Skip to main content
Log in

Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Probabilistic seismic hazard analysis (PSHA) encompasses quantitative estimation of seismic hazard at a site by considering all plausible earthquake scenarios. The outcome of a PSHA is often reported as the mean rate of exceeding a specific ground motion intensity measure at a given site. This study attempts to perform PSHA for the western area of the city Naples (southern Italy) by employing the most advanced methods and new databases; namely, DISS3.2 (Database of Individual Seismogenic Sources) and CPTI15 (Parametric Catalogue of Italian Earthquakes). Seismogenic models include individual seismogenic structures/faults liable to generating major earthquakes with magnitude greater than 5.5, and background areal source model to evaluate the effect of earthquakes with magnitude less than 5.5. The PSHA is built up based on the long-term earthquake recurrence on seismogenic tectonic faults and the spatial distribution of historical earthquakes. Site amplification is considered based on seismic microzonation maps derived for the western area of Naples. The microzonation maps delineate expected levels of ground motion amplification based on reliable geological and geotechnical subsoil models. Hazard maps are derived for a number of return periods for ground-shaking in terms of peak ground acceleration and 5%-damped pseudo-spectral acceleration at a range of periods that are representative of the existing construction within the area. Detailed comparisons of the PSHA results with Italian national hazard maps and the code-based design spectra emphasize the importance of performing site-specific PSHA with explicit consideration of site effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abrahamson NA (2000) State of the practice of seismic hazard evaluation. In: International symposium of international society for rock mechanics (ISRM), 19–24 November, Melbourne, Australia, ISRM-IS-2000-014

  • Akinci A, Galadini F, Pantosti D, Petersen M, Malagnini L, Perkins D (2009) Effect of time dependence on probabilistic seismic-hazard maps and deaggregation for the central Apennines, Italy. Bull Seismol Soc Am 99(2A):585–610

    Google Scholar 

  • Akinci A, Vannoli P, Falcone G et al (2016) When time and faults matter: towards a time-dependent probabilistic SHA in Calabria, Italy. Bull Earthq Eng 15(6):2497–2524

    Google Scholar 

  • Akkar S, Sandıkkaya MA, Senyurt M et al (2013) Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthq Eng 12(1):311–339

    Google Scholar 

  • Albarello D, Bosi V, Bramerini F, Lucantoni A, Naso G, Peruzza L, Rebez A, Sabetta F, Slejko D (2000) Carte di pericolosità sismica del territorio nazionale, Quaderni di Geofisica 12, Roma, 7 pp

  • Alessio G, Esposito E, Gorini A, Porfido S (1995) Detailed study of the Potentino seismic zone in the Southern Apennines, Italy. Tectonophysics 250(1):113–134

    Google Scholar 

  • Ambraseys NN (1995) The prediction of earthquake peak ground acceleration in Europe. Earthq Eng Struct Dyn 24(4):467–490

    Google Scholar 

  • Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25(4):371–400

    Google Scholar 

  • Ancheta TD, Darragh RB, Stewart JP et al (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005

    Google Scholar 

  • Baker JW, Cornell CA (2006) Which spectral acceleration are you using? Earthq Spectra 22(2):293–312

    Google Scholar 

  • Barani S, Albarello D, Spallarossa D, Massa M (2017a) Empirical scoring of ground motion prediction equations for probabilistic seismic hazard analysis in Italy including site effects. Bull Earthq Eng 15(6):2547–2570

    Google Scholar 

  • Barani S, Albarello D, Massa M, Spallarossa D (2017b) Influence of twenty years of research on ground motion prediction equations on probabilistic seismic hazard in Italy. Bull Seismol Soc Am 107(1):240–255

    Google Scholar 

  • Basili R, Valensise G, Vannoli P, Burrato P, Fracassi U, Mariano S, Tiberti MM, Boschi E (2008) The database of individual seismogenic sources (DISS), version 3: summarizing 20 years of research on Italy’s earthquake geology. Tectonophysics 453:20–43. https://doi.org/10.1016/j.tecto.2007.04.014

    Google Scholar 

  • Benito MB, Navarro M, Vidal F et al (2010) A new seismic hazard assessment in the region of Andalusia (Southern Spain). Bull Earthq Eng 8(4):739–766

    Google Scholar 

  • Bindi D, Luzi L, Massa M, Pacor F (2010) Horizontal and vertical ground motion prediction equations derived from the Italian Accelerometric Archive (ITACA). Bull Earthq Eng 8(5):1209–1230

    Google Scholar 

  • Bindi D, Pacor F, Luzi L, Puglia R, Massa M, Ameri G, Paolucci R (2011) Ground motion prediction equations derived from the Italian strong motion database. Bull Earthq Eng 9(6):1899–1920

    Google Scholar 

  • Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014a) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1):391–430

    Google Scholar 

  • Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014b) Erratum to: Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1):431–448

    Google Scholar 

  • Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for seismic hazard assessment applications: the case of central Apennines (Italy). J Seismol 8(3):407–425

    Google Scholar 

  • Boore DM (2005) Erratum: equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismol Res Lett 76(3):368–369

    Google Scholar 

  • Boore DM (2010) Orientation-independent, non geometric-mean measures of seismic intensity from two horizontal components of motion. Bull Seismol Soc Am 100(4):1830–1835

    Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra 30(3):1057–1085

    Google Scholar 

  • Boschi E, Pantosti D, Valensise G (1995) La valutazione del potenziale sismogenetico in Italia: progressi metodologici e conoscitivi. In: Proceedings of meeting Terremoti in Italia: previsione e prevenzione dei danni, Accademia Nazionale dei Lincei, Rome, 1–2 December 1994, pp 133–138

  • Bozorgnia Y, Abrahamson NA, Al Atik L et al (2014) NGA-West2 research project. Earthq Spectra 30(3):973–987

    Google Scholar 

  • Camassi R, Stucchi M (1997) NT 4.1.1, un catalogo parametrico di terremoti di area italiana al di sopra della soglia di danno, GNDT Technical Report, Milano, 66 pp. http://emidius.mi.ingv.it/NT/home.html. Accessed Mar 2018

  • Camassi R, Castelli V, Molin D, Bernardini F, Caracciolo C H, Ercolani E, Postpischl L (2011) Materiali per un catalogo dei terremoti italiani: eventi sconosciuti, rivalutati o riscoperti. Quaderni di Geofisica 96 INGV, Roma, 53 pp (in Italian)

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24(1):139–171

    Google Scholar 

  • Castelli V, Galli P, Camassi R, Caracciolo CH (2008) The 1561 earthquake(s) in Southern Italy: new insights into a complex seismic sequence. J Earthq Eng 12(7):1054–1077

    Google Scholar 

  • CEN - European standard EN1998-1 (2004) Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. Comité Européen de Normalisation, Brussels

    Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, Donnini C, Minopoli C (2010) Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res Solid Earth 115(B3):1–17

    Google Scholar 

  • Chopra AK (2012) Dynamics of structures. Theory and application to earthquake engineering, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Convertito V, Zollo A (2011) Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bull Volcanol 73(6):767–783

    Google Scholar 

  • Convertito V, Emolo A, Zollo A (2006) Seismic-hazard assessment for a characteristic earthquake scenario: an integrated probabilistic–deterministic method. Bull Seismol Soc Am 96(2):377–391

    Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • D’addezio G, Masana E, Pantosti D (2001) The holocene paleoseismicity of the Aremogna-Cinque Miglia fault (central Italy). J Seismol 5(2):181–205

    Google Scholar 

  • Danciu L, Şeşetyan K, Demircioğlu M et al (2018) The 2014 earthquake model of the Middle East: seismogenic sources. Bull Earthq Eng 16(8):3465–3496

    Google Scholar 

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Miner Pet 73(1–3):47–65

    Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133(1–4):157–170

    Google Scholar 

  • ñ C, Aquino I, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 195(1):48–56

    Google Scholar 

  • Demircioğlu MB, Şeşetyan K, Duman TY et al (2018) A probabilistic seismic hazard assessment for the Turkish territory: part II—fault source and background seismicity model. Bull Earthq Eng 16(8):3399–3438

    Google Scholar 

  • Di Bucci D, Corrado S, Naso G (2002) Active faults at the boundary between Central and Southern Apennines (Isernia, Italy). Tectonophysics 359(1):47–63

    Google Scholar 

  • Di Giacomo D, Storchak DA, Safronova N, Ozgo P, Harris J, Verney R, Bondár I (2014) A new ISC service: the bibliography of seismic events. Seismol Res Lett 85(2):354–360

    Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):221–246

    Google Scholar 

  • DISS Working Group (2015) Database of individual seismogenic sources (DISS), version 3.2.0: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. Istituto Nazionale di Geofisica e Vulcanologia. https://doi.org/10.6092/ingv.it-diss3.2.0, http://diss.rm.ingv.it/diss/

  • Ebrahimian H, Jalayer F (2017) Robust seismicity forecasting based on Bayesian parameter estimation for epidemiological spatio-temporal aftershock clustering models. Sci Rep Nat 7(9803):1–15. https://doi.org/10.1038/s41598-017-09962-z

    Google Scholar 

  • Ebrahimian H, Azarbakht AR, Tabandeh A, Golafshani AA (2012) The exact and approximate conditional spectra in the multi-seismic-sources regions. Soil Dyn Earthq Eng 39(1):61–77

    Google Scholar 

  • Ebrahimian H, Jalayer F, Asprone D, Lombardi AM, Marzocchi W, Prota A, Manfredi G (2014) Adaptive daily forecasting of seismic aftershock hazard. Bull Seism Soc Am 104(1):145–161

    Google Scholar 

  • Ebrahimian H, Jalayer F, Lucchini A, Mollaioli F, Manfredi G (2015) Preliminary ranking of alternative scalar and vector intensity measures of ground shaking. Bull Earthq Eng 13(10):2805–2840

    Google Scholar 

  • El-Hussain I, Deif A, Al-Jabri K et al (2012) Probabilistic seismic hazard maps for the sultanate of Oman. Nat Hazards 64(1):173–210

    Google Scholar 

  • Faenza L, Marzocchi W, Boschi E (2003) A non-parametric hazard model to characterize the spatio-temporal occurrence of large earthquakes; an application to the Italian catalogue. Geophys J Int 155(2):521–531

    Google Scholar 

  • Faenza L, Pierdominici S, Hainzl S, Cinti FR, Sandri L, Selva J, Tonini R, Perfetti P (2017) A Bayesian seismic hazard analysis for the city of Naples. J Geophys Res Solid Earth 122(3):1990–2012

    Google Scholar 

  • Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70(10):1189–1219

    Google Scholar 

  • Field EH, Johnson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for southern California. Bull Seismol Soc Am 89(3):559–578

    Google Scholar 

  • Forte G, Fabbrocino S, Fabbrocino G, Lanzano G, Santucci de Magistris F, Silvestri F (2017) A geolithological approach to seismic site classification: an application to the Molise Region (Italy). Bull Earthq Eng 15(1):175–198

    Google Scholar 

  • Forte G, Chioccarelli E, De Falco M, Cito P, Santo A, Iervolino I (2019) Seismic soil classification of Italy based on surface geology and shear-wave velocity measurements. Soil Dyn Earthq Eng 122:79–93

    Google Scholar 

  • Fracassi U, Valensise G (2007) Unveiling the sources of the catastrophic 1456 multiple earthquake: hints to an unexplored tectonic mechanism in southern Italy. Bull Seismol Soc Am 97(3):725–748

    Google Scholar 

  • Galli PAC, Naso JA (2009) Unmasking the 1349 earthquake source (southern Italy): paleoseismological and archaeoseimological indications from the Aquae Iuliae fault. J Struct Geol 31(2):128–149

    Google Scholar 

  • Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geophys 42(6):957–974

    Google Scholar 

  • Gregor N, Abrahamson NA, Atkinson GM et al (2014) Comparison of NGA-West2 GMPEs. Earthq Spectra 30(3):1179–1197

    Google Scholar 

  • Gruppo di Lavoro (2004) Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, April 2004: 65 pp. + 5 appendixes (in Italian)

  • Gruppo di lavoro CPTI (2004) Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04), INGV, Bologna. https://doi.org/10.6092/ingv.it-cpti04

  • Gruppo di Lavoro (1999) Proposta di riclassificazione sismica del territorio nazionale. Ing Sismica 16(1):5–14

    Google Scholar 

  • Gruppo di Lavoro CPTI (1999) Catalogo Parametrico dei Terremoti Italiani, ING, GNDT, SGA, SSN, Bologna. https://doi.org/10.6092/ingv.it-cpti99

  • Gülerce Z, Ocak S (2013) Probabilistic seismic hazard assessment of Eastern Marmara region. Bull Earthq Eng 11(5):1259–1277

    Google Scholar 

  • Gutenberg B, Richter CF (1949) Seismicity of the earth and associated phenomena. Princeton UniversityPress, Princeton

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350

    Google Scholar 

  • International Seismological Centre, On-line event bibliography. Internatl. Seis. Cent., Thatcham, UK, 20yy. http://www.isc.ac.uk/event_bibliography

  • Jalayer F, Cornell CA (2009) Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthq Eng Struct Dyn 38(8):951–972

    Google Scholar 

  • Jalayer F, Ebrahimian H (2017) Seismic risk assessment considering cumulative damage due to aftershocks. Earthq Eng Struct Dyn 46(3):369–389

    Google Scholar 

  • Jalayer F, Asprone D, Prota A, Manfredi G (2011) A decision support system for post-earthquake reliability assessment of structures subjected to aftershocks: an application to L’Aquila earthquake, 2009. Bull Earthq Eng 9(4):997–1014

    Google Scholar 

  • Jalayer F, Ebrahimian H, Miano A, Manfredi G, Sezen H (2017) Analytical fragility assessment using un-scaled ground motion records. Earthq Eng Struct Dyn 46(15):2639–2663

    Google Scholar 

  • Jiménez MJ, Giardini G, Grünthal G et al (2001) Unified seismic hazard modelling throughout the Mediterranean region. Boll Geof Teor Appl 42(1–2):3–18

    Google Scholar 

  • Kadirioğlu FT, Kartal RF, Kılıç T et al (2018) An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bull Earthq Eng 16(8):3317–3338

    Google Scholar 

  • Kagan YY, Jackson DD (2013) Tohoku earthquake: A surprise? Bull Seismol Soc Am 103(2B):1181–1194

    Google Scholar 

  • Ksentini A, Romdhane NB (2014) Updated seismic hazard assessment of Tunisia. Bull Earthq Eng 12(2):647–670

    Google Scholar 

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988

    Google Scholar 

  • Licata V, Forte G, d’Onofrio A, Evangelista L, Jalayer F, Santo A, Silvestri F (2016) Microzonation study on the western area of Napoli. Procedia Eng 158:511–516

    Google Scholar 

  • Licata V, Forte G, d’Onofrio A, Santo A, Silvestri F (2019a) A multi-level study for the seismic microzonation of the western area of Napoli (Italy). Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00665-6

    Google Scholar 

  • Licata V, Forte G, Ebrahimian H, d’Onofrio A, Jalayer F, Santo A, Silvestri F (2019b) Evaluation of the seismic ground amplification considering the variability of the depth of the bedrock and random shear wave velocity profiles. In: Silvestri F, Moraci N (eds) Proceedings of 7th international conference on earthquake geotechnical engineering, Rome, IT, 17–20 June 2019. CRC Press, 2019 Taylor and Francis Group, London, pp 3601–3608

  • Luzi L, Sabetta F, Hailemikael S, Bindi D, Pacor F, Mele F (2008) ITACA (ITalian ACcelerometric Archive): a web portal for the dissemination of Italian strong motion data. Seismol Res Lett 79(5):716–722. https://doi.org/10.1785/gssrl.79.5.716

    Google Scholar 

  • Marzocchi W, Sandri L, Boschi E (2003) On a validation of earthquake-forecasting models: the case of pattern recognition algorithms. Bull Seism Soc Am 93(5):1994–2004

    Google Scholar 

  • Marzocchi W, Sandri L, Heuret A, Funiciello F (2016) Where giant earthquakes may come? J Geophys Res Solid Earth 121(10):7322–7336

    Google Scholar 

  • McGuire RK (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct Dyn 37(3):329–338

    Google Scholar 

  • Meletti C, Montaldo V (2007) Stime di pericolosità sismica per diverse probabilità di superamento in 50 anni: valori di ag. Project DPC-INGV S1, deliverable D2 (in Italian). Istituto Nazionale di Geofisica e Vulcanologia—Sezione di Milano-Pavia. http://esse1.mi.ingv.it/d2.html. Accessed 10 June 2018

  • Meletti C, Patacca E, Scandone P (2000) Construction of a seismotectonic model: the case of Italy. Pure appl Geophys 157:11–35

    Google Scholar 

  • Meletti C, Calvi GM, Stucchi M (2007) Project S1—continuation of assistance to DPC for improving and using the seismic hazard map compiled according to the Prime Minister “Ordinanza” 3274/2003 and planning future initiatives—final report, INGV (in Italian). Interactive maps of seismic hazard (WebGis). http://esse1.mi.ingv.it/. Accessed 10 June 2018

  • Meletti C, Galadini F, Valensise G, Stucchi M, Basili R, Barba G, Vannucci G, Boschi E (2008) A seismic source model for the seismic hazard assessment of the Italian territory. Tectonophysics 450(1):85–108

    Google Scholar 

  • Miano A, Jalayer F, De Risi R, Prota A, Manfredi G (2015) A case-study on scenario-based probabilistic seismic loss assessment for a portfolio of bridges. In: 12th international conference on applications of statistics and probability in civil engineering (ICASP12), Vancouver, Canada, 12–15 July

  • Miano A, Jalayer F, De Risi R, Prota A, Manfredi G (2016) Model updating and seismic loss assessment for a portfolio of bridges. Bull Earthq Eng 14(3):699–719

    Google Scholar 

  • Miano A, Jalayer F, Ebrahimian H, Prota A (2018) Cloud to IDA: efficient fragility assessment with limited scaling. Earthq Eng Struct Dyn 47(5):1124–1147

    Google Scholar 

  • Mihaljević J, Zupančič P, Kuka N et al (2017) BSHAP seismic source characterization models for the Western Balkan region. Bull Earthq Eng 15(10):3963–3985

    Google Scholar 

  • Montaldo V, Meletti C (2007) Valutazione del valore della ordinata spettrale a 1 sec e ad altri periodi di interesse ingegneristico. Project DPC-INGV S1, deliverable D3 (in Italian). Istituto Nazionale di Geofisica e Vulcanologia—Sezione di Milano-Pavia. http://esse1.mi.ingv.it/d3.html. Accessed 10 June 2018

  • Montaldo V, Faccioli E, Zonno G, Akinci A, Malagnini L (2005) Treatment of ground-motion predictive relationships for the reference seismic hazard map of Italy. J Seismol 9(3):295–316

    Google Scholar 

  • Mulargia F, Gasperini P, Tinti S (1987) Contour mapping of Italian seismicity. Tectonophysics 142:203–216

    Google Scholar 

  • NTC (2008) Norme Tecniche per le Costruzioni. Gazzetta Ufficiale 29, 4 Feb 2008

  • NTC (2018) Norme Tecniche per le Costruzioni, D.M. Infrastrutture Trasporti 17 gennaio 2018, G.U. 20 febbraio 2018 n. 42 - Suppl. Ord

  • Ornthammarath T, Warnitchai P, Worakanchana K et al (2011) Probabilistic seismic hazard assessment for Thailand. Bull Earthq Eng 9(2):367–394

    Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66(6):514–530

    Google Scholar 

  • Pace B, Peruzza L, Lavecchia G, Boncio P (2002) Seismogenic sources in Central Italy: from causes to effects. Mem Soc Geol Ital 57:419–429

    Google Scholar 

  • Pace B, Peruzza L, Lavecchia G, Boncio P (2006) Layered seismogenic source model and probabilistic seismic-hazard analyses in central Italy. Bull Seismol Soc Am 96(1):107–132

    Google Scholar 

  • Pace B, Visini F, Peruzza L (2016) FiSH: MATLAB tools to turn fault data into seismic-hazard models. Seismol Res Lett 87(2A):374–386. https://doi.org/10.1785/0220150189

    Google Scholar 

  • Pacor F, Paolucci R, Ameri G, Massa M, Puglia R (2011) Italian strong motion records in ITACA: overview and record processing. Bull Earth Eng 9(6):1741–1759

    Google Scholar 

  • Pantosti D, Valensise G (1988) La faglia sud-appenninica: identificazione oggettiva di un lineamento sismogenetico nell’Appennino meridionale. In: Proceedings 7° meeting G.N.G.T.S., Rome, pp 205–220

  • Parra H, Benito MB, Gaspar-Escribano JM (2016) Seismic hazard assessment in continental Ecuador. Bull Earthq Eng 14(8):2129–2159

    Google Scholar 

  • Peruzza L, Pace B (2002) Sensitivity analysis for seismic source characteristics to probabilistic seismic hazard assessment in central Apennines (Abruzzo area). Boll Geofis Teor Appl 43:79–100

    Google Scholar 

  • Peruzza L, Pace B, Cavallini F (2010) Error propagation in time-dependent probability of occurrence for characteristic earthquakes in Italy. J Seismol 14(1):119–141

    Google Scholar 

  • Pino NA, Palombo B, Ventura G, Perniola B, Ferrari G (2008) Waveform modeling of historical seismograms of the 1930 Irpinia earthquake provides insight on ‘blind’ faulting in Southern Apennines (Italy). J Geophys Res. https://doi.org/10.1029/2007jb005211

    Google Scholar 

  • Ricci P, Verderame GM, Manfredi G (2011) Analytical investigation of elastic period of infilled RC MRF buildings. Eng Struct 33(2):308–319

    Google Scholar 

  • Romeo R, Pugliese A (2000) Seismicity, seismotectonics and seismic hazard of Italy. Eng Geol 55(4):241–266

    Google Scholar 

  • Romeo R, Paciello A, Rinaldis D (2000) Seismic hazard maps of Italy including site effects. Soil Dyn Earthq Eng 20(1–4):85–92

    Google Scholar 

  • Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. http://doi.org/10.6092/INGV.IT-CPTI15. Accessed 24 Mar 2017

  • Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2):337–352

    Google Scholar 

  • Sesetyan K, Demircioglu MB, Duman TY et al (2016) A probabilistic seismic hazard assessment for the Turkish territory—part I: the area source model. Bull Earthq Eng 16(8):3367–3397

    Google Scholar 

  • Seyhan E, Stewart JP (2014) Semi-empirical nonlinear site amplification from NGAWest2 data and simulations. Earthq Spectra 30(3):1241–1256

    Google Scholar 

  • Seyhan E, Stewart JP, Ancheta TD, Darragh RB, Graves RW (2014) NGA-West2 site database. Earthq Spectra 30(3):1007–1024

    Google Scholar 

  • Slejko D, Peruzza L, Rebez A (1998) The seismic hazard maps of Italy. Ann Geophys 41(2):183–214

    Google Scholar 

  • Slejko D, Camassi R, Cecic I et al (1999) Seismic hazard assessment of Adria. Ann Geophys 42(6):1085–1107

    Google Scholar 

  • Sokolov V, Zahran HM, Youssef SEH et al (2017) Probabilistic seismic hazard assessment for Saudi Arabia using spatially smoothed seismicity and analysis of hazard uncertainty. Bull Earthq Eng 15(7):2695–2735

    Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of first microzonation conference, Seattle, USA, pp 897–909

  • Stucchi M, Albini P, Mirto C, Rebez A (2004) Assessing the completeness of Italian historical earthquake data. Ann Geophys 47(2/3):659–673

    Google Scholar 

  • Stucchi M, Meletti C, Montaldo V, Crowley H, Calvi GM, Boschi E (2011) Seismic hazard assessment (2003–2009) for the Italian building code. Bull Seismol Soc Am 101(4):1885–1911

    Google Scholar 

  • Valensise G, Pantosti D (2001) Database of potential sources for earthquakes larger than M 5.5 in Italy. Ann Geophys 44(4):797–964 (with CD-Rom)

    Google Scholar 

  • Vanini M, Corigliano M, Faccioli E, Figini R, Luzi L, Pacor F, Paolucci R (2018) Improving seismic hazard approaches for critical infrastructures: a pilot study in the Po Plain. Bull Earthq Eng 16(6):2529–2564

    Google Scholar 

  • Vannoli P, Burrato P, Valensise G (2015) The seismotectonic of the Po Plain (northern Italy): tectonic diversity in a blind faulting domain. Pure appl Geophys 172(5):1105–1142

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Westaway R (1993) Fault rupture geometry for the 1980 Irpinia earthquake: a working hypothesis. Ann Geophys 36(1):51–69

    Google Scholar 

  • Woessner J, Laurentiu D, Giardini D et al (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596

    Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75(4):939–964

    Google Scholar 

  • Zimmaro P, Stewart JP (2017) Site-specific seismic hazard analysis for Calabrian dam site using regionally customized seismic source and ground motion models. Soil Dyn Earthq Eng 94:179–192

    Google Scholar 

  • Zöller G, Holschneider M, Hainzl S (2013) The maximum earthquake magnitude in a time horizon: theory and case studies. Bull Seismol Soc Am 103(2A):860–875

    Google Scholar 

  • Zuccolo E, Corigliano M, Lai CG (2013) Probabilistic seismic hazard assessment of Italy using kernel estimation methods. J Seismol 17(3):1001–1020

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Project METROPOLIS (Metodologie e Tecnologie Integrate e Sostenibili Per L’adattamento e La Sicurezza di Sistemi Urbani). This support is gratefully acknowledged. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor. The authors would also like to gratefully acknowledge Dr. Dino Bindi (Helmholtz Centre Potsdam) for the fruitful discussions on the database of ground motions used for ITA10 and BND14 ground-motion prediction models. In addition, the authors would like to gratefully acknowledge Dr. Carlo Del Gaudio (University of Naples Federico II) for providing information and statistics on the buildings in the Western Naples including the zones of Bagnoli and Fuorigrotta. Last but not least, the authors would like to acknowledge the scientific coordinator Prof. Gerardo M. Verderame (University of Naples Federico II) and STRESS Scarl staff for their invaluable support and help through the METROPOLIS Project. The authors would also like to acknowledge the anonymous reviewers who have contributed significantly to improving and enriching the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Jalayer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7818 kb)

Appendix 1

Appendix 1

Consider the standard deviation of the residuals of a GMPE that provides the geometric mean associated with the two horizontal components of ground motion, be denoted as \(\sigma_{{{ \ln }IM_{g.m.} }}\). To obtain the standard deviation for the arbitrary horizontal ground motion, \(\sigma_{{{ \ln }IM_{arb} }}\), we calculate the variance of the finite record numbers N in the database as follows:

$$\begin{aligned} \sigma_{{\ln IM_{g.m.} }}^{2} = \frac{1}{N}\sum\limits_{j = 1}^{N} {\left( {\ln IM_{g.m.,j} - \mu_{{\ln IM_{g.m.} }} } \right)^{2} } = \frac{1}{N}\sum\limits_{j = 1}^{N} {\ln IM_{g.m.,j}^{2} } - \mu_{{\ln IM_{g.m.} }}^{2} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{4}\left[ {\frac{1}{N}\sum\limits_{j = 1}^{N} {\ln IM_{x,j}^{2} } + \frac{1}{N}\sum\limits_{j = 1}^{N} {\ln IM_{y,j}^{2} } + \frac{1}{N}\sum\limits_{j = 1}^{N} {2\ln IM_{x,j} \ln IM_{y,j} } } \right] - \mu_{{\ln IM_{g.m.} }}^{2} \hfill \\ \end{aligned}$$
(25)

where IMg.m.,j is the ground motion intensity for the geometric mean of the two horizontal components of jth recording, j ∈ [1,…,N], \(\mu_{{{ \ln }IM_{g.m.} }}\) is the logarithmic mean of the GMPE (see Eq. 14). Knowing that

$$\sigma_{{\ln IM_{arb} }}^{2} = \frac{1}{N}\sum\limits_{j = 1}^{N} {\left( {\ln IM_{arb,j} - \mu_{{\ln IM_{arb} }} } \right)^{2} } = \frac{1}{N}\sum\limits_{j = 1}^{N} {\ln IM_{arb,j}^{2} } - \mu_{{\ln IM_{arb} }}^{2}$$
(26)

Equation (25) can be written as,

$$\begin{aligned} \sigma_{{\ln IM_{g.m.} }}^{2} = & \frac{1}{4}\left[ {2\sigma_{{\ln IM_{arb} }}^{2} + 2\mu_{{\ln IM_{arb} }}^{2} + \frac{1}{N}\sum\limits_{j = 1}^{N} {2\ln IM_{x,j} \ln IM_{y,j} } } \right] - \mu_{{\ln IM_{g.m.} }}^{2} \\ = & \frac{1}{4}\left[ {2\sigma_{{\ln IM_{arb} }}^{2} + 2\mu_{{\ln IM_{arb} }}^{2} + \frac{1}{2N}\left( {\sum\limits_{j = 1}^{N} {\left( {\ln IM_{x,j} + \ln IM_{y,j} } \right)^{2} } - \sum\limits_{j = 1}^{N} {\left( {\ln IM_{x,j} - \ln IM_{y,j} } \right)^{2} } } \right)} \right] - \mu_{{\ln IM_{g.m.} }}^{2} \\ = & \frac{1}{4}\left[ {2\sigma_{{\ln IM_{arb} }}^{2} + 2\mu_{{\ln IM_{arb} }}^{2} + 2\sigma_{{\ln IM_{g.m.} }}^{2} + 2\mu_{{\ln IM_{g.m.} }}^{2} - \frac{1}{2N}\sum\limits_{j = 1}^{N} {\left( {\ln IM_{x,j} - \ln IM_{y,j} } \right)^{2} } } \right] - \mu_{{\ln IM_{g.m.} }}^{2} \\ = & \frac{1}{2}\sigma_{{\ln IM_{arb} }}^{2} + \frac{1}{2}\sigma_{{\ln IM_{g.m.} }}^{2} - \frac{1}{8N}\sum\limits_{j = 1}^{N} {\left( {\ln IM_{x,j} - \ln IM_{y,j} } \right)^{2} } \\ \end{aligned}$$
(27)

Hence, we have,

$$\sigma_{{\ln IM_{arb} }}^{2} = \sigma_{{\ln IM_{g.m.} }}^{2} + \underbrace {{\frac{1}{4N}\sum\limits_{j = 1}^{N} {\left( {\ln IM_{x} - \ln IM_{y} } \right)^{2} } }}_{{\sigma_{C}^{2} }}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimian, H., Jalayer, F., Forte, G. et al. Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy. Bull Earthquake Eng 17, 4743–4796 (2019). https://doi.org/10.1007/s10518-019-00678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-019-00678-1

Keywords

Navigation