragility functions. Concerning sufficiency, most of the 18 
IMs analysed do not have this property. Nonetheless, multi-regression models have been 
employed to address this lack of sufficiency allowing to obtain a so-called ‘ideal’ IM.
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1 Introduction

The main purposes of seismic risk assessment is to know the probability of occur-
rence of seismic actions—hazard—and that of the expected damages—risk. Concerning 
design and retrofitting, the aim is to act on the project and construction of structures 
to decrease the expected damage, resulting in a reduction of the catastrophic effects of 
earthquakes on society. Proper assessment and design methodologies require knowledge 
of how seismic actions, in terms of intensity measures (IMs), affect structural response. 
Variables representing this response are commonly known as engineering demand 
parameters (EDPs).

Several IMs have been proposed to better understand the seismic performance of 
buildings. In this respect, a relevant milestone has been the response spectra theory; 
see for instance Housner (1941, 1970), Housner and Jennings (1982) and Newmark and 
Hall (1982). Based on this, IMs considering the damped response of single-degree-of-
freedom systems (SDoF) were introduced. This knowledge, combined with the increas-
ing capacity of computers and collection of strong motion databases, have allowed 
to perform probabilistic calculations which had previously been unthinkable. In this 
way, statistical analyses of several spectrum-based IMs and EDPs (obtained through 
advanced nonlinear structural  models) have been recently performed (Padgett et  al. 
2008; Jalayer et al. 2012; Ebrahimian et al. 2015, 2021; Bojórquez et al. 2017a,b; Pin-
zón et al. 2020; Du and Padgett 2021; O’Reilly 2021).

Efficiency, sufficiency and steadfastness are analysed and discussed in this article. 
These statistical properties are desirable for IMs when they are employed to predict 
the seismic response of civil structures. In short, efficiency is related to the predict-
ing power; sufficiency means that the IM renders the conditional response distribution 
independent of other earthquake characteristics; steadfastness, introduced herein, is 
related to stability of efficiency for predicting the behavior of building populations with 
increasing diversity.

From the statistical point of view, the most desirable feature that an IM should exhibit 
is efficiency (Shome and Cornell 1999; Giovenale et al. 2004; Luco and Cornell 2007). 
An IM is considered efficient if it reduces the dispersion of the parameter that repre-
sents the structural response (EDP). Efficiency can be quantified through the dispersion 
of IM-EDP points; the lower this scattering the higher the efficiency. Several IM vari-
ables, that have been commonly used to quantify efficiency, are explored herein (Padgett 
et al. 2008; Ebrahimian et al. 2015; Ebrahimian and Jalayer 2021). In addition, new IMs 
based on average spectral values are also introduced.

As commented above, a sufficient IM makes the statistical properties of a cloud of 
IM-EDP pairs independent of other earthquake parameters (mainly those related to the 
earth crust rupture at the source of the event). This property can be quantified through 
the bivariate analysis of the residuals of a cloud of IM-EDP points and a specific seis-
mological parameter (Luco and Cornell 2007). If these variables are not correlated, it 
means that the IM is sufficient with respect to the seismological parameter. Note that, 
lack of sufficiency can be seen as an opportunity to increase the efficiency of the IM 
by applying multi-regression analysis, as will be shown later (Elefante 2010); in this 
case, the seismological parameters become information variables, IVs. In general, for 
the purpose of this research, an IV can be any property that varies from simulation to 
simulation.
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The last desirable IM statistical property analysed in this article, which has not here-
tofore been systematically investigated, at least up to the authors’ knowledge, is stead-
fastness with respect to variations of structural properties. This means that the  effi-
ciency of steadfast IMs, after grouping results of building models with different physical 
characteristics, is stable. Note that a steadfast IM could be used to reduce the number of 
structural calculations when estimating seismic risk at urban level.

When assessing seismic risk, the most desirable feature for EDPs is that they quan-
tify, as best as possible, the performance level of structures affected by earthquake-
induced  ground motions. One of the most used EDP for estimating this performance 
level is the maximum inter-story drift ratio, MIDR (Mayes 1995). Many other variables 
like the maximum displacement at the roof, base shear, maximum floor acceleration 
(MFA), or damage indices, can be considered as EDPs.

It is worth noting that both IMs and EDPs are random variables showing high disper-
sion. In the case of IMs, this is due to the complexity of the strong motion influencing 
a point at the ground level where the acceleration is recorded. Regarding EDPs, ran-
domness comes not only from the seismic input itself, but also from the mechanical 
properties of the materials, the geometric features of the structure, directionality effects, 
amongst other aspects (Vargas et al. 2018). Therefore, efficiency, sufficiency and stead-
fastness should be measured by considering several sources of uncertainty. For instance, 
if a specific structure is analysed, uncertainties related to the mechanical properties of 
the materials and seismic action are the ones carrying more variability into the response 
(Vamvatsikos and Fragiadakis 2010; Jalayer et al. 2015; Vargas-Alzate et al. 2019a). In 
the case of urban environments, information related to the geometrical distribution of 
buildings belonging to the emplacement are also required (Silva et  al. 2015; Vargas-
Alzate et al. 2020). It is worth mentioning that the quantification of statistical properties 
in simulations that consider random sources of high variability can lead to identifying 
new properties of the IMs, as in the case of steadfastness.

There are many statistical approaches to extract information from IM-EDP pairs on 
the expected damage to buildings (Vamvatsikos and Cornell 2002; Jalayer 2003; Jalayer 
and Cornell 2009; Vargas et al. 2013; Jalayer et al. 2015; Vargas-Alzate et al. 2019a). 
The main differences between them lie in the sampling strategy used to obtain these 
pairs, the selection procedure of the strong motion records, and the IMs and EDPs 
selected. In general, results suggest that the selection of the most suitable IM to analyse 
the probabilistic distribution of an EDP highly depends on the structural type and seis-
mogenic environment under consideration.  In this article, the cloud analysis approach 
has been considered to analyze the relationship between IMs and EDPs (Jalayer et  al. 
2015).

Within the framework of the KaIROS project (https:// cordis. europa. eu/ proje ct/ id/ 
799553), several numerical tools to deal with the aforementioned uncertainties have 
been developed. These tools are used herein to analyse the statistical relationships 
between a group of IMs and the response of buildings in terms of MIDR and MAF. 
Specifically, a set of a wide variety of probabilistic numerical models representing the 
behavior of Reinforced Concrete (RC) frame buildings are used as a testbed (Vargas-
Alzate et al. 2019b). In order to characterize seismic hazard, a group of ground motion 
records, selected and scaled to get response values within and beyond the elastic limit, 
has been selected and scaled. Once building models and seismic actions have been char-
acterized, EDPs are calculated using Nonlinear Dynamic Analysis, NLDA, as numerical 
tool. This latter has been considered the most reliable for numerically simulating the 
seismic response of buildings.

https://cordis.europa.eu/project/id/799553
https://cordis.europa.eu/project/id/799553
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Then, from the ground motion set, a group of basic IMs is obtained and correlated 
with both EDPs  (MIDR and MAF). As pointed out above, several statistical proper-
ties have been analysed: (1) the competence to predict EDPs (efficiency); (2) the suf-
ficiency of IMs with respect to seismological parameters; and (3) the ability to group 
buildings with different features without increasing the variability of the bivariate dis-
tribution (steadfastness). It is shown that there is a set of IMs exhibiting efficiency, suf-
ficiency and steadfastness. For insufficient IMs, it has been developed vector-valued IMs 
with increased efficiency (Elefante et al. 2010).

Note that the quantification of the expected damage of buildings can be improved if 
IM-EDP pairs exhibiting steadfastness and high-level of correlation are considered. This 
is relevant for assessment and design. For instance, fragility functions obtained from 
these highly correlated pairs would provide more accurate estimations on the expected 
damage state of structures. Moreover, safety factors used in design could be better quan-
tified. Thus, this article focuses primarily on identifying ideal IMs, which are the ones 
that exhibit the highest efficiency and, for practicality, sufficiency and steadfastness.

2  Probabilistic structural models (exposure)

The success of developing suitable building models depends on the quantity and quality of 
information regarding the mechanical and geometrical properties of the structural elements. 
When the analysis is oriented to urban environments, it is also important to know about the 
geographical distribution of as many physical properties as possible. Of great importance is to 
know, for instance, the number of structures belonging to each structural type, distribution of 
the number of stories and spans, azimuthal position of buildings (Vargas-Alzate et al. 2021), 
amongst many others. In addition, the variability  level of the mechanical and geometrical 
properties of the elements, as well as that of acting loads, should be available. A more detailed 
discussion of several of these random variables is provided below.

2.1  Gravity loads and mechanical properties

As commented above, to properly analyse the probabilistic seismic behavior of a group of 
buildings, it is necessary to consider the aleatory uncertainties regarding input variables. 
Concerning gravity loads and mechanical features of the materials, the following properties 
have been considered as random variables: live loads, LL, permanent loads, DL, compres-
sive strength of concrete, fc, tensile strength of steel, fy, elastic modulus of concrete, Ec, 
and elastic modulus of steel, Es. Continuous Gaussian distributions have been assumed for 
these variables; mean values, µ, standard deviations, σ, and coefficient of variation, c.o.v. 
of each variable are shown in Table 1. It is worth mentioning that properties assigned to LL 
correspond to a fraction (33%) of the design value (Eurocode 8).

2.2  Geometrical properties

Concerning geometrical properties, the following random variables have been considered: 
number of stories, Nst , number of spans, Nsp , story height, Hst , and span length, Sl . Nst and 
Nsp follow a uniform discrete distribution in the interval (3, 13) and (3, 6), respectively; Hst 
and Sl are distributed uniformly in the interval (2.8, 3.2) m and (4, 6) m, respectively.
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In order to assign the cross-section dimensions of the first story columns, the following 
equation has been used:

where ci are coefficients that may be adjusted depending on the data distribution of the 
analysed area. For this study, c1 = 0.4, c2 = 0.05, c3 = 0.01 and c4 =-0.35; Φ1,0 represents 
the standard normal distribution. Note that columns are not necessarily square, that is, one 
random sample is generated for the width, Wc , and one for the depth, Dc , of the element 
(Eq. 1). For upper stories, each side of the columns decreases systematically by 5 cm every 
three stories. Values generated are rounded to the nearest multiple of 5 cm to be consistent 
with real dimensions of RC elements.

The width of beams, Wb , depends on the number of stories and span length of the build-
ing model, and it has been calculated by using the following equation:

where bi are coefficients that depend on the characteristics of the study zone. For the hypo-
thetical case study, b1 = 0.01, b2 = 0.02 and b3 = 0.19. The depth of the beams, Db , is 
obtained using the following equation:

where g1 = 0.01, g2 = 0.05 and g3 = 0.17. Notice that no random term is considered for 
beams.

As pointed out above, within the framework of the KaIROS project, a software pack-
age has been developed for probabilistic seismic analyses by using as structural solver the 
Ruaumoko program (Carr 2000). This package  allows to generate probabilistic MDoF 
systems representing the behavior of RC frame buildings (see also Vargas-Alzate et  al. 
2019b); this module has been adapted to simulate the seismic response of other structural 
types located in other seismic environments (Pinzón et  al. 2020). Using this algorithm, 
1160 structural models have been generated (this number is related to the availability of 
records within the ground motion database, as will be shown later).

The modified Takeda hysteresis law, Otani (1974), has been used to represent the in-
cycle behavior of the structural elements (beams and columns). This law allows consid-
ering strength degradation due to large deformations and excessive number of inelastic 
cycles. To do so, a strength degradation function, which depends on the ductility reached 
by the structural elements, as well as a degrading coefficient associated to the num-
ber of inelastic cycles has been considered in the hysteretic model (see Carr 2000). For 

(1)Wc or Dc = c1 ∗ ln
(

Nst

)

+ c2 ∗ Sl + c3 ∗ Φ1,0 + c4

(2)Wb = b1 ∗ Nst + b2 ∗ Sl + b3

(3)Db = g1 ∗ Nst + g2 ∗ Sl + g3

Table 1  Mean values, µ, standard 
deviations, σ, and coefficient of 
variation, c.o.v., of the random 
variables related to the structural 
models

RC frames

µ (kPa) σ (kPa) c.o.v

LL 1 0.1 0.1
DL 4.5 0.18 0.04
fc 2.5E4 2.5E3 0.1
fy 4.6E6 2.3E5 0.05
Ec 2.3E7 1.84E6 0.08
Es 2.18E8 1.09E7 0.05
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stiffness degradation, the degrading factor has been fixed to 0.4. The yielding surfaces are 
defined by the bending moment-axial load interaction diagram for columns and bending 
moment–curvature for beams. P-Delta effects has been considered in the numerical model, 
as the structures analysed may experience deformations beyond the elastic range, some-
times exceeding their capacity to withstand gravity loads.

Coefficients considered in (1 to (3, as well as the mechanical property values (Table 1), 
have been selected to approximate the expected behavior of RC structures located in earth-
quake-prone regions. In order to verify this, three main aspects from the generated models 
have been analysed: (1) the fundamental period ( T1) ; (2) the horizontal stiffness; and (3) 
the nonlinear behavior given the design spectrum.

Regarding T1 , the ones obtained from the generated models have been compared with 
those computed by means of the classical rough approximation T1 = Nst∕10 . Figure 1(Left) 
shows the evolution of T1 as a function of the number of stories for the 1160 building mod-
els; it can be seen that T1 values agree with those expected for the building typology ana-
lysed. Figure 1(Right) shows a sketch of one hundred building models generated according 
to the conditions explained above.

In seismic design, when defining the horizontal stiffness of a building, it is common 
practice to limit the expected MIDR given a design spectrum (generally for a 475-years 
return period) provided by the seismic regulation of the area; this MIDR is generally lim-
ited to a maximum value of 0.01 (Eurocode 8). The most used methodology in practice to 
estimate this expected MIDR is the response spectrum method (Taghavi and Miranda 2010; 
Gupta and Hall 2017). Accordingly, the MIDR distribution of the generated models has 
been estimated by considering as seismic hazard the design spectrum type 1 (Eurocode 8), 
for a soil type A, and a basic acceleration, ab , equal to 0.4 g. Figure 2 shows the distribu-
tion of the MIDRs after applying the response spectrum method; it can be seen that none of 
the generated models exceeds the threshold of 0.01 given the design level considered.

Regarding the nonlinear behavior, the capacity curves of the generated models have 
been calculated by using the adaptive pushover analysis (Satyarno 2000). This structural 
analysis type has been employed herein since it allows an automatic identification of the 
last point in the capacity curve, �u . The longitudinal steel percentages have been assigned 
to the structural elements so that the life safety damage state, assumed herein to be �u , is 
not exceeded by the expected demand in terms of the performance point, �m . It is worth 

Fig. 1  Left: Variation of the fundamental period as a function of the number of storeys. Right: one-hundred 
building models generated with KaIROS software
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mentioning that in the assignation of the reinforcement, minimum steel percentages equal 
to 1% for columns and 0.5% for beams have been adopted.

Then, the calculated capacity curves are transformed into capacity spectra (see Fig. 3a) 
and the respective �m s have been obtained by considering the design spectrum described 
above; the procedure A of the ATC-40 (ATC-40 1996, see chapter 8) has been employed 
to obtain �m . Thus, it has been quantified if the expected demand exceeds the last capacity 
displacement of the structure (in terms of �u ). To do so, the ratio between �m and �u has 
been calculated for each of the capacity spectra; it has been found that only twice this ratio 
is slightly higher than one (which indicates that �m exceeds to �u , see Fig.  3b). In other 
words, the vast majority of the structures generated do not exceed the limit state related 
to life safety for the design spectrum with a 475 years return period, which is an important 
requirement established in current design guidelines.

Based on the above verifications, it can be said that the structural models generated have 
been developed to meet the main design requirements of RC buildings located in earth-
quake-prone regions.

Fig. 2  MIDR distribution using 
the response spectrum method

Fig. 3  Left: capacity spectra vs design spectrum type 1, soils A (Reference). Right: performance ratios
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3  Seismic demand (hazard)

Seismic hazard is an important random variable that should be considered  to properly esti-
mate expected damage and risk. Actually, the main source of uncertainty when assessing the 
seismic response of civil structures is the variability of ground motions. The randomness in 
both seismic actions and, consequently, in the structural response, increases alongside with the 
severity of the earthquake.

Nowadays, there are excellent accelerometric databases at global, regional and coun-
try scale that have allowed to quantify uncertainties in seismic hazard. For instance, the 
Istituto Nazionale di Geofisica e Vulcanologia, INGV, provides the Engineering Strong 
Motion Database (ESM) and includes a link to the most important accelerometric data-
bases in the world (Luzi et al. 2016a, b).

However, the availability of strong ground motion records covering high-intensity inter-
vals at specific response periods is a common shortcoming found in current databases. 
Note that an improper sampling of ground motions can trigger excessive scaling of lower 
intensity records to fit them into high-intensity intervals. Besides, scaling the same record 
to different intensity levels would introduce false correlation between IMs and EDPs. 
Therefore, a proper selection of strong motions is paramount to the success of probabilistic 
structural analyses. The procedure employed to face these issues is detailed below.

There are several methodologies to properly select ground motion records from a data-
base that, for instance, are consistent with a specific site-dependent spectral shape (Hasel-
ton et al. 2012). For the purpose of this study, the most important requirement is to have 
enough ground motion records which are scaled (if necessary) to analyse the generated 
structural models at different performance levels. Nonetheless, it is also important to 
avoid excessive scaling of the records so that bias introduced will be negligible. Accord-
ing to this, the main steps followed to pick and set up a proper suite of accelerograms are 
described in the following:

Step 1 Choose the strong ground motion database. The ESM database (Luzi et al. 2016a, 
b) compiled by the INGV has been used to select the ground motion records; this data-
base contains records occurred in Europe
Step 2 Identify the IM for scaling the ground motion record set
Step 3 Define suitable intensity bands for the selected IM
Step 4 Compute the selected IM for each ground motion record
Step 5 Sort the records in descending order as a function of the calculated IM values
Step 6 If needed, the ground motion record with the highest IM value is scaled so that it 
falls into the highest intensity band; if this record naturally fulfills the interval condition, 
it is not scaled; this step is repeated with the subsequent records until having enough 
ground motion inputs belonging to this interval
Step 7 Step 6 is repeated for each interval considered; the scale factors estimated in 
STEP 6 (if any) are calculated so that IM values tend to be uniformly distributed within 
the intensity band

It seems reasonable to select (Step 2)  an IM highly correlated with the structural 
response so that, by increasing or decreasing this variable, so does the structural response. 
Therefore, it is more appropriate to consider IMs calculated from the spectral response 
of SDoF systems, since they have been shown to be highly correlated with the MIDR 
(Miranda 2000). In this respect, several researchers have proven that it is more efficient 
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to use an IM based on the geometric mean of spectral acceleration values around the fun-
damental period, Saavg , than only using the spectral acceleration value associated to this 
period, Sa(T1) , (Bianchini et al. 2009; Bojórquez and Iervolino 2011; Kazantzi and Vam-
vatsikos 2015; Eads et al. 2015; Adam et al. 2017). Analogous to this concept, the arith-
metic mean of spectral acceleration values around the fundamental period, AvSa, has been 
considered herein as IM to select and scale ground motion records. It has been preferred to 
use the arithmetic mean than the geometric one since this tends to provide a more efficient 
an steadfast IM, as will be shown later.

Because of the probabilistic approach adopted in this study, there is not a single struc-
tural model but a group of them which, in addition, have highly variable fundamental peri-
ods (see Fig. 1). Therefore, the period range for averaging the spectral ordinates of the IM 
is established from the dynamic properties of the entire population of buildings (Vargas-
Alzate et al., 2019b). In this way, ground motion records, whose mean spectral acceleration 
in the interval (0.2–1.6) s, lies in a band limited by two intensity levels are selected and 
scaled. This interval corresponds to 0.7 times the minimum and 1.12 times the maximum 
period observed in Fig. 1a; after several runs, they are the ones minimizing the dispersion 
in most of the IM-EDP clouds analysed. Note that these limits tend to be broader when 
analysing structures sharing similar number of stories.

The intensity levels (Step 3)  defining the upper and lower limits of each band range 
from 0.035 to 0.7 g at intervals of 0.035 g (i.e., 20 bands are defined). The highest limit has 
been selected so that approximately 10% of the models exceed their capacity to withstand 
gravity loads.

By means of the selection and scaling process described above, the horizontal compo-
nent related to the east–west direction of 1160 earthquake records (58 records per band) of 
the ESM database have been obtained (the entire database contains 1163 ground motion 
records). Figure  4 (Left) shows the response spectra of the 1160 selected  records. The 
distribution of magnitudes, M, and epicentral distances, ED, of these records is shown in 
Fig. 4 (Right).

Fig. 4  Left: Response spectra of the 1160 selected and scaled accelerograms. Right: Distribution of magni-
tudes and epicentral distances
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4  Intensity measures

The increased computing power and mathematical background along with proper numer-
ical models allow to extract valuable information on variables related to strong seismic 
actions (IMs) as well as on the response of civil structures (EDPs). Ideally, an IM should 
contain enough information about the ground motion so that the structural response can 
be predicted with confidence (Pejovic and Jankovic 2015). Note that an IM may depend 
on the properties of the ground motion, or both the ground motion and the structural 
characteristics.

4.1  Spectral‑based intensity measures

The dynamic response of structures subjected to ground motions induced by earthquakes 
has been correlated to the peak response of equivalent SDoF systems. The study of this 
simplified model gave rise not only to the response spectra but also to spectral IMs. It has 
been recognized that efficient IMs would be defined by response spectral ordinates. This 
is why response spectral ordinates are extensively used to quantify seismic hazard at a 
site. Such ordinates are calculated from the maximum time-history response after solving 
the dynamic equilibrium equation for SDoF systems given a set of specific period values:

 where ü(t) , u̇(t) and u(t) are the acceleration, velocity and displacement time-history 
responses of the SDoF, respectively; üg(t) is the acceleration ground motion; m, c, and 
k represent mass, damping and stiffness of the system, respectively. IMs from 1 to 6 
described in Table 2 belong to this category.

4.2  Energy‑based intensity measures

For both design and assessing the performance of civil structures, the peak response of 
physical magnitudes like displacement, velocity or acceleration has been widely used. 
However, several researchers have found that the expected damage of structures is strongly 
tied to the amount of energy introduced to the system (see for instance Benavent-Climent 
et al. 2004; Yazgan 2012; Cheng et al. 2015; Güllü et al. 2019). In this respect, the equiva-
lent velocity spectrum is a representation of the amount of energy introduced to a set of 
SDoF systems. This energy can be calculated by rewriting Eq. 4 in terms of energy. That 
is, each term of this equation is multiplied by the differential increment of displacement 
( ̇udt ) and then integrating in the time interval (0, t), as follows (Akiyama 1985; Bertero and 
Uang 1992):

 where Ek = m∫ t

0
üu̇ dt is the kinetic energy; E𝜉 = c∫ t

0
u̇2 dt is the energy dissipated 

by the inherent damping; Ea = k∫ t

0
uu̇ dt is the energy absorbed by the system; and 

EI = −m∫ t

0
ügu̇ dt is the energy introduced into the system by the ground motion. This 

(4)mü(t) + cu̇(t) + ku(t) = −müg(t)

(5)m∫
t

0

üu̇ dt + c∫
t

0

u̇2 dt + k∫
t

0

uu̇ dt = −m∫
t

0

ügu̇ dt
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latter is commonly expressed in terms of equivalent velocity, VE , and is normalized with 
respect to the mass of the structure as follows:

Calculating VE for several elastic oscillators will produce the equivalent velocity spec-
tra. IMs 7 and 8 described in Table  2 are obtained from the energy introduced into the 
system.

4.3  IMs based on direct computations of the ground motion record

IMs presented above take into account the spectral response of SDoF systems. In other 
words, they consider not only the characteristics of ground motions but also some related to 

(6)VE(T1) =
√

2EI(T1)

Table 2  Intensity measures description

1  n
T
 represents the number of periods to calculate the average

2  t5% and t95% are the times related to the 5% and 95% of the Husid diagram (Trifunac and Novicova 1994).
3 Δ represents the significant duration (i.e. t95% − t5%)

Intensity measure Id Formula

Spectral acceleration at T1 1 Sa
(

T1
)

= max
(

|

|

|

üg(t) + ü(t, 𝜉,T1)
|

|

|

)

Spectral velocity at T1 2 Sv
(

T1
)

= max
(

|

|

u̇(t, 𝜉,T1)
|

|

)

Spectral displacement at T1 3 Sd
(

T1
)

= max
(

|

|

u(t, �,T1)
|

|

)

Average spectral  acceleration1
4 AvSa =

∑nT
i=1

Sa(Ti)
nT

Average spectral velocity 5 AvSv =
∑nT

i=1
Sv(Ti)
nT

Average spectral displacement 6 AvSd =
∑nT

i=1
Sd(Ti)
nT

Equivalent velocity at T1 7 VE
�

T1
�

=
√

2EI(T1)

Average equivalent velocity 8 AvVE =
∑nT

i=1
VE(Ti)
nT

Peak ground acceleration 9 PGA = max
(

|

|

|

üg(t)
|

|

|

)

Peak ground velocity 10 PGV = max
(

|

|

|

u̇g(t)
|

|

|

)

Peak ground displacement 11 PGD = max
(

|

|

|

ug(t)
|

|

|

)

Arias intensity (Arias, 1970)2 12 IA =
𝜋

2g
∫ t95%

t5%
üg(t)

2dt

Root mean of the acceleration (Housner, 1975)3
13 accRMS =

√

1

Δ
∫ t95%

t5%
üg(t)

2dt

Root mean of the velocity 14 velRMS =
√

1

Δ
∫ t95%

t5%
u̇g(t)

2dt

Specific Energy Density (Sarma 1971; Sarma and Yang, 1987) 15 SED = ∫ t95%
t5%

u̇g(t)
2dt

Cumulative Absolute Velocity (Reed, and Kassawara, 1990) 16 CAV = ∫ t95%
t5%

|üg(t)|dt

Characteristic intensity (Park et al., 1987) 17 IC = accRMS
1.5
√

Δ

Fajfar intensity (Fajfar et al. 1990; Pinzón et al. 2020) 18 IF = PGV ∗ Δ0.25
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the structural properties. However, several IMs can be obtained from direct computations 
of the ground motion record. The appeal of this type of IMs is that they do not depend on 
the dynamic properties of the structures. In this way, a generic fragility function could be 
developed to estimate the seismic performance of buildings with very different structural 
properties. However, this independency of the structural properties may cause a decrease 
of the efficiency for predicting EDPs. IMs from 9 to 18 described in Table 2 belong to this 
category.

5  Statistical analysis of IM‑EDP pairs

Once the seismic hazard—intensity measures—and exposure—building models—have 
been defined and characterized, 1160 NLDAs have been performed. The Ruaumoko soft-
ware has been used to perform the structural analyses (Carr 2000).

It has been found that there is a number of simulations in which the capacity of the 
structure to withstand gravity loads is exceeded. In other words, the outcome of the anal-
ysis indicates structural collapse. These results are considered to be governed by chaos. 
In a few words, chaos is a phenomenon in which even deterministic models may lead to 
unpredictable outcomes due to the sensitivity of the governing dynamic equations to ini-
tial conditions. It has been observed that MIDR diverges after a collapse mechanism is 
activated. This fact agrees with the behavior of chaotic systems, which are predictable for 
a short time and then become excessively random. After analysing the response of build-
ing models exhibiting collapse, it has been noticed that this short time is in the order of a 
few hundredths of a second. A deeper view on chaotic systems and their properties can 
be found in Strogatz (2018). Thus, results related to collapse have been excluded from the 
statistical analysis. These outcomes have been identified as simulations providing damage 
index of Park and Ang higher than 1 (Park and Ang 1985). In recent and current research, 
this criterion has been shown to be very efficient in detecting structural collapses (Vargas 
et al. 2019b).

Note that, if collapses were identified as those samples exceeding a MIDR limit (or 
MFA), it is recommended to split data between censored and uncensored observations (see 
for instance Jalayer and Cornell 2009; Martins and Silva 2020). For the sake of simplicity, 
samples exhibiting collapse, according to the damage index limit described above, have 
been excluded from the statistical analysis. A potential problem of this simplification is 
that a significant number of the removed samples have very similar IM values, which may 
affect the statistical analysis (Aschheim et al. 2019). To check if this problem occurs, the 
coefficient of variations of each of the IMs related to the excluded samples have been cal-
culated; the minimum observed value has been 0.23, which is significant with respect to 
the one of the entire population (0.56), meaning there is no concentration around specific 
IM values. Anyhow, note that the number of excluded simulations could be reduced if 
the superior limit of the IM for scaling the ground motion records is diminished. In addi-
tion, simulations in which PGA > 1.5 g, PGV > 3 m/s, PGD > 1 m or Sa

(

T1
)

 > 4 g have been 
also excluded from the statistical analyses. Thus, 119 (≈10%) out of the 1160 generated 
samples have been excluded from the entire dataset. Consequently, 1041 cases are used 
to perform the statistical analysis of the IMs. Of this number, 141 are results in the elastic 
domain and 900 are results in the inelastic domain.

In the following, the resulting clouds of IM-EDP points are used to analyse several sta-
tistical properties related to the data variability.
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5.1  Efficiency

Multi-regression models allow to define the optimal combination of several IV  s to explain 
an EDP. In this study, IV-EDP relationships have been characterized by means of both 
multi-linear and -nonlinear regression models in the log–log space. As with linear least 
squares, nonlinear regression is based on determining values that minimize the sum of 
the squares of the residuals. In this sense, the following general linear least-square model 
allows several types of multi-regression analysis with respect to y:

where NIV represents the number of IV  considered in the regression model; n represents the 
polynomial degree of the model; �0 , �1 , … �n∗NIV

 are the coefficients providing the best fit 
between model and data; zj are basic functions; � represents the residuals. It can easily be 
seen how polynomial regression falls within this model. That is, z1 = x , z2 = x2 , … zn = xn 
(Chapra 2017). Substituting in Eq. 7 y = lnEDP and zj =

(

ln IVi

)j , the general linear least-
square model using polynomial functions can be used to extract statistical information 
from IV-EDP pairs according to the following equation (Eq. 8):

This equation allows multi-linear (n = 1) and -quadratic (n = 2) regression models in the 
log–log space. In this way, several sources of information can be considered simultane-
ously to better predict a specific EDP. Further information regarding the development and 
implementation of this type of polynomial models in the log–log space can be found in 
Chapra (2017).

Thus, for NIV = 1 Eq. 8 adopts the following form:

IV1 becomes IM in this equation.
In terms of the residuals, � , there are several variables that can be used to quantify 

the variability of IM-EDP clouds. For instance, Ebrahimian et  al. (2015) considered the 
logarithmic standard deviation of the regression, Sy∕x , and the correlation coefficient, R2 , 
to quantify the efficiency of IMs (for a perfect fit, Sy∕x = 0 and R2 = 1, signifying that the 
adopted function explains 100% of the data variability). These two variables ( R2 and Sy∕x ) 
are used herein to provide an estimation of the variability when analysing relationships 
involving IM-EDP pairs. The higher R2 or the lower Sy∕x , the lower the variability when 
predicting some EDP given an IM.

A more well-known and structure-specific measure of efficiency is the logarithmic 
standard deviation of the fragility curve, � , called proficiency (i.e., logarithmic standard 
deviation of the regression divided by the slope of regression; see Padgett et al. (2008) and 
Ebrahimian and Jalayer (2021)). This measure has been also calculated to analyse the effi-
ciency of the IMs. Summarizing, the IM providing the highest R2  and the lowest Sy∕x and � 
is the most efficient one, in the sense that it allows reducing the variability in seismic risk 

(7)y = �0 +

NIV
∑

i=1

n
∑

j=1

�j+(i−1)∗nzj + �

(8)lnEDP = �0 +

NIV
∑

i=1

n
∑

j=1

�j+(i−1)∗n
(

ln IVi

)j
+ �

(9)lnEDP = �0 +

n
∑

j=1

�j(ln IM)j + �
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estimations. In the following, variables described in section 4 are used as basic IMs whilst 
MIDR as EDP.

Results from two types of regression models have been compared (linear and non-linear, 
i.e. n = 1 and n = 2 in Eq. 9, respectively). The reason for considering a quadratic regression 
model is that several IM-EDP pairs seem to exhibit a non-linear dependence. In this regard,  
several authors have called into question the use of linear regression when characterizing 
these pairs (e.g. Baker 2007). It has been stated that a linear relationship may not be rea-
sonable for the entire IM range of interest. To address this problem, the regression should 
be limited to the IM range where the linear form is reasonable, or piecewise linear relation-
ships may be fitted (e.g. Mackie and Stojadinovic 2003). Herein, it has been opted to fit 
a quadratic regression model. It is worth mentioning that, when an IM-EDP set indicates 
that a linear fitting is more adequate to characterize this relationship in the entire interval, 
the quadratic model automatically makes the coefficient accompanying the nonlinear term 
close to zero.

Figure 5 shows the relationships between IM-EDP pairs in the log–log space for all the 
basic IMs described in Table 2. R2 values for the linear ( R2

L
 ) and nonlinear regression mod-

els ( R2

NL
 ) are presented in this figure. Table 3 summarizes, and also complements, results 

shown in Fig. 5; subscripts ‘L’ and ‘NL’ in R2 and Sy∕x variables stand for linear and non-
linear regression model.

It can be observed that IMs related to the velocity are the ones most efficient to predict 
the MIDR of the analysed systems. It is also important to note that most of these variables 
are well fitted by both linear and nonlinear regression models. In other words, it has not 

Table 3  Summary of the statistical analysis considering as EDP to MIDR 

Results corresponding to the most efficient IM, AvSv, have been highlighted; p values higher than 0.05, 
meaning that the IM is sufficient with respect to M or ED, have also been highlighted

IM R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

Sa(T1) 0.521 0.550 0.686 0.665 1.248 0.00E + 00 1.46E−03 0.471
Sv(T1) 0.832 0.834 0.406 0.404 0.411 2.60E−10 1.01E−03 0.895
Sd(T1) 0.810 0.814 0.431 0.427 0.552 3.80E−03 1.97E−01 0.987
AvSa 0.648 0.652 0.588 0.585 0.631 0.00E+00 2.58E−06 0.527
AvSv 0.886 0.890 0.334 0.329 0.295 6.83E−10 1.47E−04 0.954
AvSd 0.852 0.854 0.380 0.379 0.451 6.53E−01 7.09E−01 0.964
VE(T1) 0.779 0.791 0.465 0.453 0.541 1.62E−01 4.10E−01 0.809
AvVE 0.855 0.855 0.377 0.377 0.365 1.90E−01 1.48E−02 0.873
PGA 0.459 0.489 0.728 0.708 0.654 0.00E+00 0.00E+00 1.015
PGV 0.850 0.850 0.384 0.384 0.341 1.76E−10 4.03E−06 0.984
PGD 0.721 0.775 0.523 0.470 0.833 6.31E−06 1.02E−02 0.986
IA 0.700 0.701 0.543 0.542 0.863 1.92E−10 8.46E−02 0.997
accRMS 0.444 0.482 0.738 0.713 0.741 0.00E+00 0.00E+00 1.016
velRMS 0.840 0.840 0.397 0.396 0.377 9.52E−07 1.65E−08 0.975
SED 0.825 0.837 0.414 0.401 0.911 9.02E−15 5.66E−11 0.966
CAV 0.655 0.675 0.582 0.565 0.593 9.73E−02 2.06E−10 0.992
Ic 0.570 0.581 0.649 0.641 0.850 0.00E+00 1.06E−12 1.003
IF 0.851 0.852 0.383 0.382 0.364 1.05E−01 5.88E−03 0.979
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been observed a significant variation of the dispersion when using any of these models. 
In any case, note that the polynomial arrangement presented in Eq.  9 allows fitting lin-
ear functions if that is what the data suggests; for these cases, �2 tends to zero. Notwith-
standing, although similar levels of variability are observed for most of the IMs used (i.e. 
between linear and nonlinear regression models), it will be shown that including the non-
linear term in the regression model strongly influences the derivation of analytical fragility 
functions. It can also be seen in Table 3 that AvSv is the IM most efficient to explain the 
MIDR.

5.2  Sufficiency

A sufficient IM makes the statistical properties of a cloud of IM-EDP pairs independent of 
other parameters related to the rupture (e.g., magnitude, M, epicentral distance, ED, etc.). 
This property can be defined through the correlation between the residuals of a cloud of 
IM-EDP pairs and the seismological parameter of interest, SP; the higher this correlation 
the lower the sufficiency of the IM.

The p value between the aforementioned residuals and SPs has been used to verify the 
sufficiency of the IMs presented in Fig. 5 (Luco and Cornell 2007). According to this, the 
p value between the residuals of each of the IM-EDP clouds have been calculated with 
respect to the magnitude ( pvM ) and epicentral distance ( pvED ); Table 3 also shows these 
results. It can be seen that most of the IMs present p values lower than 0.05, meaning 
that they are not sufficient with respect to the SP. These p values have been calculated 

Table 4  Summary of the statistical analysis considering as EDP to MIDR 

Results corresponding to the most efficient IM*, [AvSv,M], have been highlighted; p values higher than 
0.05, meaning that the IM* is sufficient with respect to M or ED, have also been highlighted

IM* R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

[Sa
(

T1
)

,M] 0.570 0.604 0.650 0.625 1.446 9.44E−01 2.73E−02 0.425
[Sv(T1),M] 0.840 0.845 0.397 0.391 0.427 8.21E−01 6.97E−01 0.891
[Sd

(

T1
)

,M] 0.812 0.820 0.430 0.421 0.569 7.62E−01 7.48E−01 0.981
[AvSa,M] 0.693 0.701 0.549 0.543 0.683 9.88E−01 1.54E−01 0.505
[AvSv,M] 0.891 0.894 0.327 0.323 0.303 7.52E−01 7.96E−01 0.957
[AvSd,M] 0.853 0.856 0.381 0.377 0.447 7.56E−01 9.14E−01 0.955
[VE(T1),M] 0.780 0.794 0.465 0.451 0.553 9.71E−01 8.75E−02 0.794
[AvVE,M] 0.855 0.856 0.377 0.377 0.359 9.84E−01 1.00E−01 0.868
[PGA,M] 0.655 0.669 0.582 0.571 0.594 9.11E−01 2.81E−01 1.012
[PGV ,M] 0.858 0.859 0.374 0.373 0.353 8.27E−01 5.58E−01 0.968
[PGD,M] 0.730 0.775 0.515 0.470 0.732 5.47E−01 8.05E−01 0.990
[IA,M] 0.716 0.721 0.528 0.524 0.931 9.79E−01 3.62E−02 1.007
[accRMS,M] 0.643 0.661 0.593 0.578 0.678 8.80E−01 9.89E−01 1.014
[velRMS,M] 0.845 0.847 0.390 0.389 0.391 9.22E−01 1.39E−02 0.964
[SED,M] 0.843 0.848 0.392 0.387 0.748 6.36E−01 5.09E−02 0.955
[CAV ,M] 0.656 0.676 0.581 0.565 0.565 8.03E−01 2.28E−08 1.004
[Ic,M] 0.666 0.678 0.573 0.563 0.888 8.81E−01 2.03E−01 1.012
[IF ,M] 0.851 0.854 0.383 0.379 0.358 6.69E−01 4.34E−02 0.970
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with respect to the residuals provided by the linear regression model. However, similar 
conclusions can be drawn when performing this operation using the quadratic regression 
approach.

Regarding the group of IMs exhibiting sufficiency, only AvSd and VE(T1) meet this con-
dition simultaneously with respect to M and ED; the most efficient of them is AvSd.

Lack of sufficiency indicates that some IMs can gain efficiency when combined in a 
multi-regression model (see Eq. 8) with the respective seismological parameter (Elefante 
et al. 2010). This is analogous to the concept of vector-valued IMs (Baker 2007). Several 
researchers have applied this sophistication to develop enhanced IMs (IM*), which con-
sist in a vector of IVs providing more efficient estimates of EDPs (Modica and Stafford 
2014; Yakhchalian et al. 2015, 2021; Bojórquez et al. 2015; Ge and Zhou 2018; Zengin and 
Abrahamson 2020). The amount of efficiency that can be gained by an IM depends on the 
correlation value between the residuals of the IM-EDP cloud and SP. The higher this cor-
relation the higher the efficiency that can be gained.

Thus, for n = 1 and NIV=2, Eq.  8 can be used to include SPs in the linear regression 
analysis as follows:

For n = 2 and NIV=2, Eq. 8 adopts the following form:

(10)ln(EDP) = �0 + �1 ∗ ln(IM) + �2 ∗ ln(SP) + �

(11)
ln(EDP) = �0 + �1 ∗ ln(IM) + �2 ∗ (ln(IM))2 + �3 ∗ ln(SP) + �4 ∗ (ln(SP))2 + �

Table 5  Summary of the statistical analysis considering as EDP to MIDR 

Results corresponding to the most efficient IM*, [AvSv,ED], have been highlighted; p values higher than 
0.05, meaning that the IM* is sufficient with respect to M or ED, have also been highlighted

IM* R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

[Sa
(

T1
)

,ED] 0.524 0.556 0.684 0.662 1.261 5.70E−14 2.40E−01 0.470
[Sv(T1),ED] 0.834 0.836 0.404 0.402 0.411 6.94E−06 4.78E−01 0.897
[Sd(T1),ED] 0.811 0.815 0.432 0.427 0.554 1.66E−02 5.78E−01 0.989
[AvSa,ED] 0.655 0.660 0.583 0.579 0.633 1.46E−15 1.81E−01 0.523
[AvSv,ED] 0.888 0.891 0.332 0.327 0.295 6.22E−05 4.65E−01 0.956
[AvSd,ED] 0.853 0.854 0.381 0.380 0.450 9.89E−01 7.73E−01 0.968
[VE(T1),ED] 0.780 0.791 0.465 0.454 0.537 2.35E−02 6.10E−01 0.810
[AvVE,ED] 0.857 0.857 0.375 0.375 0.360 7.22E−01 8.66E−01 0.871
[PGA,ED] 0.514 0.536 0.691 0.676 0.601 0.00E+00 9.72E−02 1.014
[PGV ,ED] 0.853 0.853 0.380 0.380 0.340 3.51E−04 5.02E−01 0.976
[PGD,ED] 0.725 0.775 0.520 0.470 0.812 3.48E−03 8.19E−01 0.983
[IA,ED] 0.700 0.702 0.543 0.542 0.867 5.81E−09 3.47E−01 1.000
[accRMS,ED] 0.511 0.538 0.693 0.675 0.663 0.00E+00 5.52E−02 1.012
[velRMS,ED] 0.844 0.845 0.391 0.391 0.375 6.47E−02 1.80E−01 0.969
[SED,ED] 0.839 0.846 0.398 0.390 0.840 2.74E−05 9.64E−01 0.961
[CAV ,ED] 0.681 0.692 0.560 0.550 0.525 1.27E−01 9.09E−01 0.989
[Ic,ED] 0.591 0.601 0.634 0.627 0.835 0.00E+00 1.25E−01 1.007
[IF ,ED] 0.852 0.853 0.381 0.380 0.358 9.57E−01 9.01E−01 0.973
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According to these arrangements, R2 , Sy∕x and � are newly calculated by substituting SP 
for M and ED in Eqs. 10 and 11; Tables 4 and 5 show these results, respectively. Note that 
the proficiency terms ( �) coming from multiple regression models have been calculated by 
considering that the slope of the linear regression analysis is �1 in Eqs. 10 and 11.

It is important to note that several of the IM*s considering to M in the arrangement 
presented in Eqs. 10 or 11 become sufficient with respect to ED; this is not that clear when 
considering ED in these equations (i.e. the resultant vector-valued IM is not sufficient with 
respect to the magnitude, see Table 5).

According to Tables 4 and 5, some IM*s could gain even more efficiency if an enhanced 
arrangement combining both M and ED together with the basic IM is used (i.e., NIV=3; 
n = 1, 2 in Eq. 8). For n = 1, the following linear regression model has been employed:

for the quadratic regression case (i.e. n = 2):

Table 6 shows the statistical properties of the IM*s by using the regression models pre-
sented in Eqs. 12 and 13. p values have been calculated again by considering the linear 
regression model. � has been calculated by using �1 as the slope of the linear regression 

(12)ln(EDP) = �0 + �1 ∗ ln(IM) + �2 ∗ ln(M) + �3 ∗ ln(ED) + �

(13)
ln(EDP) =�0 + �1 ∗ ln(IM) + �2 ∗ (ln(IM))2 + �3 ∗ ln(M)

+ �4 ∗ (ln(M))2 + �5 ∗ ln(ED) + �6 ∗ (ln(ED))2 + �

Table 6  Summary of the statistical analysis considering as EDP to MIDR 

Results corresponding to the most efficient IM*, [AvSv,M,ED], have been highlighted; p values higher than 
0.05, meaning that the IM* is sufficient with respect to M or ED, have also been highlighted

IM* R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

[Sa
(

T1
)

,M,ED] 0.579 0.613 0.644 0.618 1.493 9.83E−01 5.62E−01 0.415
[Sv(T1),M,ED] 0.840 0.846 0.397 0.391 0.430 8.11E−01 6.87E−01 0.893
[Sd(T1),M,ED] 0.813 0.821 0.430 0.421 0.573 7.54E−01 6.87E−01 0.979
[AvSa,M,ED] 0.697 0.706 0.546 0.539 0.696 9.58E−01 4.64E−01 0.497
[AvSv,M,ED] 0.891 0.894 0.327 0.323 0.304 7.50E−01 6.41E−01 0.958
[AvSd,M,ED] 0.853 0.856 0.381 0.377 0.448 7.54E−01 7.55E−01 0.952
[VE(T1),M,ED] 0.783 0.797 0.463 0.448 0.560 1.00E+00 7.31E−01 0.795
[AvVE,M,ED] 0.857 0.857 0.376 0.375 0.362 9.90E−01 8.85E−01 0.867
[PGA,M,ED] 0.658 0.675 0.580 0.567 0.607 8.88E−01 4.82E−01 1.019
[PGV ,M,ED] 0.858 0.859 0.374 0.373 0.353 8.24E−01 6.91E−01 0.971
[PGD,M,ED] 0.730 0.775 0.515 0.471 0.735 5.50E−01 6.78E−01 0.994
[IA,M,ED] 0.722 0.729 0.523 0.517 0.946 9.84E−01 6.12E−01 1.012
[accRMS,M,ED] 0.644 0.664 0.592 0.576 0.690 8.69E−01 3.24E−01 1.021
[velRMS,M,ED] 0.846 0.847 0.390 0.389 0.385 9.03E−01 2.40E−01 0.969
[SED,M,ED] 0.846 0.850 0.390 0.385 0.754 6.68E−01 7.45E−01 0.959
[CAV ,M,ED] 0.684 0.702 0.558 0.542 0.553 8.79E−01 8.33E−01 1.001
[Ic,M,ED] 0.671 0.686 0.570 0.557 0.907 8.56E−01 4.48E−01 1.017
[IF ,M,ED] 0.853 0.855 0.381 0.378 0.361 6.96E−01 8.78E−01 0.971
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arrangement. It is worth noting that, for all the multi-regression models used, AvSv has 
been present in the vector that forms the most efficient IM*.

5.3  Steadfastness

In Table 3, it can be seen that, except for AvSa, IMs defined in terms of average spectral 
values are best-correlated with MIDR. In general, IMs related to the spectral acceleration 

Fig. 6  Steadfastness analysis. Left: R2 , S
y∕x and � values for buildings grouped according to the number of 

storeys. Right: R2 , S
y∕x and � values for buildings grouped according to the accumulated number of stories. 

The EDP analysed has been MIDR 
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do not correlate well with MIDR. To further analyse this somehow unexpected result, 
data- efficiency measures-have been recalculated by creating sub-categories according to 
the number of stories (see Fig. 6, left). Hence, R2 , Sy∕x and � values have been obtained by 
using the quadratic regression model.

A significant increase of R2 , as well as a reduction of Sy∕x and � values, can be seen for 
AvSa. In other words, the efficiency of AvSa has increased considerably, yet AvSv is best 
correlated with MIDR for most of the disaggregated structures. For low-rise structures—3- 
and 4-storey buildings—the most efficient IM is AvSd; for high-rise buildings—12- and 
13-stories—AvVE is the most efficient one.

The fact that, when simultaneously analysing IM-EDP pairs coming from building mod-
els with different number of stories, an IM loses efficiency is a potential problem, since 
a higher number of structural calculations is required for obtaining reliable seismic risk 
estimations at urban level. In this article, when an IM or an IM* does not lose efficiency 
when aggregating results of buildings with different properties, it is catalogued as stead-
fast. Another way to see steadfastness is to think about sufficiency, that is, a steadfast IM is 
sufficient with respect to the parameter analysed, in this case, number of stories.

To analyse the steadfastness of IMs based on average spectral values, buildings with 
different number of stories have been progressively aggregated. Figure  6 (Right) shows 
the evolution of R2 , Sy∕x and � values when aggregating buildings whose number of stories 
increases. In other words, an abscissa value corresponds to those buildings whose number 
of stories is equal to or less than it. An abscissa of 9, for instance, represents a subgroup 
of buildings having 9 stories or less. This way, R2 , Sy∕x or � corresponding to an abscissa 
value of 3 are the same in Fig. 6, left and right. Also, when the abscissa is 13 in Fig. 6 
(Right), parameters related to the efficiency are the same as those shown in Table 3 for the 
corresponding IM.

In Fig. 6 (Right), it can also be seen that AvSa shows certain steadfastness when build-
ings holding 3 to 6-stories are grouped. This result is consistent with the approach fol-
lowed by  several methods for seismic risk analysis which groups, in different structural 
types, those buildings sharing similar number of stories. For instance, in previous seismic 
risk studies (see, for instance, Lantada et al. 2009), RC Low-, Mid- and High-rise building 
types, having 1 to 3, 4 to 6 and more than 6 stories, respectively, have been used to perform 
seismic risk estimations. This sort of grouping allows using the same fragility function for 
every building belonging to the same typology when estimating, for instance, the exceed-
ance probability of a certain damage level.

AvSv, AvSd and AvVE are variables less prone to lose efficiency when grouping struc-
tures having different number of stories. Therefore, these IMs are candidates for consider-
ably reducing the number of structural calculations when estimating seismic risk, since the 
same fragility function may represent an important variety of buildings (even the entire set 
analysed in this research, if desired) no matter the number of stories. For instance, classical 
Low- Mid- and High-rise typologies could be grouped within a comprehensive structural 
typology based on AvSv, which is not only the most efficient but also one of the IMs show-
ing stability; it means that this IM is steadfast.

A simplified way to measure steadfastness is to quantify how much the efficiency 
decreases when grouping a set of buildings of different properties. To do so, the profi-
ciency measure, � , has been selected in this article to estimate steadfastness. Thus, for a 
set of buildings, whose number of stories vary from I to S, the ratio between the average of 
the proficiency values for buildings grouped according to the number of stories, �NST

 , and 
the proficiency estimated from the entire set of buildings, �I−S , is proposed as a measure of 
steadfastness (see Eq. 13).
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where �NST
 is a vector of I-S+1 elements containing � values calculated by grouping the 

structures according to the number of stories (see Fig. 6, left). Thus, �3−13 provides an esti-
mation of the amount of efficiency losses by an IM, when grouping buildings from I = 3 to 
S = 13 stories, with respect to subgroups of structures sharing the same number of stories. 
In this way, if �I−S is close to one, it means that the IM is steadfast for grouping buildings 
from I to S number of stories.

Tables 3, 4, 5 and 6 (last columns) show the steadfastness estimation for all the basic 
IMs described in Sect. 4, and their vector-valued versions. It can be seen that Sa(T1) and 
AvSa are the IMs showing the lowest steadfastness of the analysed group.

It is worth mentioning that the scaling criteria used in this article (see Sect. 3) allows 
reaching similar demand levels for building models grouped according to number of sto-
ries. Meaning, if percentiles 5, 50 and 95 of the MIDR distribution are calculated by group-
ing data based on the number of stories, similar values are observed (see Fig. 7).

5.4  Saavg versus AvSa

Several researchers have proven that it is more efficient to use an IM based on the geomet-
ric mean of spectral acceleration values around the fundamental period, Saavg , than Sa

(

T1
)

 , 
(Bianchini et  al. 2009; Bojórquez and Iervolino 2011; Kazantzi and Vamvatsikos 2015; 
Eads et al. 2015; Adam et al. 2017). Note that Saavg is analogous to AvSa since both IMs 
use averaged spectral acceleration ordinates over a period range around the fundamental 
period of the structure. The main difference between them is that Saavg uses the geometric 
mean whilst AvSa the arithmetic one. In this section, both IMs are compared in terms of 
efficiency and steadfastness. Figure 8 (Left) shows R2 , Sy∕x and � values by grouping build-
ings according to the number of stories for AvSa and Saavg.

In terms of R2 and Sy∕x , it can be seen that for low-rise buildings (from 3 to 5 stories), 
the MIDR tends to exhibit less variability when predicted by Saavg ; for higher buildings, 
AvSa is the IM providing less variability. In terms of � , only for 3-storey buildings Saavg 
produces less dispersion than AvSa. Regarding steadfastness, Fig. 8 (Right) shows the evo-
lution of the efficiency-related parameters when grouping buildings of different number of 
stories; all variables indicate that Saavg loses more efficiency than AvSa.

(14)�I−S =
�NST

�I−S

Fig. 7  Percentiles 5, 50 and 95 
for the MIDR distribution as a 
function of the number of stories
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The comparison between the use of arithmetic versus geometric mean has also  been 
performed by considering AvSd, AvSv and AvVE; similar conclusions have been found. For 
these reasons, throughout this article, it has been preferred to analyse the evolution of aver-
age-based IMs using the arithmetic mean rather than the geometric one.

5.5  ¿Why velocity‑related IMs are more efficient to predict the MIDR?

Along this study, it has been shown that velocity- and energy-based IMs have the highest 
explanatory capacity in the above statistical relationships; that is, the maximum efficiency 
and steadfastness to predict MIDR. It seems reasonable to wonder why these IMs are better 

Fig. 8  Efficiency and steadfastness comparison between AvSa and Sa
avg
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proxies than the rest of them. To think about this question, let us consider two single peak 
triangular acceleration inputs, üg(t) , having the same PGA but different durations (Fig. 9).

While the maximum input force is the same, i.e. PGA times the mass m, the total input 
force is:

This integral equals the PGV that is obtained at the end of the interval, multiplied by the 
mass. Therefore, despite the maximum force for the two peaks is the same, the total input 
force is larger for the one having the largest PGV, which corresponds to the dashed line in 
Fig. 9. In other words, while PGA is associated to the maximum force, PGV represents the 
total input force; in this case, in a half cycle. Since the deformation of a structure is more 
related to the total input force, it is to be expected that IMs based on velocity are better 
predictors of the MIDR than those based on acceleration. Further insight into this fact and 
into their mutual relationship can be gained by considering the input energy, EI , which is 
rewritten herein for the sake of convenience:

Integrating by parts Eq. 16 yields:

which can be put in the form:

since du̇ = üdt.
In Eq.  18, the first term is an oscillatory function around zero energy. The backbone 

curve of the energy is constituted by the integral term, which gives the increasing compo-
nent of the energy input. Recall that u̇g is related to the ground motion while u̇ is related 
to the structural response. Be it as it may, the meaning of the last presentation of the input 
energy with its two terms is clear: the energy input can be expressed solely in terms of the 

(15)∫
t2

t1

mügdt = ∫
PGV

0

mdu̇g = mPGV

(16)EI = −m∫
t

0

ügu̇dt

(17)EI = −m

[

u̇gu̇ − ∫
t

0

u̇güdt

]

(18)EI = −m

[

u̇gu̇ − ∫
t

0

u̇gdu̇

]

Fig. 9  Two single peak triangular 
acceleration inputs; same PGA, 
different durations
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Table 7  Summary of the statistical analysis considering as EDP to MFA 

Results corresponding to the most efficient IM, PGA , with respect to MFA have been highlighted; p values 
higher than 0.05, meaning that the IM is sufficient with respect to M or ED, have also been highlighted

IM R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

Sa(T1) 0.239 0.396 0.456 0.407 2.321 4.20E−01 2.99E−03 0.639
Sv(T1) 0.491 0.658 0.373 0.306 0.929 2.66E−10 5.69E−07 0.965
Sd(T1) 0.367 0.540 0.416 0.355 1.497 8.02E−07 3.48E−06 1.021
AvSa 0.521 0.594 0.362 0.333 0.822 1.97E−06 4.68E−05 0.662
AvSv 0.602 0.699 0.330 0.287 0.671 0.00E+00 8.04E−10 0.992
AvSd 0.401 0.580 0.405 0.339 1.325 2.81E−11 3.94E−08 1.005
VE(T1) 0.391 0.616 0.408 0.324 1.268 2.19E−10 5.26E−09 0.924
AvVE 0.512 0.657 0.365 0.307 0.866 0.00E+00 9.84E−15 0.965
PGA 0.845 0.871 0.206 0.188 0.258 2.07E−08 3.48E−05 0.990
PGV 0.601 0.713 0.330 0.281 0.659 0.00E+00 2.53E−08 0.988
PGD 0.294 0.550 0.439 0.351 2.078 1.10E−11 1.51E−08 0.993
IA 0.759 0.794 0.257 0.238 0.743 0.00E+00 0.00E+00 0.985
accRMS 0.803 0.839 0.232 0.210 0.328 5.39E−08 2.10E−09 0.989
velRMS 0.580 0.700 0.339 0.286 0.734 0.00E+00 2.00E−06 0.986
SED 0.412 0.662 0.401 0.304 2.363 0.00E+00 3.55E−16 0.991
CAV 0.480 0.638 0.377 0.315 0.849 0.00E+00 0.00E+00 0.994
Ic 0.820 0.842 0.222 0.208 0.458 4.07E−11 5.94E−04 0.986
IF 0.506 0.684 0.368 0.294 0.859 0.00E+00 5.00E−15 0.991

Table 8  Summary of the statistical analysis considering as EDP to MFA 

Results corresponding to the most efficient IM*, [PGA,M], have been highlighted; p values higher than 
0.05, meaning that the IM* is sufficient with respect to M or ED, have also been highlighted

IM* R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

[Sa
(

T1
)

,M] 0.239 0.399 0.457 0.406 2.278 7.71E−01 7.79E−03 0.548
[Sv(T1),M] 0.516 0.666 0.364 0.303 0.795 8.68E−01 1.90E−01 0.960
[Sd

(

T1
)

,M] 0.388 0.545 0.410 0.353 1.260 8.86E−01 9.24E−02 1.010
[AvSa,M] 0.532 0.602 0.358 0.330 0.754 8.12E−01 1.54E−01 0.599
[AvSv,M] 0.644 0.717 0.312 0.279 0.545 8.88E−01 4.93E−01 0.999
[AvSd,M] 0.439 0.588 0.392 0.336 1.035 8.78E−01 1.54E−01 0.988
[VE(T1),M] 0.424 0.620 0.397 0.323 1.008 7.69E−01 2.98E−02 0.900
[AvVE,M] 0.583 0.673 0.338 0.299 0.620 7.57E−01 6.43E−02 0.959
[PGA,M] 0.850 0.874 0.203 0.186 0.258 9.81E−01 2.74E−01 0.988
[PGV ,M] 0.640 0.730 0.314 0.272 0.543 6.52E−01 7.78E−01 0.995
[PGD,M] 0.351 0.559 0.422 0.348 1.352 5.53E−01 2.13E−01 1.010
[IA,M] 0.836 0.852 0.212 0.201 0.510 7.12E−01 1.11E−01 0.992
[accRMS,M] 0.809 0.842 0.229 0.208 0.329 9.55E−01 2.34E−03 0.990
[velRMS,M] 0.624 0.719 0.321 0.278 0.589 7.14E−01 3.33E−01 0.995
[SED,M] 0.517 0.674 0.364 0.299 1.411 5.89E−01 3.14E−02 1.001
[CAV ,M] 0.627 0.695 0.320 0.290 0.458 5.84E−01 1.59E−09 1.006
[Ic,M] 0.829 0.851 0.217 0.202 0.431 9.79E−01 7.38E−01 0.992
[IF ,M] 0.575 0.698 0.341 0.288 0.617 5.86E−01 3.74E−02 1.000
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ground and structural velocities. This fact may help understand why velocity-based IMs 
are good descriptors of inelastic structural responses and damage represented in terms of 
the deformation field of the structure.

According to the previous rationalization, one would expect that EDPs related to the 
maximum acceleration exhibited by the structure are better predicted by acceleration-based 
IMs than velocity-based ones. For instance, MFA, which is an EDP highly associated to 
damage in non-structural components (Elenas and Meskouris 2001), is better described by 
IMs based on acceleration than velocity (see Fig. 10). In this figure can be seen that the 
IM most able to explain MFA is the PGA. It can also be seen that the quadratic regression 
model fits much better the cloud of points than the linear one. Tables 7, 8, 9 and 10 present 
statistical results regarding properties like efficiency, sufficiency and steadfastness  given 
that the EDP is MFA.

As a matter of example, the steadfastness evolution of the most efficient IMs to predict 
MFA are presented in Fig. 11. It is also shown the evolution of AvSa which, again, exhib-
its moderate efficiency to predict the response of buildings sharing the same number of 
stories. However, this efficiency is lost when grouping a limited variety of buildings with 
different number of stories. In other words, this IM is not steadfast with respect to MFA.

In terms of sufficiency, when the EDP is MFA, Sa(T1) is the only IM exhibiting this 
statistical property with respect to M (none of the IMs has shown efficiency with respect to 
ED). For this reason, the statistical properties of Sa(T1) remain similar when integrated into 
more advanced vector-valued arrangements. Note that the lower the p value of the basic IM 
the higher the efficiency gained with the advanced IM*s.

Table 9  Summary of the statistical analysis considering as EDP to MFA 

Results corresponding to the most efficient IM*, [PGA,ED], have been highlighted; p values higher than 
0.05, meaning that the IM* is sufficient with respect to M or ED, have also been highlighted

IM* R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

[Sa
(

T1
)

,ED] 0.248 0.402 0.454 0.405 2.237 2.64E−01 8.31E−01 0.632
[Sv(T1),ED] 0.505 0.666 0.368 0.303 0.896 5.68E−04 3.64E−01 0.968
[Sd(T1),ED] 0.383 0.546 0.411 0.353 1.427 2.10E−02 4.60E−01 1.017
[AvSa,ED] 0.531 0.603 0.359 0.330 0.801 3.21E−02 6.51E−01 0.660
[AvSv,ED] 0.618 0.710 0.324 0.282 0.643 7.91E−09 2.36E−01 0.998
[AvSd,ED] 0.422 0.587 0.398 0.337 1.245 2.55E−04 3.64E−01 1.004
[VE(T1),ED] 0.417 0.623 0.400 0.322 1.173 1.68E−03 4.10E−01 0.923
[AvVE,ED] 0.547 0.670 0.352 0.301 0.787 1.25E−09 2.11E−01 0.968
[PGA,ED] 0.849 0.873 0.203 0.187 0.253 2.52E−02 9.58E−01 0.992
[PGV ,ED] 0.614 0.723 0.325 0.276 0.639 1.81E−09 2.36E−01 0.990
[PGD,ED] 0.323 0.554 0.431 0.350 1.869 5.31E−05 4.34E−01 0.993
[IA,ED] 0.792 0.824 0.239 0.220 0.665 0.00E+00 1.33E−01 0.986
[accRMS,ED] 0.813 0.844 0.227 0.207 0.316 3.35E−01 6.10E−01 0.991
[velRMS,ED] 0.590 0.709 0.335 0.283 0.714 1.07E−10 4.41E−01 0.990
[SED,ED] 0.464 0.672 0.383 0.300 2.023 1.71E−10 2.69E−01 0.993
[CAV ,ED] 0.582 0.687 0.339 0.293 0.637 1.77E−16 8.21E−02 0.993
[Ic,ED] 0.823 0.847 0.220 0.205 0.454 1.31E−05 6.02E−01 0.989
[IF ,ED] 0.541 0.697 0.355 0.288 0.780 9.42E−10 1.70E−01 0.993



2355Bulletin of Earthquake Engineering (2022) 20:2329–2365 

1 3

6  Linear versus quadratic regression analysis to derive fragility curves

From sets of IM-EDP points, it is possible to derive fragility functions according to the 
cloud analysis approach (Jalayer et al., 2015). This methodology requires to calculate the 
best fit curve between a set of IM-EDP realizations in the log–log space. The resultant 
curve is used to estimate the median of a parametric statistical distribution, given an IM 
value. The variability of this parametric distribution is estimated as the logarithmic stand-
ard deviation of the regression ( Sy∕x) . In this way, the probability of exceeding a certain 
damage threshold given an IM value can be calculated. These thresholds are particular 
realizations of the engineering demand parameter under consideration, EDPC. Certainly, 
the variability of the fragility functions is directly related to the dispersion of the IM-EDP 
points. The higher this dispersion the higher the uncertainty when defining whether the 
structure presents one specific damage state or another. That is why it is important to iden-
tify efficient IMs.

In general, the aforementioned fitting is performed using linear regression analysis. 
However, as shown in Fig.  5, some IM-EDP clouds are slightly better represented by a 
quadratic regression analysis; in the case of MFA (see Fig.  10), this tendency is much 
clearer.

Figure 12 (Left) shows the linear and nonlinear fittings in the log–log space given the 
IM-EDP relationship between AvSv and MIDR. While no significant changes are observed 
with respect to Sy∕x (0.334 for the linear and 0.329 for the nonlinear fitting), probabilities 
provided by the fragility functions are affected because of the regression analysis type. In 

Table 10  Summary of the statistical analysis considering as EDP to MFA 

Results corresponding to the most efficient IM*, [PGA,M,ED], have been highlighted; p values higher than 
0.05, meaning that the IM* is sufficient with respect to M or ED, have also been highlighted

IM* R
L

2
R
NL

2 Sy∕x
L

Sy∕x
NL

� pv
M

pv
ED

�3−13

[Sa
(

T1
)

,M,ED] 0.251 0.408 0.453 0.404 2.395 8.02E−01 7.41E−01 0.535
[Sv(T1),M,ED] 0.517 0.668 0.364 0.302 0.803 8.75E−01 5.01E−01 0.964
[Sd(T1),M,ED] 0.390 0.547 0.409 0.353 1.288 8.99E−01 5.62E−01 1.015
[AvSa,M,ED] 0.534 0.605 0.358 0.330 0.764 8.27E−01 7.70E−01 0.591
[AvSv,M,ED] 0.644 0.718 0.312 0.279 0.544 8.86E−01 4.24E−01 1.004
[AvSd,M,ED] 0.440 0.590 0.392 0.336 1.050 8.87E−01 5.05E−01 0.990
[VE(T1),M,ED] 0.428 0.624 0.396 0.322 1.030 7.89E−01 5.37E−01 0.902
[AvVE,M,ED] 0.584 0.676 0.338 0.299 0.626 7.70E−01 3.74E−01 0.961
[PGA,M,ED] 0.851 0.874 0.203 0.186 0.255 9.64E−01 8.12E−01 0.997
[PGV ,M,ED] 0.640 0.730 0.314 0.273 0.540 6.45E−01 4.21E−01 1.002
[PGD,M,ED] 0.352 0.562 0.422 0.347 1.378 5.65E−01 6.03E−01 1.016
[IA,M,ED] 0.836 0.853 0.212 0.201 0.512 7.23E−01 4.14E−01 0.997
[accRMS,M,ED] 0.813 0.844 0.227 0.207 0.318 9.84E−01 6.67E−01 0.999
[velRMS,M,ED] 0.626 0.719 0.321 0.278 0.578 6.96E−01 7.96E−01 1.005
[SED,M,ED] 0.520 0.678 0.363 0.298 1.433 6.09E−01 4.72E−01 1.007
[CAV ,M,ED] 0.649 0.711 0.311 0.282 0.450 6.37E−01 1.56E−01 1.003
[Ic,M,ED] 0.829 0.851 0.217 0.202 0.430 9.85E−01 8.71E−01 0.997
[IF ,M,ED] 0.577 0.701 0.341 0.287 0.623 6.00E−01 2.93E−01 1.006
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order to assess how much this probability of exceedance may vary, in Fig. 12 (Right) are 
compared fragility functions for AvSv using linear and nonlinear curves as best fit. The 
damage threshold to be exceeded is MIDRC = 0.02; this threshold can be related to a dam-
age state identified as extensive. In this figure is also shown the absolute value of the dif-
ference between both curves (Blue dashed line). This function shows that the difference in 
probability may reach values in the order of 0.22.

Note that using a quadratic function can bring out problems when estimating probabili-
ties of exceedance before the minimum or after the maximum value of the parabola (in the 

Fig. 11  Steadfastness analysis. Left: R2 , S
y∕x and � values for buildings grouped according to the number of 

stories. Right: R2 , S
y∕x and � values for buildings grouped according to the accumulated number of stories. 

The EDP analysed has been MFA 
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Fig. 12  Left: linear and nonlinear fitting considering AvSv as IM and MIDR as EDP. All the data have been 
included in the regression analyses. Right: Fragility curves considering both fittings; the blue dashed line 
indicates the abolute value of the difference in probabilities between both fragility functions

Fig. 13  Left: linear and nonlinear fittings considering AvSa as IM and MIDR as EDP. All the data have 
been considered in the regression analyses. Right: Fragility curves considering both fittings; the blue 
dashed line indicates the abolute value of the difference in probabilities between both fragility functions

Fig. 14  Left: linear and nonlinear fittings considering AvSa as IM and MIDR as EDP. Only mid-rise struc-
tures have been considered in the regression analyses. Right: Fragility curves considering both fittings; the 
blue dashed line indicates the abolute value of the difference in probabilities between both fragility func-
tions
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case of parabolas that open downwards). In Fig.  12, for instance, the quadratic function 
providing the best fit is a vertical parabola opening upwards. This parabola has its mini-
mum value in a point located in the log–log space at (-12.0779, -12.1363) which, in the lin-
ear space, corresponds to (5.6837e-06 m/s, 5.3613e-06). In practical terms, the minimum 
value of the parabola fitted to the data (Fig. 12, left) will not produce significant problems, 
since there are no damage states associated with such small MIDR values.

If the IM-EDP relationship is analysed considering AvSa as IM, the resultant curve, 
given a nonlinear regression analysis, is a vertical parabola opening downwards (See 
Fig.  13, left). Its maximum value in the log–log space is located at (9.9796, -1.8129) 
which, in the linear space, corresponds to a point located at (2.1582e + 04 g, 0.1632). In 
practical terms, it is unlikely to have such extreme acceleration values, or this MIDR with-
out reaching collapse. In Fig.  13 (Right) fragility functions for AvSa are derived using 
as best fit linear and nonlinear curves. The damage threshold to be exceeded is again 
MIDRC = 0.02. In this figure is also shown the absolute value of the difference between 
both curves (Blue dashed line). This function indicates that the difference in probability 
may reach values in the order of 0.23.

Fragility curves considering AvSa clearly reflect the high dispersion of this IM-EDP 
relationship when all the data are analysed simultaneously. This makes the identification 
of damage states more uncertain. However, as commented above, if subcategories are cre-
ated by grouping buildings of similar stories, the dispersion between AvSa-MIDR pairs is 
reduced and, consequently, the quality of the fragility functions based on AvSa improves. 
For instance, Fig. 14 (Left) shows the linear and nonlinear regression fittings when con-
sidering data associated to RC mid-rise structures, i.e. building models ranging from 4 to 
6 stories. A substantial reduction of the dispersion can be observed, which turns into an 
improvement of the quality of the fragility function (Fig. 14, right); for the nonlinear fitting, 
Sy∕x has decreased from 0.585, when all data is considered, to 0.415 for this subcategory.

In Fig.  14, it is also important to observe that the absolute value of the difference 
between the fragility functions (Blue dashed  line) has reduced. This line shows that the 
difference in probability may reach values in the order of 0.15. Also, the resulting parabola 
now opens upwards.

In spite of the reduction of Sy∕x observed in Fig. 14 (Right), if fragility functions were 
derived for the same typology (mid-rise buildings) considering AvSv as IM, Sy∕x are 0.31 
and 0.303 for the linear and nonlinear fittings, respectively. This indicates, again, the supe-
rior efficiency of IMs based on spectral velocity quantities to predict EDPs related to the 
deformation field of the structure.

7  Discussion

Variables related to the acceleration response of SDoF systems are commonly used in seis-
mic design or risk assessment of civil structures. For instance, when applying the response 
spectrum method, which is one of the most invoked tools for seismic design, the accelera-
tion design spectrum is commonly used to estimate seismic-induced forces. This approach 
is practical since most of the structural analysis techniques are applications based on the 
Newtonian-force concept. That is, the effects of equivalent static forces of various origin, 
static or even dynamic, are linearly combined to verify a number of stress conditions. In 
the case of seismic risk assessment, IMs based on the spectral acceleration have been com-
monly used to quantify the variability in the structural response. However, as demonstrated 
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in this article, the seismic response and damage of structural elements can be better related 
to the energy entering into them than to the forces exerted upon them (this is true when the 
damage is quantified through EDPs associated to the deformation field of the structure). 
It is important to note that this energy can be regarded as a function of the velocity of the 
system, as shown in Eq. 18. Therefore, results presented in this article indicate that earth-
quake design projects, as well as seismic risk assessments, would be more reliable if they 
were tied to IMs based on spectral displacement, velocity or equivalent velocity rather than 
acceleration. For instance, when analysing buildings according to the number of storeys, 
AvSv has shown to diminish Sy∕x for RC structures ranging from 5 to 11 storeys; AvSd not 
only minimizes Sy∕x for rigid structures (3- and 4-storey buildings) but it is also sufficient 
with respect to M and ED; the most efficient IM for high-rise (12- and 13-storey buildings) 
is AvVE. For design purposes, the outcomes of the present statistical analysis should allow 
a better quantification of the safety factors when acting loads are combined.

As discussed throughout this article, an ‘ideal’ IM should exhibit efficiency, sufficiency 
and steadfastness. The sufficiency property is the most difficult to fulfil for the 18 basic 
IMs presented herein. However, multiple regression models allow to overcome this issue. 
Thus, considering linear regression analysis for the sake of simplicity, the following IM* 
meets all the statistical properties described in this article for an ‘ideal’ IM, when predict-
ing MIDR:

 and for predicting MFA:

These IM*s have been derived by considering coefficients given by Eq.  10. In both 
arrangements, the exponential of the independent term (e�0 ) has been set to 1; also, �1 and 
�2 have been normalized by �1.

In the context of earthquake engineering, probabilistic seismic hazard analysis (PSHA, 
Cornell 1968) has been and is the reference method to know about the seismic hazard 
on a site; see for instance Baker (2008). This method has been widely used for almost 
50 years in many applications of the earthquake engineering (Mulargia et al. 2017). How-
ever, a number of researchers have questioned the validity of PSHA to properly quantify 
the expected seismic actions in urban environments, since many damaging earthquakes 
have occurred in regions rated as relatively low-risk areas (Stein et al. 2012; Mulargia et al. 
2017). In this sense, using an IM highly correlated to the structural response, and revisit-
ing some hypotheses of the PSHA with respect to the spatiotemporal distribution of earth-
quakes, could help improve the accuracy in seismic risk estimations. Note that some IMs 
based on average spectral values presented in this study can be easily incorporated within 
the conceptual framework of the PSHA. To do so, it would be necessary to develop ground 
motion predictive models to estimate the mean and dispersion values of these IMs. It is 
quite likely that, because of the steadfastness showed by them, the ground motion predic-
tive models would be less dependent on the fundamental period of the system. Recently, 
Kohrangi et al. (2017) and Davalos and Miranda (2018) have presented ground motion pre-
dictive models for Saavg.

(19)AvSv ∗ M0.48

(20)PGA ∗ M0.29
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8  Conclusions

Advanced methodologies to quantify the probability of occurrence of a certain seismic 
damage state in buildings are based on the analysis of IM-EDP relationships. These rela-
tionships should be obtained using NLDA, since this is the most comprehensive numerical 
tool to estimate the dynamic behavior of a structure. It is also important to consider the 
main sources of uncertainty involved in seismic analysis. Therefore, a relevant objective for 
seismic engineering is to find which IM is the most capable of predicting a specific EDP. 
Identifying this IM will contribute to reducing uncertainties when quantifying seismic risk 
of the building stock in both rural and urban environments. This reduction is one of the 
key aspects to mitigating seismic risk worldwide, since stakeholders as well as policy- and 
decision- makers could prioritize actions to eradicate this risk based on more reliable esti-
mations. The primary goal of this article has been to identify the most efficient IMs to pre-
dict MIDR and MFA. Other desirable properties expected in an ‘ideal’ IM like sufficiency 
and steadfastness have been also quantified. A set of 18 basic IMs was considered in the 
analysis; some of them are original proposals of this research.

The building stock in rural and urban environments is composed of very different struc-
tural typologies (Martins and Silva 2020). Materials, configuration, asymmetry level, and 
rise are physical properties generally considered to define these typologies. This is because 
when they vary, it is expected that  the bivariate distribution of IM-EDP pairs also does. 
This fact demands the definition of a wide variety of structural types in order to include all 
the observed buildings in contemporary human settlements. However, this number of types 
can be reduced by employing IMs insensitive to variations of some of the aforementioned 
physical properties. This independence can be measured by means of a statistical prop-
erty identified herein as steadfastness. An IM that exhibits steadfastness allows grouping 
several building types without significantly increasing the dispersion of the data. Hence, 
for instance, the same fragility function can be used to quantify damage to a wide variety 
of structures, which turns into a reduction of the number of calculations when estimating 
seismic risk. In other words, these IMs allow grouping a large variety of buildings within 
an enhanced structural type, since the dispersion of the IM-EDP pairs remains stable. For 
instance, similar R2 , Sy∕x and � values have been observed whether results are grouped by 
the number of stories or not. This has been detected after quantifying the steadfastness of 
several IMs to predict MIDR and MFA, in the face of variations of the number of stories. 
Further research should be oriented to verify if these IMs also exhibit steadfastness for 
other structural types such as steel, masonry or wood buildings. The seismic response of 
other types of infrastructure can also be analysed with these enhanced IMs (Pinyol et al. 
2021).

One of the most comprehensive approaches that currently exists for the derivation of 
fragility functions is the cloud analysis (Jalayer et  al. 2015). This procedure is based on 
the statistical analysis of a cloud of IM-EDP points. A key matter of this procedure is the 
type of regression analysis employed to represent the mean curve of the cloud. This article 
has compared the use of linear and nonlinear regression models; differences in the order of 
0.2 in probability have been observed. In the author’s view, fragility curves obtained when 
adjusting a nonlinear model will more adequately represent the structural performance 
when the IM varies. However, attention should be paid to the maximum or minimum val-
ues of the fitted parabola to avoid calculating unrealistic probabilities.

Regarding IMs obtained from direct computations of the ground motion record, it 
has also been shown that those related to the velocity are the most efficient to predict 
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the MIDR; in the case of the MFA, IMs related to acceleration play this role. Note that 
these IMs do not depend on the dynamic properties of the analysed structures. This fact 
implies that buildings holding very different structural properties can be analysed using 
the same fragility function. In other words, these IMs are steadfast according to the defi-
nition presented in this research. However, it has to be said that they generally produce 
more dispersion than those considering structural properties.

It has been observed that the effectiveness of insufficient IMs may increase when 
they are combined in a multi-regression model  with seismological parameters like M 
and ED. Based on this concept, it would be of interest to analyse if new improved IM*s 
can be developed using other IVs (for instance the ones presented in Table 1 or those 
described in Sect. 2.2). In this respect, polynomial regression models allow much bet-
ter fits to some EDPs (e.g. MFA) than linear regression ones. This sophistication in the 
regression-model-type may help increase the accuracy in predictions of EDPs.

EDPs are important variables to consider when assessing seismic risk. They should 
describe as best as possible the expected damage of a structure. MIDR and MFA have 
been considered as EDPs in this research. They are related to the damage state of a 
single story (the one exhibiting the highest demand), but they may fail in describing 
the global damage state of the structure. Other EDPs like the damage index of Park 
and Ang (1985), which considers the response of all the structural elements should be 
explored. In doing so, the quantification of the damage state of a structure affected by an 
earthquake is expected to be more reliable.

Results presented in this article meet the principles of fair data (Wilkinson et al. 2016). 
Thus, potential users could find, access, interoperate and re-use data presented herein. A 
text file containing the main results as well a document describing the data arrangement 
can be downloaded from the following website: http:// kairo seq. upc. edu. A MATLAB code 
has also been included, which can be used to reproduce some results presented in this arti-
cle. This code could be easily operated or adapted, allowing potential users to develop fur-
ther ad-hoc applications.
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