Skip to main content

Advertisement

Log in

A probabilistic approach for seismic risk assessment based on vulnerability functions. Application to Barcelona

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Risk assessment and management is an important step towards resilient and sustainable cities. Among many other perils, both natural and manmade, seismic risk is a major threat for resilience and sustainability. In recent decades, several methods for seismic risk assessment have been proposed, including the well-known Vulnerability Index Method (VIM). In this study, a probabilistic version of the VIM, which we call the Vulnerability Index Method-Probabilistic (VIM_P), is proposed. The VIM_P requires essential information on the seismic hazard and on the vulnerability of the building stock. Seismic hazard is determined using the exceedance rates of macroseismic intensities, as defined in the European Macroseismic Scale (EMS). Seismic vulnerability is defined by means of vulnerability probability density functions (pdf) that describe the probability distribution of the corresponding vulnerability index. Beta-like functions are used for these pdfs. VIM_P quantifies seismic vulnerability by means of three vulnerability curves, Lower, Best and Upper, according to the quantity and quality of available information, thus allowing three estimates of seismic vulnerability and risk. Then, seismic risk is computed via the convolution of seismic hazard and seismic vulnerability, considering semi-empirical damage functions. Seismic risk is given through the exceedance frequencies of the damage grades. To highlight the capabilities of the VIM_P, the seismic risk of about 70,000 residential buildings in Barcelona was assessed. According to the results, the exceedance frequency of the collapse damage state for more than the 50% of the buildings in the Eixample district would be greater than 1 × 10−5. This confirms the relatively high seismic risk in the city, mainly due to the high vulnerability of the built environment. Specific software, USERISK20015, has been developed for routine applications of VIM_P. It is hoped that VIM_P and this new tool for seismic risk assessment will be useful to stakeholders and civil protection authorities for risk management and prioritizing actions that can help to create more resilient, sustainable cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Aguilar-Meléndez et al. 2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(adapted from Secanell et al. 2004)

Fig. 9
Fig. 10
Fig. 11

(adapted from Aguilar-Meléndez et al. 2018)

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Note that Eq. (11) is deterministic. The development of a specific probabilistic damage function is an improvement of VIM_P that is pending, to become a fully probabilistic approach.

  2. Processor Intel® Core™ i7-4600U CPU @ 2.10 GHz 2.70 GHz, and installed RAM of 8.00 GB.

References

  • Aguilar-Meléndez A (2011) Evaluación probabilista del riesgo sísmico de edificios en zonas urbanas. Dissertation, Universitat Politècnica de Catalunya

  • Aguilar-Meléndez A, Pujades LG, Barbat AH, Ordaz, M (2008) Probabilistic assessment of seismic risk in urban areas. In: Proceedings of the 14th World conference on earthquake engineering, Beijing, China, pp 12–17

    Google Scholar 

  • Aguilar-Meléndez A, Pujades LG, Barbat AH, Lantada N (2010) A probabilistic model for the seismic risk of buildings: application to assess the seismic risk of buildings in urban areas. In: Proceedings of the 9th US national and 10th Canadian conference on earthquake engineering, Toronto, pp 1–10

  • Aguilar-Meléndez A, Pujades LG, Ordaz MG, Barbat AH, Lantada N, García-Elías A, Campos-Rios A (2013) Análisis comparativo del peligro sísmico de Barcelona. In: Proceedings of the XIX Congreso Nacional de Ingeniería Sísmica. Veracruz, Mexico, pp 1–17

  • Aguilar-Meléndez A, Pujades LG, De la Puente J, Barbat AH, Lantada N, Campos-Rios A (2016) USERISK2015. Program for computing seismic risk in urban areas. https://sites.google.com/site/userisk2015/. Accessed 15 Feb 2018

  • Aguilar-Meléndez A, Ordaz MG, De la Puente J, González Rocha SN, Rodríguez-Lozoya HE, Córdova Ceballos A, García-Elías A, Calderón-Ramón C, Escalante-Martínez JE, Laguna-Camacho JR, Campos-Rios A (2017) Development and validation of software CRISIS to perform probabilistic seismic hazard assessment with emphasis on the recent CRISIS2015. Comput Sist 21(1):67–90

    Google Scholar 

  • Aguilar-Meléndez A, Pujades LG, De la Puente J, Barbat AH, Ordaz MG, González-Rocha SN, Welsh-Rodríguez CM, Rodríguez-Lozoya HE, Lantada N, Ibarra L, García-Elías A, Campos-Rios A (2018) Probabilistic assessment of seismic risk of dwelling buildings of Barcelona Implications for the City Resilience. In: Brunetta G, Caldarice O, Tollin N, Rosas-Casals M, Morato J (eds) Urban resilience for risk and adaptation governance: theory and practices. Springer, Dordrecht

    Google Scholar 

  • ATC-13 (1985) Earthquake damage evaluation. Data for California; Applied Technology Council, Redwood City

    Google Scholar 

  • ATC-25 (1991) Seismic Vulnerability and Impact of Disruption of Lifelines in the Conterminous United States, Redwood City, California

  • Athmani AE, Gouasmia A, Ferreira TM, Vicente R, Khemis A (2015) Seismic vulnerability assessment of historical masonry buildings located in Annaba city (Algeria) using non ad-hoc data survey. Bull Earthq Eng 13:2283–2307

    Article  Google Scholar 

  • Barbat AH, Lagomarsino S, Pujades LG (2006) Vulnerability assessment of dwelling buildings. In: Oliveira CS, Roca A, Goula X (eds) Assessing and managing earthquake risk. Springer, Dordrecht, pp 115–134

    Google Scholar 

  • Benedetti D, Benzoni G, Parisi MA (1988) Seismic vulnerability and risk evaluation for old urban nuclei. Earthq Eng Struct Dyn 16(2):183–201

    Article  Google Scholar 

  • Bernardini A (2000) La vulnerabilità degli edifici: valutazione a scala nazionale della vulnerabilità sismica degli edifici ordinari. CNR-Gruppo Nazionale per la Difesa dai Terremoti - Roma. ftp://ingv.it/pro/gndt/Pubblicazioni/Bernardini/indice_Bernardini.htm. Accessed 31 Mar 2018

  • BRGM (2004) Synthesis of the application to Nice city. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014

  • Cardona OD, Ordaz MG, Reinoso E, Yamín LE, Barbat AH (2012) CAPRA-Comprehensive Approach to Probabilistic Risk Assessment: International Initiative for Risk Management Effectiveness. In: Proceedings of the 15th World conference on earthquake engineering, Lisbon, Portugal

  • Castillo A, López-Almansa F, Pujades LG (2011) Seismic risk analysis of urban non-engineered buildings: application to an informal settlement in Mérida, Venezuela. Nat Hazards 59(2):891–916

    Article  Google Scholar 

  • Cherif SE, Chourak M, Abed M, Pujades LG (2016) Seismic risk in the city of Al Hoceima (north of Morocco) using the vulnerability index method, applied in Risk-UE project. Nat Hazards 85:329–347

    Article  Google Scholar 

  • Cornell CA (1964) Stochastic processes in civil engineering. Ph.D. Thesis, Stanford University

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • Dolce M, Kappos A, Masi A, Penelis G, Vona M (2006) Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies. Eng Struct 28:357–371

    Article  Google Scholar 

  • Douglas J (2018) Ground motion prediction equations 1964–2018. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK. http://www.gmpe.org.uk/gmpereport2014.pdf. Accessed 8 May 2018

  • Ellingwood BR (2006) Mitigating risk from abnormal loads and progressive collapse. J Perform Constr Facil 20(4):315–323

    Article  Google Scholar 

  • Esteva L (1968) Bases para la formulación de decisiones de diseño sísmico. Ph.D. Thesis and Report 182. Universidad Autónoma Nacional de México

  • Esteva L (1969) Seismic risk and seismic design decisions. In: Proceedings of MIT symposium on seismic design of nuclear power plants, Cambridge, MA

  • Faccioli E, Frassine L, Finazzi D, Pessina V, Cauzzi C, Lagomarsino S, Giovinazzi S, Resemini S, Curti E, Podestà S, Scuderi S (2004) Synthesis of the application to Catania city. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014

  • FEMA (1999) HAZUS-99: Earthquake loss estimation methodology, Technical Manual, vol 1, Washington, DC

  • FEMA (2015) HAZUS® MH 2.1. Multi-hazard Loss estimation methodology. Earthquake Model. User Manual. Washington, DC. http://www.fema.gov/media-library-data/20130726-1820-25045-1179/hzmhs2_1_eq_um.pdf. Accessed 15 May 2018

  • Giovinazzi S (2005) The vulnerability assessment and the damage scenario in seismic risk analysis. Dissertation, Technical University of Braunschweig, and University of Florence

  • Giovinazzi S, Lagomarsino S, Pampanin S (2006) Vulnerability methods and damage scenario for seismic risk analysis as support to retrofit strategies: a European perspective. In: Proceedings of the 2006 NZSEE conference, Napier, New Zealand, pp 1–10

  • Goded T, Irizarry J, Buforn E (2012) Vulnerability and risk analysis of monuments in Málaga city’s historical centre (Southern Spain). Bull Earthq Eng 10(3):839–861

    Article  Google Scholar 

  • Goded T, Cattari S, Lagomarsino S, Giovinazzi S, Ingham JM, Marotta A, Liberatore D, Sorrentino L, Ottonelli D, Pinna M, Clark W (2016) Vulnerability analysis of unreinforced masonry churches (EQC 14/660)—Final Report, GNS Science Consultancy Report 2016/53

  • Goula X, Susagna T, Secanell R, Fleta J, Roca A (1997) Seismic Hazard Assessment for Catalonia (Spain). In: Proceedings of the second congress on regional geological cartography and information systems, Barcelona, pp 173–177

  • Grünthal G (1998) European Macroseismic Scale 1998. Cahiers du Centre Européen de Géodynamique et de Séismologie 15:1–99

    Google Scholar 

  • Guardiola-Víllora A, Basset-Salom L (2015) Escenarios de riesgo sísmico del distrito del Eixample de la ciudad de Valencia. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 31(2):81–90. https://doi.org/10.1016/j.rimni.2014.01.002

    Article  Google Scholar 

  • ICC/CIMNE (2004) WP08 application to Barcelona. Synthesis. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014

  • ISDR-UN (2005) Hyogo framework for action 2005-2015: building the resilience of nations and communities to disasters. In: Extract from the final report of the World conference on disaster reduction (A/CONF. 206/6), vol 380

  • Kappos JA, Panagopoulos G, Penelis GG (2008) Development of a seismic damage and loss scenario for contemporary and historical buildings in Thessaloniki, Greece. Soil Dyn Earthq Eng 28:836–850

    Article  Google Scholar 

  • Kostov M, Vaseva E, Kaneva A, Koleva N, Varbanov G, Stefanov D, Darvarova E, Solakov D, Simeonova S, Christoskov L (2004) WP13: application to Sofia. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443

    Article  Google Scholar 

  • Lantada N (2007) Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona. Dissertation, vol 1, Universitat Politècnica de Catalunya

  • Lantada N, Pujades LG, Barbat AH (2009a) Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Nat Hazards 51:501–524

    Article  Google Scholar 

  • Lantada N, Pujades LG, Barbat AH (2009b) Escenarios de riesgo sísmico para la ciudad de Barcelona. Informe técnico para el Servicio de Protección Civil. Ayuntamiento de Barcelona, vol II

  • Lantada N, Irizarry J, Barbat AH, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8(2):201–229

    Article  Google Scholar 

  • Lestuzzi P, Podestà S, Luchini C, Garofano A, Kazantzidou-Firtinidou D, Bozzano C, Bischof P, Haffter A, Rouiller JD (2016) Seismic vulnerability assessment at urban scale for two typical Swiss cities using Risk-UE methodology. Nat Hazards 84(1):249–269

    Article  Google Scholar 

  • López-Casado C, Molina S, Delgado J, Peláez JA (2000) Attenuation of intensity with epicentral distance in the Iberian Peninsula. Bull Seismol Soc Am 90:34–47

    Article  Google Scholar 

  • Lungu D, Aldea A, Arion A, Cornea T, Petrescu F, Vacareanu R (2004) WP10: synthesis report for the City of Bucharest. Synthesis. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014

  • Marulanda MC, Carreño ML, Cardona OD, Ordaz MG, Barbat AH (2013) Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona, Spain. Nat Hazards 69(1):59–84

    Article  Google Scholar 

  • Marzocchi W, Taroni M, Selva J (2015) Accounting for epistemic uncertainty in PSHA: logic tree and ensemble modeling. Bull Seismol Soc Am 105(4):2151–2159

    Article  Google Scholar 

  • McGuire RK (2004) Seismic hazard and risk analysis. MNO-10. Earthquake Engineering Research Institute, Oakland

    Google Scholar 

  • Milutinovic ZV, Trendafiloski GS (2003) WP4: vulnerability of current buildings. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns, Contract: EVK4-CT-2000-00014

  • Milutinovic ZV, Trendafiloski GS, Olumceva TR, Anastasov K, Vrskovski Z (2004) WP9: Application to Bitola. Synthesis. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014

  • Mouroux P, Le Brun B (2006) Presentation of RISK-UE Project. Bull Earthq Eng 4:323–339

    Article  Google Scholar 

  • Ordaz M, Martinelli F, Aguilar-Meléndez A, Arboleda J, Meletti C, D’Amico V (2013) CRISIS2012. Program for computing seismic hazard

  • Ordaz M, Martinelli F, Aguilar-Meléndez A, Arboleda J, Meletti C, D’Amico V (2015) CRISIS2015. Program for computing seismic hazard. https://sites.google.com/site/codecrisis2015/. Accessed 18 Feb 2017

  • Ordaz M, Martinelli F, Aguilar-Meléndez A, Arboleda J, Meletti C, D’Amico V (2017) R-CRISIS. Program for computing seismic hazard. http://www.r-crisis.com/. Accessed 12 May 2018

  • Pitilakis K, Alexoudi M, Argyroudis S, Anastasiadis A (2006) Seismic risk scenarios for an efficient seismic risk management: the case of Thessaloniki (Greece). In: Wasti ST, Ozcebe G (eds) Advances in earthquake engineering for urban risk reduction. Springer, Berlin

    Google Scholar 

  • Ruiz A, Vidal-Sanchez F, Aranda-Caballero C (2015) Estudio de la Vulnerabilidad Sísmica del Centro Histórico de Tapachula, Chiapas, con el Método del Índice de Vulnerabilidad. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil 15(1):5–24

    Google Scholar 

  • Secanell R, Goula X, Susagna T, Fleta J, Roca A (2004) Seismic hazard zonation of Catalonia, Spain, integrating random uncertainties. J Seismol 8:25–40

    Article  Google Scholar 

  • Spence R, Le Brun B (2006) Preface. Bull Earthq Eng 4(4):319–321

    Article  Google Scholar 

  • UNISDR (2015) Sendai framework for disaster risk reduction 2015–2030. http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf. Accessed 7 Mar 2017

  • Vacareanu R, Lungu D, Aldea A, Arion C (2004) WP7: Seismic Risk Scenarios Handbook. RISK-UE. An advanced approach to earthquake risk scenarios with applications to different European towns, Contract: EVK4-CT-2000-00014

Download references

Acknowledgements

This study was made possible by the support of the Barcelona Supercomputing Center (BSC), CONACyT, and the Universidad Veracruzana. The research was partially funded by the Ministry of Economy and Competitiveness (MINECO) of the Spanish Government and by the European Regional Development Fund (ERDF) of the European Union (EU) through projects with references CGL2011-23621 and CGL2015-65913 -P (MINECO/ERDF, EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Aguilar-Meléndez.

Appendix

Appendix

See Tables 10 and 11.

Table 10 Relevant methodologies for seismic risk assessment in urban areas
Table 11 Summary of the main features of the VIM and VIM_P methodologies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Meléndez, A., Pujades, L.G., Barbat, A.H. et al. A probabilistic approach for seismic risk assessment based on vulnerability functions. Application to Barcelona. Bull Earthquake Eng 17, 1863–1890 (2019). https://doi.org/10.1007/s10518-018-0516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0516-4

Keywords

Navigation