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Abstract
In this paper, three different damage indexes were used to detect nonlinear damages in 
two adjacent Reinforced Concrete (RC) structures considering pounding effects. 2-, 4- 
and 8-story benchmark RC Moment Resisting Frames (MRFs) were selected for this pur-
pose with 60%, 75%, and 100% of minimum separation distance and also without any in-
between separation gap. These structures were analyzed using the incremental dynamic 
analysis method under 44 far-field ground motion records. Comparison of the results 
between the MRFs with and without considering pounding effects show that collisions lead 
to a decrease in the values of coefficient of determination and the nonlinear damage occurs 
in lower seismic intensity. As a result, using the damage indexes, nonlinear damages can be 
detected during a specific seismic intensity. Moreover, considering a minimum separation 
distance leads to an increase in the coefficient of determination between the damage index 
and the maximum story drift ratio. Furthermore, due to pounding, shorter MRFs are dam-
aged more significantly than the taller structures.

Keywords Reinforced concrete moment resisting frames · Structural pounding · Far-field 
earthquakes · Incremental dynamic analysis · Maximum story drift ratio · Damage index

1 Introduction

Structural pounding due to insufficient gaps may cause collisions between adjacent struc-
tures during earthquakes. If adjacent buildings, or bridge segments, are not separated suit-
ably from each other, impact forces may cause serious damages even if structures are well 
designed (Miari et al. 2019, 2021; Rezaei et al. 2020). The first research work that explains 
possible dangers due to building pounding was performed by Anagnostopoulos (1988). 
Several reports showed that at least 15% of buildings were damaged due to the impact of 
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adjacent buildings during the 1985 Mexico City earthquake (Rosenblueth and Meli 1986). 
Researchers used different numerical and experimental methods to simulate the prob-
lem of earthquake-induced pounding between adjacent buildings (Leibovich et  al. 1996; 
Ruangrassamee and Kawashima 2001; DesRoches and Muthukumar 2002; Mahmoud and 
Jankowski 2009; Jankowski 2010; Yaghmaei-Sabegh and Jalali-Milani 2012; Barros et al. 
2013; Sołtysik and Jankowski 2013; Naderpour et  al. 2015; 2016; 2017; Kazemi et  al. 
2021a). A number of investigations were focused on comparison between different numeri-
cal models of pounding force during impact (see Mahmoud, et al. 2008; Muthukumar and 
DesRoches 2006, for example). Other studies concerned the experimental verification of 
the effectiveness of pounding force models in simulation of earthquake-induced structural 
interactions (Barros and Khatami 2013; Khatiwada et al. 2013). Some recent analyses were 
also focused on different pounding mitigation methods so as to reduce the negative effects 
of collisions during seismic excitations (see Kandemir-Mazanoglu and Mazanoglu 2017; 
Elwardany et al. 2021, for example).

A new equation to calculate the effective periods of inelastic buildings, based on ductil-
ity demand, which can be successfully applied for the determination of a minimum sepa-
ration gap was proposed by Khatami et al. (2019). The results showed that using the pro-
posed methods, the impacts between two adjacent buildings due to earthquake-induced 
structural pounding can be prevented by ensuring sufficient minimum separation gap. A 
new model for calculating impact force and energy dissipation, based on the coefficient 
of restitution and impact velocity, was proposed by Naderpour and Khatami (2015). To 
evaluate the accuracy of the suggested formula, the relationship between the selected coef-
ficient of restitution and the calculated coefficient of restitution was compared. The results 
showed good accuracy in comparison with other formulas. A review of earthquake-induced 
pounding between adjacent buildings considering identification of parameters and soil-
structure interaction issues was performed by Miari et  al. (2019). The effects of pound-
ing on fixed-base and base-isolated buildings were also examined. Based on the obtained 
results, directions of future research studies on structural pounding were recommended. 
The effect of the infill panels on the seismic pounding response of adjacent structures in 
series was studied by Elwardany et al. (2017, 2019). The results of the analysis showed that 
the existence of infill panels changes the seismic behavior of the structures during pound-
ing under seismic excitation. The effect of using linear and nonlinear fluid viscous dampers 
on the seismic collapse capacities of adjacent structures prone to pounding was investi-
gated by Kazemi et al. (2021b). The results demonstrated that the existence of dampers can 
substantially improve the seismic behavior of structures having a significant influence on 
their collapse capacities. The effects of pounding between two L-shaped asymmetric steel 
buildings under earthquake excitation were evaluated by Sołtysik and Jankowski (2016). 
The results indicated that these effects lead to both an increase and/or a decrease in the 
structural response. Moreover, torsional vibrations (due to eccentric pounding) were found 
to play an important role in the overall pounding-involved response of asymmetric steel 
buildings under earthquake excitations. Building damage due to structural pounding during 
earthquakes was studied by Sołtysik and Jankowski (2015). Steel asymmetric structures 
with a different number of stories were utilized for numerical analysis. Three-dimensional 
gap-friction elements were used for controlling pounding between buildings. The accelera-
tion time histories of the El Centro earthquake were used in the numerical analysis. The 
results of the study clearly showed that pounding may substantially influence the response 
of steel buildings intensifying their damage during earthquakes. The influence of non-uni-
form earthquake excitation on the pounding-involved response of two buildings using non-
linear FEM analysis was investigated by Jankowski (2012). The obtained results showed 
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that the non-uniform ground motion excitation may considerably influence the pounding-
involved behavior of buildings. The effect of different structural configurations on pound-
ing-involved response of adjacent planar Reinforced Concrete (RC) building frames sub-
jected to strong ground motions was examined by Efraimiadou et al. (2013a). The results 
showed that the effect of collisions of adjacent frames is unfavorable for most of the cases 
and, as a result, the structural pounding phenomenon is rather detrimental than beneficial. 
The effect of collisions between adjacent RC building frames under multiple earthquakes 
was investigated by Efraimiadou et al. (2013b). The effects of various parameters, such as 
maximum horizontal displacement of the top floor, ductility of columns, permanent dis-
placements, and four different separation gaps, were considered. Based on the results, the 
behavior of adjacent structures was found to be strongly affected by multiple earthquakes 
and, for most of the cases, the seismic sequences appeared to be detrimental in comparison 
with the single seismic events. A new damage index for plane steel frames considering the 
strength and stiffness degradation under ground motion was proposed by Kamaris et  al. 
(2013). Various parameters, including interaction between the axial force and the bending 
moment with low-cycle fatigue, were examined. The correlation of the proposed damage 
index showed good match with five well known indexes described in the literature. The 
accuracy of four different criteria to calculate the separation necessary to prevent seismic 
pounding between nonlinear hysteretic structural systems was evaluated by Lopez-Garcia 
and Soong (2009b). The results showed that the Double Difference Combination (DDC) 
rule is always more accurate than the Square Root of the Sum of the Squares (SRSS) rule 
in the case of linear systems. However, in the case of nonlinear hysteretic systems, none of 
the four implementations of the DDC rule was consistently more accurate than the SRSS 
rule. The accuracy of the DDC rule to predict the separation gap necessary to prevent seis-
mic pounding between linear structural systems was examined by Lopez-Garcia and Soong 
(2009a). Damage assessment of adjacent buildings under earthquake loads, using input 
energy, dissipated energy, and damage indexes, was studied by Moustafa and Mahmoud 
(2014). Numerical examples of damage of fixed-base and base-isolated adjacent build-
ings with elastic–plastic force–deformation relation were considered. A probabilistic risk 
assessment for seismic pounding with efficient application to linear systems was performed 
by Tubaldi et al. (2012). To reduce the pounding probability of adjacent buildings, the pro-
posed method was analyzed using viscous dampers and their capability was evaluated. The 
results obtained were validated against purely numerical simulation results.

The current research is focused on damage assessment in adjacent RC Moment Resist-
ing Frames (MRFs) considering pounding effects under ground motion records. For this 
purpose, some illustrative benchmark structures, including 2- and 4-story as well as 4- and 
8-story RC MRFs, were examined based on three damage indexes, i.e. Park and Ang index 
(Park and Ang 1985), modified Park and Ang damage index proposed by Kunnath et al. 
(1992) and Consenza et al. index (Cosenza et al. 1993).

2  Nonlinear modeling of structures

In this research, the 2-, 4- and 8-story RC MRFs, designed by Haselton and  Deierlein 
(2005), were used. Each of the buildings was designed according to the IBC (2003), 
ASCE7-02 (2002), and ACI 318–02 (2002) (see Haselton and Deierlein 2005). In 
these models, three-dimensional effects and uncertainty in modeling were used (Dei-
erlein and Haselton 2005). Also, deterioration modes that participated in the sideway 
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collapse were considered using the element model developed by Ibarra and Krawin-
kler (2005) and Ibarra et al. (2005). In this regard, OpenSees software (McKenna et al. 
2010) was used (Altoontash 2004). The elevation views of the 2-, 4- and 8-story RC 
MRFs, including geometry and dimensions, are presented in Fig. 1 and Fig. 2, respec-
tively. The P-Delta effect was modeled using the concept of leaning column. The 
modified Ibarra-Krawinkler bilinear-hysteretic model, as a nonlinear rotational spring, 
was considered for deteriorating moment-rotation hysteresis (Lignos and Krawinkler 
2010). Moreover, an elastic beam-column element in the middle and two zero-length 
elements located at both ends were also used in the model. In other words, in order 
to compute the damage indexes, the modified Ibarra-Medina-Krawinkler bilinear hys-
teretic model (IMK model) was implemented (see Ibarra et  al. 2005) by applying a 
nonlinear rotational spring at both ends of each beam element and at both ends of each 
column element. Therefore, the relation between the moment and rotation M-θ for each 
hinge could be obtained, and finally, having the M-θ relation for each story, the damage 
indexes could be computed (Mohebi et al. 2019).

Fig. 1  Elevation views of the 2- and 4-story RC MRFs under consideration

Fig. 2  Elevation views of the 4- and 8-story RC MRFs under consideration
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3  Modeling of pounding

In this study, to model the pounding phenomenon, the linear viscoelastic contact model 
(Kelvin-Voigt model) was employed using OpenSees software (McKenna et  al. 2010). 
Pounding force in each story was obtained based on the following equation (Anagnosto-
poulos 1988):

where Kimp is the impact spring’s stiffness coefficient, �(t) is the interpenetration depth, 
Cimp is the impact damping coefficient, and �̇�(t) is the relative velocity of pounding floors, 
respectively. The value of damping coefficient can be obtained as follows (Anagnostopou-
los 1988):

where ξ is the impact damping ratio, e is the coefficient of restitution, and mi and mj are 
masses of two colliding structures. It was considered in the analysis that impact occurs 
at the story levels (slab-to-slab pounding). The coefficient of restitution accounts for the 
energy dissipation during impact due to such effects as plastic deformations, local crack-
ing and friction, etc. (Goldsmith 1960). This parameter for concrete-to-concrete impact 
was assumed to be 0.65 (Mahmoud and Jankowski 2011; Anagnostopoulos and Karama-
neas 2008). The impact stiffness coefficient depends mainly on the material characteristics 
of the colliding structures and the geometry at the vicinity of impact. Assuming that the 
contact geometry is taken into account with the use of the area of the overlapping region 
instead of the indentation depth, the impact stiffness coefficient should be directly related 
to the modulus of elasticity of the colliding structures. The equations proposed by Polycar-
pou et al. (2014) were used to determine the impact stiffness coefficient:

where νi is the Poisson’s ratio, EDynamic,i, is the dynamic elastic modulus of normal 
strength concrete, EStatic,i is the static elastic modulus for structure i that is calculated 
from the stress–strain diagram. The dynamic elastic modulus is used primarily to evalu-
ate the soundness of concrete in durability tests; it is a more appropriate value when con-
crete is to be used in structures subjected to dynamic loading, i.e. impact or earthquake 
(Al-Amawee and Salman 2006). In this study, the static elastic modulus and the Poisson’s 
ratio were assumed to be equal to 21 GPa and 0.2, respectively. In order to investigate the 
effect of separation distance on the seismic pounding of adjacent structures, separation dis-
tance equal to zero as well as equal to a minimum separation distance, δMT, as calculated 

(1)F(t) = Kimp𝛿(t) + Cimp�̇�(t)

(2)Cimp = 2�

√

Kimp

mimj

mi + mj

(3)� =
− ln(e)

√

�2 + (ln(e))2

(4)Kimp =

[

1 − �2
1

EDynamic,1

+
1 − �2

2

EDynamic,2

]−1

(5)EDynamic,i = 5.82
(

EStatic,i

)0.63
, inGPa
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according to the ASCE seismic provision, was considered. Each pounding model was ana-
lyzed for two aforementioned separation distances and compared to the case when struc-
tures vibrate independently (without any adjacent structure).

4  Incremental dynamic analysis

Incremental Dynamic Analysis (IDA) is a technique to assess the seismic collapse capaci-
ties of structures utilizing a series of nonlinear dynamic analyses. Modern design provi-
sions, such as FEMA P695 (2009), propose a set of 44 ground motions to be used in the 
analysis. This is done to take into account the record to record variability. Also, recent 
literature (see Baltzopoulos et al. 2019, for example) suggests that the number of records 
used can be kept in the 40 to 100 range and achieve 10% mean relative error. Therefore, in 
the current research, a set of 44 far-field ground motion records presented in FEMA P695 
(2009) were used to perform IDAs (see Table 1). Figure 3a and b present the IDA curves 
(color curves) and their corresponding median (black curves) for the 4- and 8-story RC 
pounding structures, respectively, with the separation distance equal to zero.

5  Implementation of damage indexes

In order to present the damage level numerically, it is necessary to select a practical Dam-
age Index (DI). Using a proper DI, the local status of an element or the overall state of a 
structure after an earthquake loading can be determined. Application of DIs in damage 
detection of structures was studied by several researchers (Sharifi et  al. 2012; Alhaddad 
et al. 2015; Nie et al. 2017; Pang et al. 2018; Huang et al. 2018). In this research work, 
three DIs proposed by Park and Ang (1985), Cosenza et  al. (1993), and Kunnath et  al. 
(1992) were selected to evaluate structural pounding damage in adjacent RC MRFs, which 
are considered as local DIs. As a matter of fact, a DI is local when it refers to a single point, 
section, member, or structural part, whereas it is considered to be global when it defines the 
state of the entire structure (Hanganu et al. 2002). Then, a global DI is obtained through 
special combinations using weighted factors of local DIs. The weighting factor for any 
story can be related to the magnitude of its corresponding DI. On the other hand, a story 
with severe damage is a candidate for the bigger weight (Ghobarah et al. 1999). Weighted 
averaging methods were proposed by Park and Ang (1985) and Bracci et al. (1989) to inte-
grate damage of single elements for each individual story. Park and Ang (1985) suggested 
a damage index which is based on deformation and energy concepts in structural elements, 
so as to achieve the damage level in each story and the overall structure based on Eq. (6) 
and Eq. (7), respectively:

where

(6)DIstory =

n
∑

i=1

(

�i,component.DIi,component

)

(7)DIoverall =

n
∑

i=1

{

(

�i
)

story

(

DIi
)

story

}
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It should be added that E in Eq. (8) denotes the total energy dissipated by the element 
and n is the number of elements of an individual story, whereas, E in Eq. (9) represents the 
total energy absorbed by the story and n is the number of stories.

The DI proposed by Cosenza et al. (1993) is presented by Eq. (10) as follows:

where μ is the maximum ductility during the history of loading and μu, mon is the maximum 
allowable value of ductility, which is equal to uu, mon/uy. It should be noted that uu, mon is 
the ultimate displacement under monotonic loading and uy is the yield displacement. For 
flexure-resisting components, μ, μu,mon, uu,mon, and uy are replaced with μθ, μθ,mon, θu,mon, and 
θy, respectively. Moreover, μθ is the rotation ductility during the loading history and μθ,mon 
is the maximum allowable value of rotation ductility under monotonic loading, while θu,mon 
and θy are the ultimate and the yield rotation, respectively. The damage index proposed 
by Park and Ang (1985) was extended and modified by Kunnath et al. (1992) using both 
deformation and hysteretic energy as follows:

where θm is the maximum experienced rotation of an element in a system subjected to an 
earthquake, θy is the yield rotation under monotonic loading, θu is the ultimate rotation 
under monotonic loading, Eh is the hysteretic energy dissipated by the element, My is the 

(8)
�
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�

story
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+ �
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Fig. 3  IDA curves of the considered benchmark pounding structure with separation distance equal to 0 
under 44 far-field ground motion records: a 4-story building, b 8-story building
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yield moment and β is a parameter calibrated in accordance with experiments to reflect the 
effect of repeated loading. In this paper, β was assumed to be 0.15 for LS (Kunnath et al. 
1992; Reinhorn et al. 2009).

The flowchart of the analysis is shown in Fig. 4.

Fig. 4  Analysis flowchart



1229Bulletin of Earthquake Engineering (2022) 20:1219–1245 

1 3

6  Verification

6.1  Estimating the fundamental period of the MRFs

In order to verify the fundamental period of the simulated models, the Numerical algo-
rithms for Subspace State Space System Identification (N4SID) method, as candidate of 
system identification methods, along with stabilization diagram and Power Spectral Den-
sity (PSD), was employed to determine the modal parameters (i.e., natural frequency, 
damping ratio, and mode shapes). It is worth mentioning that in this method, accelera-
tion responses recorded at the roof of the MRFs under specific ground motion records 
are selected as output signals, and also the ground motions can be used as input sig-
nals. More explanations about the stabilization diagram were presented by Yazdanpanah 
et al. (2020a, b). In addition, the mathematical relationship of the N4SID method can be 
found in the literature (Overschee and Moor 1994; Kim and Lynch 2012). As it can be 
observed in Fig. 5, the fundamental period of the 4-story RC MRF could be estimated as 
T1 = 1/f1 = 1/0.895 = 1.1173 (sec), which accurately matches with the fundamental period 
obtained by OpenSees, i.e. T1 = 1.1002489 (sec). Also, Fig. 6 indicates that the first identi-
fied period of the 8-story RC MRF is T1 = 1/f1 = 1/0.620 = 1.6129 (sec) slightly less than 
the fundamental period obtained by OpenSees, i.e. T1 = 1.681477 (sec).

6.2  Linear viscoelastic contact element

To justify the impact force between two adjacent frames using the linear viscoelastic 
contact element, a numerical model was simulated in OpenSees. All the frame models 
(with and without considering the pounding phenomenon) were studied under the El 
Centro earthquake using the shaking table (see Fig.  7). Comparison between numeri-
cal and experimental results (Khatiwada et  al. 2013) indicated that the maximum 

Fig. 5  Stabilization diagram of the 4-story RC MRF using the N4SID method. a stabilization diagram, b 
identified modal parameters
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amplification factor (μmax/umax) for the numerical model was + 1.23 and -1.35 for posi-
tive and negative directions, respectively; while these values in the experimental model 
(Khatiwada et  al. 2013) were + 1.26 and -1.3 for positive and negative directions, 
respectively. It is worth mentioning that μmax and umax are the maximum deformations 
of the reference frame with and without pounding effects, respectively. Therefore, the 
linear viscoelastic contact element leads to good agreement between numerical and 

Fig. 6  The stabilization diagram of the 8-story RC MRF using the N4SID method. a stabilization diagram, 
b identified modal parameters

Fig. 7  Schematic view of the experimental setup (Khatiwada et  al. 2013) (CC-BY license, New Zealand 
Society for Earthquake Engineering)
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experimental results and it can be successfully used to study pounding between two 
adjacent frames.

7  Results

7.1  Damage Indexes in 2‑ and 4‑story RC MRFs considering pounding effects

Figure 8a, b show the three damage indexes (Park and Ang, modified Park and Ang pro-
posed by Kunnath et al. 1992 and Cosenza et al.) for 2-story RC MRFs considering pound-
ing effects with a minimum separation distance, δMT, as a function of the spectrum accel-
eration (Sa), subjected to ground motions no. 13 and 17 of Table 1, respectively. It should 
be noted that these DIs denote the global damage of the frames. As it can be observed 
from the figures, all three damage indexes approximately lead to the same results. Based 
on these results, it can be concluded that the 2-story RC MRF is damaged under ground 
motions no. 13 and 17 within the range of Sa:1.1 (g) to Sa:1.6 (g) and Sa:1.6 (g) to Sa:2.1 
(g) for the first time. On the other hand, the damage indexes have high values in these 
steps. It is worth mentioning that the differences between these ranges for the modified 
Park and Ang damage index under records no. 13 and 17 are larger by about 0.032 and 
0.018, respectively, than for the Cosenza et al. damage index. Moreover, the MRF is col-
lapsed under ground motions no. 13 and 17 when Sa:2.05 (g) to Sa:2.1 (g) and Sa:3.2 (g) to 
Sa:3.25 (g) (see big changes for these steps).

Figure  9a, b show correlations between the Kunnath et  al. damage index and that of 
Cosenza et al. with minimum separation distance subjected to 44 far-field ground motions 
that correspond to all beams and columns of the 2-story RC MRF and 4-story RC MRF, 
respectively. As can be observed from the figures, the coefficients of determination (R2) are 
very strong and the damage indexes are well correlated.

Based on Fig. 10, it can be concluded that the 4-story RC pounding MRF with mini-
mum separation distance is damaged under ground motions no. 13 and 17 within the range 
of Sa:0.6 (g) to Sa:1.1 (g) for the first time. On the other hand, the damage indexes have 
high values in this step. Also, the coefficient of determination for the aforementioned dam-
age indexes (presented in Fig. 9b) indicates the high correlation between them. It is worth 

(a) (b)

Fig. 8  Comparison of various damage indexes for the 2-story RC MRF considering pounding effect with 
minimum separation distance subjected to, a ground motion no. 13, b ground motion no. 17
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mentioning that, the differences between this range for modified Park and Ang damage 
index under records no. 13 and 17 are larger by about 0.038 and 0.017, respectively than 
for the Cosenza et al. damage index.

Figure 11a, b present a comparison of various damage indexes for the 2-story RC MRF 
considering pounding effect without minimum separation distance subjected to ground 
motion no. 13 and 17, respectively. The results show that the 2-story RC MRF is damaged 
under ground motions no. 13 and 17 within the range of Sa:0.6 (g) to Sa:1.1 (g) and Sa:1.1 
(g) to Sa:1.6 (g) for the first time. On the other hand, the damage indexes have high values 
in these steps. The differences between these ranges for the modified Park & Ang dam-
age index under records no. 13 and 17 are larger by about 0.029 and 0.014, respectively, 
than for the Cosenza et al. damage index. Moreover, the MRF is collapsed under ground 
motions no. 13 and 17 when Sa:2.1 (g) to Sa:2.15 (g) and Sa:3.05 (g) to Sa:3.1 (g) (see the 
big changes in these steps).

Figure  12a, b show correlations between the Kunnath et  al. damage index and that 
of Cosenza et  al. without minimum separation distance subjected to 44 far-field ground 

(a) (b)

Fig. 9  Correlation between the Kunnath et al. damage index and that of Cosenza et al. with minimum sepa-
ration distance subjected to 44 far-field ground motions that correspond to all beams and columns of the: a 
2-story RC MRF, b 4-story RC MRF

(a) (b)

Fig. 10  Comparison of various damage indexes for the 4-story RC MRF considering pounding effect with 
minimum separation distance subjected to, a ground motion no. 13, b ground motion no. 17
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motions that correspond to all beams and columns of the 2-story RC MRF and 4-story RC 
MRF, respectively. As it can be observed, the coefficients of determination are very strong 
and the damage indexes are well correlated.

Based on Fig. 13, it can be concluded that the 4-story RC pounding MRF without mini-
mum separation distance is damaged under ground motions no. 13 and 17 within the range 
of Sa: 0.1 (g) to Sa:0.6 (g) and Sa:0.6 (g) to Sa:1.1 (g) for the first time. On the other hand, 
the damage indexes have high values in this step. Consequently, the differences between 
these ranges for the modified Park & Ang damage index under records no. 13 and 17 are 
larger by about 0.031 and 0.015, respectively, than for the Cosenza et al. damage index.

According to the aforementioned results, the modified Park & Ang damage index, due 
to larger differences for different damage states (Sa (T1)), is more sensitive to seismic dam-
ages. Also, the coefficient of determination for the aforementioned damage index is pre-
sented in Fig. 12b, which indicates on high correlation. It is worth mentioning that, dur-
ing pounding between 2- and 4-story RC MRFs, the 4-story has lower values of damage 
indexes. It means that the 4-story is damaged at lower seismic intensities. In addition, as it 

(a) (b)

Fig. 11  Comparison of various damage indexes for the 2-story RC MRF considering pounding effect with-
out minimum separation distance subjected to, a ground motion no. 13, b ground motion no. 17

(a) (b)

Fig. 12  Correlation between the Kunnath et al. damage index and that of Cosenza et al. without minimum 
separation distance subjected to 44 far-field ground motions that correspond to all beams and columns of 
the: a 2-story RC MRF, b 4-story RC MRF
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(a) (b)

Fig. 13  Comparison of various damage indexes for the 4-story RC MRF considering pounding effect with-
out minimum separation distance subjected to: a ground motion no. 13, b ground motion no. 17
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Fig. 14  Comparison of the coefficient of determination for the 4-story RC MRF subjected to 44 far-field 
ground motions considering pounding effects: a without minimum separation distance b with 75% of mini-
mum separation distance, c with 100% of minimum separation distance
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can be observed from Fig. 14a, b, and c, considering a minimum separation distance, δMT, 
between two adjacent MRFs (2- and 4-story) leads to an increase in R2 value for the maxi-
mum story drift ratio versus the modified Park & Ang damage index. On the other hand, 
considering 75% and 100% of δMT improves the R2 value up to 2.86% and 6.44%, respec-
tively and correlation between these two parameters increases.

Furthermore, comparing the damage indexes for 2- and 4-story RC MRFs considering 
pounding effect with minimum separation distance (Figs. 8a vs. 10a,  8b vs. 10b) and with-
out minimum separation distance (Figs. 11a vs. 13a, 11b vs. 13b) under the same earth-
quakes and the same value of Sa, it can be seen that the damage indexes of the shorter 
structure are larger than values for the taller structure. In addition, Fig. 15 shows a compar-
ison of modified Park & Ang damage index for pounding between 2- and 4-story RC MRFs 
with minimum separation distance subjected to ground motion no. 13 and 17 with the same 
value of Sa. Moreover, a comparison of modified Park & Ang damage index for pound-
ing between 2- and 4-story RC MRFs without minimum separation distance subjected to 
ground motion no. 13 and 17 with the same value of Sa. is presented in Fig. 17. The results 
shown in both figures (Figs.  16 and  17) confirm that the shorter structure with smaller 
value of natural period will suffer more extensive damages due to structural pounding.
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Fig. 16  Comparison of modified Park & Ang damage index for pounding between 2- and 4-story RC MRFs 
without minimum separation distance subjected to: a ground motion no. 13, b ground motion no. 17
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7.2  Damage indexes in 4‑ and 8‑story RC MRFs considering pounding effects

Figure 17a and b show the three damage indexes (Park & Ang, modified Park & Ang 
proposed by Kunnath et  al. (1992) and Cosenza et  al.) for 4-story RC MRFs consid-
ering pounding effects with a minimum separation distance as a function of the spec-
trum acceleration (Sa), subjected to ground motions no. 13 and 17 of Table 1, respec-
tively. It should be noted that these DIs denote global damage of the frames. As it can 
be observed from the figures, all three damage indexes lead approximately to the same 
results. Based on these results, it can be concluded that the 4-story RC MRF is dam-
aged under ground motions no. 13 and 17 within the range of Sa:0.1 (g) to Sa:0.6 (g) 
and Sa:0.1 (g) to Sa:0.6 (g) for the first time. On the other hand, the damage indexes 
have high values in these steps. It is worth mentioning that, the differences between 
this range for the modified Park & Ang damage index under records no. 13 and 17 are 
larger by about 0.074 and 0.033, respectively, than for the Cosenza et al. damage index. 
Moreover, the MRF is collapsed under ground motions no. 13 and 17 when Sa:1.3 (g) to 
Sa:1.5 (g) and Sa:1.35 (g) to Sa:1.40 (g) (see the big changes in these steps).

Figure  18a and b show correlations between the Kunnath et  al. damage index and 
that of Cosenza et al. with minimum separation distance subjected to 44 far-field ground 
motions that correspond to all beams and columns of the 4-story RC MRF and 8-story 
RC MRF, respectively. As it can be observed, the coefficients of determination are very 
strong and the damage indexes are well correlated.

Based on Fig. 19, it can be concluded that the 8-story RC pounding MRF with a min-
imum separation distance is damaged under ground motions no. 13 and 17 within the 
range of Sa:0.1 (g) to Sa:0.6 (g) for the first time. On the other hand, the damage indexes 
have high values in this step. The differences between this range for the modified Park 
& Ang damage index under records no. 13 and 17 are larger by about 0.099 and 0.117, 
respectively, than for the Cosenza et al. damage index. Moreover, the MRF is collapsed 
under ground motions no. 13 and 17 when Sa:0.7 (g) to Sa:0.75 (g) and Sa:0.6 (g) to 
Sa:0.65 (g) (see the big changes in these steps). Also, the coefficients of determination 
for the aforementioned damage index are presented in Fig. 23c, which indicates on high 
correlation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
am

ag
e 

in
de

x 
(D

I)

Sa (T1) [g]

Park & Ang
modified Park (Kunnath et al.)
 Cosenza et al.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
am

ag
e 

in
de

x 
(D

I)

Sa (T1) [g]

Park & Ang
modified Park (Kunnath et al.)
 Cosenza et al.

(a) (b)

Fig. 17  Comparison of various damage indexes for the 4-story RC MRF considering pounding effect with 
minimum separation distance subjected to a ground motion no. 13, b ground motion no. 17
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Figure 20a and b present a comparison of various damage indexes for the 4-story RC 
MRF considering pounding effect without a minimum separation distance subjected to 
ground motion no. 13 and 17, respectively. The results show that the 4-story RC MRF is 
damaged under ground motions no. 13 and 17 within the range of Sa:0.1 (g) to Sa:0.6 (g) 
and Sa:0.1 (g) to Sa:0.6 (g) for the first time. On the other hand, the damage indexes have 
high values in these steps. It is worth mentioning that, the differences between this range 
for the modified Park & Ang damage index under records no. 13 and 17 are larger by about 
0.077 and 0.031, respectively, than for the Cosenza et al. damage index. It is worth noting 
that pounding between two adjacent MRFs leads to a decrease in the intensity of an earth-
quake. On the other hand, the MRF is damaged under lower seismic intensities than the 
state of pounding with minimum separation distance. Therefore, considering a minimum 
separation distance based on ASCE seismic criteria is necessary.

Figure 21a and  b show correlations between the Kunnath et al. damage index and that 
of Cosenza et al. without a minimum separation distance subjected to 44 far-field ground 
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Fig. 18  Correlation between the Kunnath et  al. damage index and that of Cosenza et  al. with minimum 
separation distance subjected to 44 far-field ground motions that correspond to all beams and columns of 
the: a 4-story RC MRF, b 8-story RC MRF
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Fig. 19  Comparison of various damage indexes for the 8-story RC MRF considering pounding effect with 
minimum separation distance subjected to, a ground motion no. 13, b ground motion no. 17
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motions that correspond to all beams and columns of the 8-story RC MRF and 4-story RC 
MRF, respectively. As it can be observed, the coefficients of determination are very strong 
and the damage indexes are well correlated.

Based on Fig.  22, it can be concluded that the 8-story RC pounding MRF with-
out a minimum separation distance is damaged under ground motions no. 13 and 17 
within the range of Sa:0.1 (g) to Sa:0.6 (g) for the first time. On the other hand, the dam-
age indexes have high values in this step. It is worth mentioning that, the differences 
between this range for the modified Park & Ang damage index under records no. 13 and 
17 are larger by about 0.026 and 0.028, respectively, than for the Cosenza et al. damage 
index Fig.   23. Also, the coefficients of determination for the aforementioned damage 
index are presented in Fig. 24d, which indicates on high correlation. Like 4-story MRF 
considering pounding effect without a minimum separation distance, pounding between 
two adjacent MRFs leads to the decrease in the intensity of an earthquake. On the other 
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Fig. 20  Comparison of various damage indexes for the 4-story RC MRF considering pounding effect with-
out minimum separation distance subjected to: a ground motion no. 13, b ground motion no. 17

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 y=0.8421x-0.0445
R²=0.9507

C
os

en
za

 e
t a

l.

Kunnath et al. (modified Park & Ang )
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
 y=0.8724x-0.0372
R²=0.9578

C
os

en
za

 e
t a

l.

Kunnath et al. (modified Park & Ang )

(a) (b)

Fig. 21  Correlation between the Kunnath et al. damage index and that of Cosenza et al. without minimum 
separation distance subjected to 44 far-field ground motions that correspond to all beams and columns of 
the: a 4-story RC MRF, b 8-story RC MRF
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(a) (b)

Fig. 22  Comparison of various damage indexes for the 8-story RC MRF considering pounding effect with-
out minimum separation distance subjected to, a ground motion no. 13, b ground motion no. 17
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Fig. 23  Comparison of the coefficient of determination for the 4-story RC MRF subjected to 44 far-field 
ground motions considering pounding effects: a without minimum separation distance (b) with 60% of min-
imum separation distance, c with 100% of minimum separation distance
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hand, the MRF is damaged under lower seismic intensities than the state of pounding 
with a minimum separation distance. Therefore, considering a minimum separation dis-
tance leads to the improvement of the situation. Furthermore, comparing the damage 
indexes for 4- and 8-story RC MRFs considering pounding effect with minimum separa-
tion distance (Figs. 17a vs. 19a, 17b vs. 19b) and without minimum separation distance 
(Figs. 20a vs. 22a, 20b vs. 22b) under the same earthquakes and the same value of Sa, 
it can be seen that the damage indexes of the shorter structure are larger than values for 
the taller structure.

According to the aforementioned results, the modified Park & Ang damage index, due 
to larger differences for different damage states (Sa (T1)), is more sensitive to seismic dam-
ages. In addition, as it can be observed from Figs. 23 and 24 considering a minimum sepa-
ration distance between two adjacent MRFs (4- and 8-story) leads to the increase in the R2 
value of maximum story drift ratio versus the modified Park & Ang damage index. On the 
other hand, considering 60% and 100% of δMT for the 4-story RC MRF improves the R2 
value up to 2.03% and 5.51%, respectively. In addition, considering 60%, 75% and 100% of 
δMT for the 8-story RC MRF improves the R2 value up to 2.54%, 4.06% and 7.88%, respec-
tively, and the correlation between these two parameters increases.
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Fig. 24  Comparison of the coefficient of determination for the 8-story RC MRF subjected to 44 far-field 
ground motions considering pounding effects: a without minimum separation distance b with 60% of mini-
mum separation distance c with 75% of minimum separation distance, d with 100% of minimum separation 
distance
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Comparison of the results for 4- and 8-story MRFs without pounding effects (independ-
ent vibrations) with those considering pounding show that the behavior of the MRFs con-
sidering pounding effects with a minimum separation distance are near to those of MRFs 
without pounding effects. This issue leads to a more accurate prediction of the behavior 
of MRFs (see Fig. 25 and 26 and compare with those of pounding effects in the previous 
sections).

8  Conclusions

In this article, three damage indexes have been considered for nonlinear damage detection 
in adjacent RC structures considering pounding effects. Some illustrative benchmark struc-
tures including 2- and 4-story as well as 4- and 8-story RC MRFs have been analyzed using 
IDA analyses under 44 far-field earthquake records. Pounding between RC MRFs has been 
considered with 60%, 75%, and 100% of the minimum separation distance and compared 

(a) (b)

Fig. 25  Comparison of various damage indexes for the 4-story RC MRF (alone) subjected to, a ground 
motion no. 13, b ground motion no. 17

(a) (b)

Fig. 26  Comparison of various damage indexes for the 8-story RC MRF (alone) subjected to, a ground 
motion no. 13, b ground motion no. 17
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to the case when structures vibrate independently. The following conclusions can be drawn 
from the study:

• Comparison of the results between the MRFs with and without considering pounding 
effects show that collisions lead to a decrease in the values of coefficient of determina-
tion and the nonlinear damage occurs under lower seismic intensity.

• Considering a smaller separation distance leads to an increase in the value of the coef-
ficient of determination.

• The first nonlinear damage, and also the state of collapse, can be detected at the speci-
fied seismic intensity.

• Due to larger differences for different damage states, the modified Park & Ang damage 
index is more sensitive to seismic damages and this damage index also shows larger 
values, as compared to other damage indicators. On the other hand, it can be concluded 
that while the trend of changes in all three damage indexes is similar, the modified Park 
& Ang damage index is on average 28.5% larger than the Cosenza damage index and 
3.7% larger than the Park & Ang damage index.

• Considering the minimum separation distance between two adjacent MRFs leads to an 
increase in the value of the coefficient of determination for the maximum story drift 
ratio versus modified Park & Ang damage index. Also, by increasing the separation 
distance between two adjacent structures from 0 to 100% of the minimum separation 
distance, the damage index is generally decreased.

• By examining and comparing the values of the damage index for different separation 
distances between two adjacent MRFs, it can be observed that the rate of a variety of 
the damage index is low and insufficient in the range of 0% to 75% of the minimum 
separation distance. On the other hand, the maximum reduction in the damage index is 
in the range of 75% to 100% of the minimum separation distance. These results empha-
size the importance and necessity of considering the minimum separation distances 
between two adjacent MRFs so as to reduce the damages.

• Due to pounding, shorter RC MRFs are damaged more significantly than the taller 
structures. On the other hand, the shorter RC MRFs (structures with smaller natural 
period) have high values of damage indexes.
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