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Abstract
A bespoke ground-motion model has been developed for the prediction of response spec-
tral accelerations, peak ground velocity and significant duration due to induced earthquakes 
in the Groningen gas field in the Netherlands. For applications to the calculation of risk to 
the exposed building stock, extensions to the model are required. The use of the geometric 
mean horizontal component in the ground-motion predictions and the arbitrary horizontal 
component for the building fragility functions requires the addition of component-to-com-
ponent variability. A model for this variability has been developed that both reflects the 
strong horizontal polarisation of motions observed in many Groningen records obtained 
at short distances and the fact that the strong polarisation is unlikely to persist at larger 
magnitudes. The other extension of the model is the spatial correlation of ground motions 
for the calculation of aggregated risk, which can be approximated through simple rules for 
sampling the variance within site response zones. Making use of ground-motion recordings 
from several networks in the field and the results of finite difference waveform simulations, 
a Groningen-specific spatial correlation model has been developed. The new model also 
combines results from traditional variogram fitting approaches with a new method to infer 
spatial correlation lengths from observed variance reduction. The development of the new 
spatial correlation model relaxes the need to approximate spatial correlation through the 
sampling of site response, although the results obtained herein suggest that similar results 
could be obtained using either approach. The preliminary consideration of the numerical 
waveform modelling results in this study paves the way for significant extensions to be 
made for the modelling of spatial correlations and the decomposition of apparent spatial 
variability into systematic and random components within a fully non-ergodic framework .
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1 Introduction

Gas production in the Groningen field in the northern Netherlands is inducing earthquakes, 
the largest of which occurred in August 2012 near the village of Huizinge with a magni-
tude of  ML 3.6. A key element in quantifying the consequent hazard and risk due to these 
induced earthquakes is a model for the estimation of the ground shaking at the surface (van 
Elk et al. 2017). The earthquakes initiate inside the gas-bearing Rotliegend sandstone layer 
encountered at a depth of about 3 km and the radiated energy then propagates through the 
overlying high-velocity Zechstein salt layer, which causes reflections and refractions of the 
waves (Kraaijpoel and Dost 2013). Overlying the Zechstein is a chalk layer and near the 
surface there are thick layers of soft soils, including clays, sands and peats, which can be 
expected to respond non-linearly under stronger levels of shaking.

In view of the unique characteristics of the Groningen earthquakes and the velocity pro-
file between the reservoir and the ground surface, there is a clear need to derive a field-
specific ground-motion model. The initial model was based on simulations using source, 
path and site parameters obtained from inversions of the Fourier amplitude spectra of 
the recorded motions (Bommer et al. 2016). In the simulations, alternative values of the 
Brune stress parameter were used in a logic-tree formulation in order to represent epis-
temic uncertainty associated with the extrapolations from the magnitude range of the data 
 (ML 2.5–3.6) to the largest magnitudes consider in the hazard and risk modelling, which 
extends to an upper limit of  ~ 7.5 (see Bommer and van Elk 2017). In passing we note that 
for magnitudes ≥ 2.5, moment and local magnitudes in the Groningen field are, on average, 
equivalent (Dost et al. 2018).

Subsequent developments of the Groningen ground-motion model (GMM) focused on 
incorporation of local site effects by predicting motions at a reference rock horizon (the 
base of the North Sea formation, which is at about 800 m depth) and combining these with 
non-linear frequency-dependent amplification factors (Bommer et al. 2017a). Using a field-
wide shear-wave velocity model from the surface to 800  m depth (Kruiver et  al. 2017), 
the field was divided into 160 zones each with non-linear amplification factors for spec-
tral accelerations at 23 response periods and for peak ground velocity (Rodriguez-Marek 
et al. 2017). The linear portion of the amplification factors for short oscillator periods were 
found to depend on both magnitude and distance (Stafford et al. 2017). Another enhance-
ment of the GMM development was to move from point-source to extended-rupture simu-
lations (Bommer et al. 2017b; Edwards et al. 2018).

For generation of seismic hazard maps and uniform hazard spectra for the field, the 
model as described is sufficient. However, for the calculation of potential structural dam-
age to the exposed Groningen building stock, and consequent injuries and fatalities, addi-
tional elements of the GMM are required. For some structural types, the fragility is defined 
not only as a function of spectral acceleration but also of duration (Crowley et al. 2017). 
Consequently, the GMM also predicts the significant duration of shaking (Bommer et al. 
2017a, b) and the model of Bradley (2011) for the correlation of residuals of spectral accel-
eration and duration is adopted. Since multiple building typologies can be encountered 
within any of the grid squares in the risk modelling, and since several building types have 
different fundamental vibration periods in the two orthogonal axes, period-to-period cor-
relations are also required, for which the model of Baker and Jayaram (2008) was adopted. 
The Groningen ground-motion database is not sufficient to allow the derivation of inter-
intensity measure correlation models applicable across the magnitude range considered in 
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the hazard and risk calculations, but local data was used to confirm the applicability of the 
adopted models.

In this paper, we address two other extensions to the GMM required for the risk calcula-
tions, namely the component-to-component variability and a model for the spatial correla-
tion of ground motions. These are presented in the following sections of the paper, which 
concludes with a discussion of potential refinements of both of these elements within the 
framework of a transition to a fully non-ergodic model of spatially- and azimuthally-vary-
ing predictions of ground motions.

2  Ground‑motion database

A large number of recording stations have been installed in the field as part of a series of 
different networks and recording campaigns in the years since the Huizinge earthquake. 
The overall database utilised in the present study contains records specifically from the fol-
lowing networks:

• The KNMI B-network, which consists of 17 accelerographs located mainly, but not 
exclusively, in the north of the field (Dost et al. 2017).

• The surface accelerographs only of the KNMI G-network, a network of ~ 80 borehole 
arrays with an accelerograph at surface level and four geophones at depth intervals of 
50 metres; operation of the first stations started in early 2015 (Dost et al. 2017).

• The TNO-operated household network, consisting of more than 350 accelerographs 
installed since 2014 within buildings, mainly private residences and a few public build-
ings. There are concerns that the records obtained from accelerographs of this network 
that are installed above ground level are contaminated with structural response. There-
fore, only records from accelerographs located in basements and crawl spaces below 
the ground floor are being used until the ongoing investigation of this matter is com-
pleted. The accelerographs were installed with a triggering level of 0.1  cm/s PGV, 
which censored the datasets from earthquakes prior to 2016, when a system to bypass 
the threshold in case of an earthquake was introduced.

• The NAM flexible network, a total of 450 geophones, used for passive monitoring 
since the beginning of 2017, and re-installed at a different location in the field every 
2 months, remaining operational for 45 days each time. The flexible network was opera-
tional during the latest two earthquakes of  ML ≥ 2.5 that occurred in May 2017 and 
January 2018 (Fig. 1). The geophones of the flexible network have a sampling rate of 
250 Hz, identical to the accelerographs of the household network and higher than the 
accelerographs of the KNMI networks, whose sampling rate is 200 Hz. Their lowest 
usable frequency was found during signal processing to be in the range 0.5–0.9 Hz.

A fifth network is also operational in the field, consisting of the accelerographs installed 
in the NAM facilities as part of their safe shutdown system. The records it has produced 
have not been included in this database, as investigation of their usability for model devel-
opment is still ongoing.

The locations of the epicentres, as well as the locations of the stations which generated 
these records, are shown in Fig. 1, along with the 160 site amplification zones of the field 
and the median  VS30 value in each zone.
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However, the datasets used for the development of the component-to-component vari-
ability model, and for the spatial correlation model differ through the use of different sub-
sets of the data shown in Fig.  1. The use of different datasets reflects differences in the 
development history of these two models. The component-to-component model has been 
developed in parallel with the ground-motion model used for risk computations in the field 
to date and so has adopted the same empirical dataset (of just the B and G stations) used 
for the overall hazard and risk model (Bommer et al. 2018). The more recent availability 
of the Household and Flexible network records has since enabled consideration of a field-
specific spatial correlation model and explains why the extended database is used for the 
spatial correlation model.

The ground-motion database used for the derivation of the spatial correlation model 
consists of 1546 records obtained during the 24 earthquakes of magnitudes  (ML) between 
2.5 and 3.6 that have occurred since 2006 in the Groningen field. For the component-to-
component model, only the records from the KNMI B-stations (151 records) and KNMI 
G-stations (107 records) were used; these were obtained in 23 events since the model was 
derived before the most recent earthquake included in the spatial correlation database.

Figure 2 shows the accumulation of usable records over time. The installation of exten-
sive networks after 2014, the removal of the PGV-trigger threshold in the household 
network instruments in 2016, and the deployment of the flexible network have all led to 
great increases in the number of records obtained from each earthquake. Some 75% of the 

Fig. 1  Left: Recording stations, site amplification zones and median  VS30 values in the Groningen hazard 
and risk study region (field boundary plus 5 km buffer); Right: locations of the epicentres of the 24 earth-
quakes of  ML 2.5–3.6 in the Groningen field, highlighting the largest event and the two events recorded on 
the flexible network array of geophones (grey dots in left-hand plot). Coordinates are in metres in the Dutch 
RD system
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current database were obtained during the two most recent earthquakes. Figure 3 shows the 
magnitude-distance distribution of the dataset.

3  Component‑to‑component variability

Consistent with most modern ground-motion prediction equations (GMPEs) the Gronin-
gen GMM predicts the geometric mean values of the horizontal components. However, the 
structural analyses performed for the derivation of the fragility functions for the exposed 
building stock make use of single horizontal components of recorded accelerograms. Con-
sequently, the ground-motion predictions need to be converted from the geometric mean to 
the arbitrary horizontal component for the risk computations. The predicted median values 
of these two horizontal component definitions are equivalent, but the standard deviation of 
the geometric mean component needs to be increased to reflect the component-to-compo-
nent variability (Baker and Cornell 2006).

Fig. 2  Accumulation of ground-motion records included in this database with time and breakdown of 
records by network

Fig. 3  Magnitude-distance distribution of the ground-motion database
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Within the risk model we define the logarithmic motions at a given point on the surface 
as:

with �(x,�) being the log-mean surface motion (which in Groningen is a log-mean ref-
erence motion at the base of the north sea formation, NS-B, for magnitude � , plus the 
mean logarithmic site amplification for the given zone), �B being the between-event resid-
ual (independent of position), and �Wes

(x) , �c2c(x) and �S2S(x) corresponding to the site 
and event corrected residual at NS-B, the component-to-component residual, and the site 
amplification residual, all of which can depend upon position x . The variances of these 
position-dependent components are �2

SS
 , �2

c2c
 and �2

S2S
 . Note that this formulation assumes 

that the site response is linear, but that this assumption does not strongly influence the 
present treatment. In the present section our focus is upon the development of a model for 
�2
c2c

 that describes the variance between the logarithmic amplitudes of the two horizontal 
components, relative to the geometric mean amplitude.

Ground-motion recordings in Groningen are often seen to be strongly polarised, with 
inter-component spectral ratios of as much as three or higher across the entire frequency 
range (Fig. 4). Boore (2005) defined the component-to-component variance of a database 
as the arithmetic mean of the squares of the component-to-component residuals of the 
records of that database, as shown in Eq. (2), where N is the number of records and  Yij is 
the  ith component from the  jth record.

Consequently, values of component-to-component variability calculated from the Gro-
ningen ground-motion data are much higher than values typically presented for earthquake 
ground motion (e.g., Boore 2005; Campbell and Bozorgnia 2007). However, when only 

(1)y(x) = �(x,�) + �B + �Wes
(x) + �c2c(x) + �S2S(x)

(2)�2
c2c

=
1

N

N
∑

j=1

�2
c2c,j

=
1

N

N
∑

j=1

(

ln Y1j − lnY2j

2

)2

Fig. 4  Ordinates of the 5%-damped acceleration response spectrum of two horizontal components of a 
polarised recording from Groningen (the 2017  ML 2.6 Slochteren earthquake recorded at the G460 station); 
the solid black curve is the geometric mean of the two component ordinates
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smaller (M < 6) earthquakes are considered and recordings are limited to short source-to-site 
distances, higher component-to-component variances are also found within tectonic databases, 
but the variability remains smaller than that found for Groningen (Bommer et al. 2017a). The 
more extensive database for Groningen now available shows that the component-to-compo-
nent variance is distance-dependent, consistent with the observation that strongly polarised 
motions are generally recorded close to the earthquake epicentres. This distance- and mag-
nitude-dependence is interpreted as indicating that the polarisation is due to the shear-wave 
radiation pattern from the shallow sources of the small-magnitude earthquakes in Groningen. 
At greater distances, the interaction of direct and indirect phases will diminish the polarisa-
tion. For larger earthquakes, the interaction of radiation patterns from adjacent segments of 
the fault rupture would break down the polarisation in a similar manner.

A model for the component-to-component variance has been constructed to reflect the 
observed distance dependence and inferred magnitude dependence. Firstly, a simple function 
is fit to the variance values to capture the dependence on distance, and this model is assumed 
to hold in the magnitude range of the data  (ML 2.5–3.6). Secondly, it is assumed that at larger 
magnitudes the component-to-component variance would be comparable to that from tectonic 
models, for which we adopt Campbell and Bozorgnia (2007); a simple linear transition from 
Groningen-specific to typical tectonic values is assumed over two magnitude units (Fig. 5).

The variance values at different periods are found to be well represented by a trilinear func-
tion with constant values below 0.1 and above 0.85 s. The model for the component-to-com-
ponent variance of duration is constructed in a similar manner but converging at larger magni-
tudes to the values proposed by Bommer et al. (2009) for tectonic earthquakes.

The component-to-component variance in the model presented is defined by the following 
equations for different periods, rupture distances and magnitudes, T, R and M:

(3a)�2
c2c

(M,R; T ≤ 0.1) = 0.026 + 1.03
[

5.6 −min
(

5.6,max [M, 3.6]
)]

R−2.22

(3b)�2
c2c

(M,R; T ≥ 0.85) = 0.045 + 5.315
[

5.6 −min
(

5.6,max [M, 3.6]
)]

R−2.92

Fig. 5  Magnitude- and distance-dependent model for component-to-component variability for the 0.1-s 
spectral acceleration together with the Groningen database component-to-component residuals, grouped by 
rupture distance: < 5.5  km (red), 5.5–15  km (blue) and > 15  km (green). The vertical axis shows �

c2c for 
individual records, and �

c2c for the plotted model
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For periods in between 0.1 and 0.85 s, the following interpolation is used:

4  Model for spatial correlation

In response to regulatory requirements in the Netherlands, the primary metric in the Gro-
ningen risk calculations is Local Personal Risk, which is specific to individual locations 
(Crowley et al. 2017). For any spatially-aggregated risk metric, such as Group Risk, spatial 
correlation in the ground-motion field is necessary to avoid underestimation of the risk. 
The efforts to address this potential need are presented in this section, starting with a sum-
mary of how spatial correlation is currently approximated in the current risk calculations. 
The remainder of the section presents the derivation of a new Groningen-specific spatial 
correlation model, starting with a summary of the empirical data used and waveform simu-
lations to model spatial correlation.

4.1  Simplified model in current risk calculations

The ground-motion model used for hazard and risk calculations in the Groningen field 
combines field-specific predictions of motions at a reference velocity horizon, approxi-
mately 800 m below the ground surface at the base of the North Sea formation (the NS-B 
horizon), with near surface site response effects. Within a Monte Carlo framework, ref-
erence motions are first generated for this horizon before these motions are modified to 
account for local site effects using zone-specific site amplification functions for each of the 
160 zones. One of the ultimate goals of the project is to develop spatial correlation models 
that consistently account for correlations within the paths leading to the NS-B horizon, and 
to then appropriately reflect spatial correlations within the site response.

For the current risk calculations the overall field is discretised into spatial cells that are 
represented by a ‘grid point’. The typical spatial separation of these grid points is 500 m. 
The site response model for the field is also discretised into 160 separate ‘zones’. These 
zones were previously shown in Fig. 1 and while their geometries vary significantly, it is 
possible to determine a representative spatial scale for each zone z as follows:

That is, we compute the area, Az , of each zone and then compute a length scale cor-
responding to a circular area. Call this the effective zone radius reff,z . When these effective 
zone radii are computed for all zones we obtained the distribution shown in Fig. 6. As can 
be appreciated from the difference in the typical grid separation distance and the effective 
zone radii, many zones contain multiple grid points.

The overall spatial correlation should ideally be decomposed into components that 
reflect the partitioning of the overall variability shown in Eq. (1). If these correlation com-
ponents existed, then the overall spatial correlation can be described by Eq. (6).

Currently, there is no way to constrain the various correlation components in Eq.  6, 
but a level of spatial correlation is implied by making assumptions about the various 
components.

(4)
�2
c2c

(M,R;T) = �2
c2c

(M,R; T ≤ 0.1) +
[

log10 (T∕0.1)

log10 (0.85∕0.1)

]

[

�2
c2c

(M,R; T ≥ 0.85) − �2
c2c

(M,R; T ≤ 0.1)
]

(5)reff,z =
√

Az∕�

(6)�
(

xi, xj
)

=
�SS,ij�SS(xi)�SS(xj)+�S2S,ij�S2S(xi)�S2S(xj)+�c2c,ij�c2c(xi)�c2c(xj)

�(xi)�(xj)
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Three different options were considered to approximately account for spatial correlation 
in the existing hazard and risk model. In all cases it is assumed that we have �S2S,ij = 1 for 
two points inside a given site amplification zone. This does not mean that the site response 
itself is identical throughout a zone because each zone may contain multiple grid points at 
which hazard calculations are made. Each grid point will therefore have a different source-
to-site distance and nonlinear site effects will hence differ from grid point to grid point. 
However, the variability for grid points within the same zone is perfectly correlated. For 
grid points in different zones �S2S,ij = 0 . The three variants that were then considered were:

1. �SS = 1 and �c2c = 1 throughout a site amplification zone. Combined with the �S2S,ij = 1 
assumption above, the overall correlation is 1.0 for all points within the same zone, and 
0.0 otherwise.

2. �SS = 1 and �c2c = 1 within any given grid cell, but �SS = 0 and �c2c = 1 for other grid 
points within the same site amplification zone.

3. �SS = 1 and �c2c = 0 within any given grid cell, but �SS = 0 and �c2c = 0 for other grid 
points within the same site amplification zone.

The implied correlation for each of these options was compared with the predictions of 
the Jayaram and Baker (2009) model as well as preliminary regressions on the Groningen 
database used for the development of the V5 ground-motion model (Bommer et al. 2018). 
As the component-to-component variability is magnitude and distance dependent, the 
implied correlation varies with earthquake scenario. Additionally, as all variance compo-
nents change with period the implied correlation is also period dependent. Figure 7 there-
fore shows just one example of the implied correlations for each of the three cases for one 
magnitude-distance scenario. For the purposes of this comparison, site amplification zones 
are conceptually thought of as being regular cells such that the distance from the centroid 
shown in Fig. 7 can be related to reff,z.

From consideration of these implied correlations it was decided to utilise approach (i) of 
perfect correlation within each site amplification zone as an interim measure ahead of the 
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Fig. 6  Distribution of effective zone radii, reff,z , for all 160 site amplification zones in the Groningen field. 
The total area covered by these site zones is 1409 km2
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current study that explicitly develops an initial Groningen-specific model. This approach 
consciously over-estimates the correlation for closely-spaced sites (over a length scale that 
depends upon the size of the site zone), but then has zero correlation among sites within 
adjacent zones.

4.2  Results from waveform simulations

While the empirical dataset compiled to date is very rich for some events, it is still too 
sparse to provide insights into how correlations are partitioned among the travel path and 
site response. However, as discussed by Edwards et al. (2018), a number of seismological 
simulations have been performed for the field. The primary objective of these simulations 
has been to constrain source and path scaling effects thus far, they can also provide insight 
into the decomposition of spatial correlation. One of the unique aspects of the Gronin-
gen region is the wealth of subsurface information that has been collected over 40 years 
of exploration and production. This information has allowed the development of a high-
quality 3D velocity model for the region which potentially enables systematic path effects 
to be captured. By using elastic finite difference approaches and detailed 3D elastic models 
the wave-field can be simulated from the source to a reference rock horizon (Edwards et al. 
2018). Such wave fields can then be inspected to understand how the local geology influ-
ences the path effects and, in turn, the spatial correlation. This type of modelling has the 
added advantage in that the wave field can be measured at any given location in the model 
domain and on a spatially dense grid of receivers.

A key challenge within deterministic modelling of ground motions is the lack of control 
over the source representation and accurately accounting for how the source complexity 
scales with magnitude. The kinematics of the source also influence the observed spatial 
correlations within the field, just as they can effect the component-to-component variabil-
ity discussed earlier. For the purposes of this study the general slip characteristics, slip, 
dip and rake, are defined from pre-existing fault architecture and first motions of recorded 
earthquake data. However, no a priori knowledge of how the internal variability of the fault 
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rupture is assumed, rather a stochastic approach is used to capture variability in the amount 
of slip, rise time, rupture velocity and direction (Graves and Pitarka 2016). This approach 
allows us to explore a range of possible fault slip scenarios, to isolate the components of 
spatial correlation that can be contributed by the systematic path and source effects.

The finite difference simulations used here make use of a detailed 3D elastic model that 
is derived from well information and high-resolution 3D reflection seismic surveys and 
was supplied by the field operator, Nederlandse Aardolie Maatschappij (NAM). To model 
the wave-field that incorporates frequencies of interest (< 30 Hz) and to avoid numerical 
dispersion the model is defined on a 6.25  m grid. The model dimensions are 40  km × 
35 km × 5 km. Synthetic 3-component seismograms are output on a 25 m × 25 m grid. The 
synthetic receivers are located on a virtual bedrock surface just below the ground surface. 
Non-linear near surface effects associated with near surface soil conditions are not consid-
ered in this part of the study. Synthetic data are recorded for 13 s following event initiation 
and this enables the peak response at each location to be captured. Further details of these 
simulations can be found in Edwards et al. (2018).

Multiple rupture scenarios, ranging in magnitude from M 3 to 6, are tested. Examples 
of the spatial distribution of ground motions arising from these simulations are shown in 
the upper row of Fig. 8 in terms of logarithmic PGA. All the scenarios make use of non-
uniform finite fault surface, where the rate of slip, amount of slip, rise time and rake are 
allowed to vary through a stochastic approach. Also tested are the impacts of fault aspect 
ratio and stress drop. Held constant is the fault plane defined by the strike, dip and rake 
of the rupture, these values are defined to the general trend that is observed in the field (a 
strike of 270°, dip of 70°, and a rake of 90°).

Figure  8 also shows the ground-motion residuals for the three simulation examples 
shown. In order to compute these residuals, it is first necessary to define the average attenu-
ation of motions with distance over the simulated field. For this purpose, a trilinear (in 
log–log space) geometric spreading function was fitted to each set of simulations. For the 
three examples shown in Fig. 8, the corresponding distance decay is shown in Fig. 9 along 
with the fitted models in each case. For the small magnitude simulations there is a pro-
nounced change in the geometric spreading that is evident in both Figs. 8 and 9, and this 
is a known local feature of the Groningen field. The distributions of residuals in the lower 
row of Fig. 8 shows clear spatial clustering, and an ongoing objective of this work is to 
understand the difference between systematic and random features of these spatial patterns.

To infer the spatial correlation from the residual fields shown in Fig. 8, semi-variograms 
are computed using the classical method of moments according to Eq. (7) (Cressie 1993).

In this equation, Nh represents the number of pairs of normalized residuals, �W , that are 
separated by a distance h to within a tolerance defined by a bin of width Δh = 0.25 km. The 
normalized residuals are computed as �W = �W∕� , where �W is the residual computed with 
respect to the fitted models in Fig. 9, and � is the overall standard deviation of the within-
event residuals. Note that here when referring to within-event residuals, these are really 
within-simulation residuals.

The simulated ground-motion fields shown in Fig. 8 represent 169,015 spatial locations, 
which is far more than necessary to constrain a macro spatial correlation model. Therefore, 
for the purposes of computing the semi-variograms according to Eq. (7), a random sam-
ple of 10,000 points was first taken from each simulated field. While this is a significant 

(7)�(h) =
1

2Nh

Nh
∑

i=1

�

�W (x + h) − �W (x)
�2
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reduction, it still leads to an average value of Nh of well over 300,000 across the considered 
separation distances and so the variance estimates are extremely well-constrained.

To develop the correlation model from the waveform simulations, 10 scenarios were 
used (2 at M3, and 4 at each of M5 and 6). The computed semi-variograms for each of 

Fig. 8  Examples of simulated peak ground accelerations used in this study as measured on a virtual bed-
rock surface for magnitudes from left-to-right of M 3, 5 and 6. Coordinates are kilometre versions of the 
Dutch RD system. The upper row shows logarithmic ground-motions, with warmer colours representing 
larger motions. The lower panel shows ground-motion residuals with blue and red representing negative and 
positive residuals. In the lower panel, white indicates the zero level
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Fig. 9  Examples of the average distance dependence of simulated motions for each of the three examples 
shown in Fig. 8. The colour of each hexagon indicates the density of points at that location, with lighter 
colours denoting larger counts. The green lines are generalized additive models fit to identify local trends in 
the data, while the thick red linear are three-branch piecewise linear fits to the data in log–log space
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these cases are shown in Fig.  10, along with fits to each simulation, and an average fit 
across all simulations at each magnitude level. To fit the semi-variograms, the loss function 
of Cressie (1985), as shown in Eq. (8), was minimised in an effort to optimise the fit of the 
correlation model to high-levels of correlation (low levels of semi-variance).

In Eq.  (8), �̂k is the estimated semi-variance, from Eq.  (7), in bin k (associated with 
separation distance h ), nk is the number residual pairs in this bin, and �k(�) is the model 
semivariogram. The scaling of the semi-variograms strongly suggest that an exponential 
correlation model is appropriate and so the corresponding model semi-variogram is:

From this formulation, the spatial correlation model can be defined by:

and we note that when normalised residuals are used such that �2 = 1 , the relation between 
the semi-variance and the correlation is simply �(h;�) = 1 − �(h;rc).

The goal of having multiple simulations for each magnitude level is to reduce the uncer-
tainty in the defined spatial correlation that would result from variability in the source kin-
ematics. Figure 10 illustrates the variability in spatial correlation that can be attributed to 
variability in rupture process while keeping the magnitude fixed for three different cases: 
M3, M5 and M6. These results illustrate that there is a slight magnitude dependence and a 
non-trivial contribution from fault rupture process (note that the correlation length, rather 
than the fluctuations in the semi-variance is the key feature of consideration in this con-
text). The average of the variograms across the three magnitude levels leads to an overall 
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Fig. 10  Variability in spatial correlation resulting from different source representations for three different 
magnitude ranges (left) M 3, (centre) M 5 and (right) M 6. The magnitude 3 scenario has two different 
realizations where the fault size and stress drop are held constant. The magnitude 5 event has 4 scenarios of 
source variability where the size of the rupture was held constant, but the stress drop was allowed to vary 
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semi-variance over the simulations, and the thick blue lines are the optimal fits to these averages
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semi-variance very close to the results for the M5 case. This is shown by plotting the actual 
correlation models obtained from the semi-variograms in Fig. 11.

Although only the current results for PGA are shown here, further development of this 
work will look to test assumptions of isotropy and magnitude-dependence, among other 
things. For the current stage of development of the overall hazard model it remains neces-
sary to rely primarily upon more conventional empirical approaches. Current efforts in this 
direction are discussed in the following section.

4.3  Groningen‑specific spatial correlation model

The dataset described in Sect. 2 differs considerably from that used for the development of 
the V5 ground-motion model (Bommer et al. 2018) through the edition of the recordings 
from both the Flexible array and the Household network. As shown in Table 1 and Figs. 2 
and 3, these additional records make a significant difference to the overall number of avail-
able records. However, the temporal and spatial distribution of these recordings also poses 
challenges for the development of a generic spatial correlation model for the field.

Spatial correlation models focus upon correlations among computed within-event resid-
uals, �W (x) , where these residuals are computed with respect to some pre-existing ground 
motion model, �(x,�) , and an event-specific deviation from this generic model, �B (the 
between event residual). This formulation is described by Eq. (11).

In the present case, the obvious candidate for the ground-motion model is the current 
V5 model developed for the Groningen field. However, this model is designed to predict 
motions for a very broad magnitude range and does not target optimal performance in 
the narrow magnitude range for which data exist. When the new Household and Flex-
ible network observations are added to the database used within the derivation of the V5 

(11)y(x) = �(x,�) + �B + �W (x)
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model, it is expected that some bias, � , should exist such that the event-specific predic-
tion is really �(x,�) + � + �B at each spatial location x . The first step in the derivation 
of an empirical spatial correlation model is therefore to define this event-specific predic-
tion and to determine the overall bias and the between-event residual (or random effect) 
for each earthquake.

In the present study, it is not appropriate to simply perform a random effects regres-
sion on the total residuals as is commonly done in other studies (e.g., Jayaram and Baker 
2009; Foulser-Piggott and Stafford 2011). The primary reason for this is that the high-
density spatial sampling of the Flexible network has a strong influence upon computed 
random effects. This can be appreciated in Fig.  12 in which random effects for each 
event are computed using the entire dataset available, just the KNMI-B and KNMI-G 
stations (used for the calibration of the current ground motion model), and all data with 
the exception of the Flexible network (FN in Fig. 12). Estimates of the random effects 
differ from earlier events that are not recorded by the Household or Flexible networks 
because these new records change the overall bias of the model in each case. What is 
most evident, however, are the large differences between random effects computed for 
the most recent events. For events 23 and 24 the random effects for the full dataset are 
close to zero and this simply reflects the strong weight that the 809 records from the 
Flexible network have on defining the overall model bias.

However, it is not simply the imbalance in the numbers of records that is problem-
atic, the spatial distribution of the Flexible array also causes issues. When the Flex-
ible network is excluded from the database, the mean inter-station spacing is 14.7 km 
(about three times the value of rC for PGA implied by the waveform simulations). How-
ever, for the Flexible network the mean inter-station spacing for event 23 is 3.7 km and 
only 0.5  km for the dense deployment that recorded event 24. Given that we expect 
spatial correlation to exist in the data, the inclusion of the Flexible network records 
biases both the random effects and the overall variance, as correlated motions over some 
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spatially-limited cell have lower variance than the overall variance of the field (Stafford 
2012).

The process adopted for the development of the generic spatial correlation model for the 
Groningen field is therefore based upon the following steps:

• Random effects for each event are computed by excluding the records from the Flexible 
network. As the mean inter-station spacing for this subset of the data is much larger 
than the correlation length implied from the waveform simulation results, as well as 
from previous empirical regression analyses, the random effects should not be strongly 
influenced by spatial correlation effects (Jayaram and Baker 2010; Stafford 2012).

• Use the random effects from the previous step to compute within-event residuals for all 
records (both including and excluding the Flexible network).

• Investigate the impact of the Flexible network upon the computed semi-variograms, 
and also constrain the final correlation model through consideration of the variance of 
within-event residuals over the Flexible array.

Regarding the final step, the high spatial density of the Flexible array, as well as its 
geometric layout, provides a unique opportunity to constrain spatial correlations in a new 
manner. Stafford (2012), building upon the work of Vanmarke (1983), explained that the 
variance of a correlated random field over some finite region, A , is lower than the overall 
variance of the field. This is shown generically in Eq. (12):

where, �2
A
 is the variance over the spatial region, �2 is the overall variance of the spatial 

field, and �(x;rc) is the variance reduction function that depends upon the nature of the 
spatial correlation within the field. This variance reduction function is defined by Eq. (10), 
and is equivalent to one minus the average correlation over the region in question:

Events 23 and 24 provide large numbers of observations from the Flexible array over 
small spatial regions (with different areas in each). These regions are represented by the 
vector of instrument locations x . The ratio of the variance of �W (x) values over these 
regions to the overall within-event variance therefore gives an empirical estimate of �̂(x;rc) 
for each event. As the correlations within the field appear well represented by an exponen-
tial model of the form shown in Eq. (10), the value of rc that best matches the computed 
�̂(x;rc) provides an estimate of the correlation model.

For each response period empirical variograms were computed and exponential correla-
tion models (with and without nugget effects) were fitted to the variograms. Variograms 
may have nugget effects when the semi-variance for a separation distance of zero is not 
equal to the theoretically expected value of zero; they manifest as an ‘intercept’ for the 
variogram. Such effects are typically attributed to measurement uncertainty and could be 
reflected in the present study by different ground-motion levels for co-located (or very 
closely spaced) instruments. However, the nugget levels encountered are rather strong 
here and it is not currently clear what the precise cause of this effect is. That said, the 
dependence of the nugget strength on the dataset selected suggests that instrument effects 
are contributing. Figure 13 shows the results from a selection of such computations for a 
broad range of periods. Empirical and fitted variograms were obtained for different datasets 
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(either including all of the available data, or otherwise excluding records within the Flex-
ible network). The variograms were either fitted using the loss function of Eq. (8) (referred 
to as ‘Cressie’), or a simplified version of this expression that does not include the denomi-
nator of �k(�) (referred to as ‘npairs’). The exponential models were also fit with and with-
out consideration of a nugget effect.

Figure 13 shows that there is a significant difference between the empirical variograms 
obtained with and without consideration of the Flexible network data. In particular, when 
the Flexible network data is excluded the data exhibits a very strong nugget effect. Such 
nugget effects are typically associated with measurement uncertainty, but in this particular 
case it appears likely that at least part of this effect is reflecting differing levels of inherent 
variability among the types of instruments that have been deployed throughout the field. 
At this point, as can be seen from Table 1, there is too little overlap among sets of records 
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Fig. 13  Comparison of empirical and fitted semi-variograms for different datasets and model fitting 
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tions of datasets (either ‘All’ data being used, or ‘NF’ for ‘Not Flexible network’) and loss functions used 
for the fitting (either Cressie’s variance weighted fit, or fits weighted by numbers of pairs of observations at 
each separation distance)
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obtained from each instrument type to resolve this issue. However, it is certainly a matter 
for further consideration.

Figure  14 summarises the correlation lengths that are implied by each combination 
of dataset and fit. There is a significant spread of correlation lengths depending upon the 
approach employed, and it should be noted that all results shown in Fig. 14 correspond to 
cases in which a nugget effect is included. The variation is even greater when the nugget is 
forced to zero (equivalent to having no nugget effect). In Fig. 14 the results obtained from 
optimising the variance reduction function of Eq. (10) are shown along with the more tra-
ditional variogram fitting methods. The results for Event 23 suggest significantly greater 
correlation lengths than is the case for Event 24. However, it is interesting to note that the 
Flexible network for Event 23 covered approximately 50  km2 and spanned multiple site 
amplification zones while Event 24 covered just 1 km2 and was contained entirely within a 
single zone. The solid and dashed lines in Fig. 14 represent the Jayaram and Baker (2009) 
correlation model for cases where site conditions exhibit clustering or otherwise. The vari-
ance reduction function results for the larger area are more consistent with the clustered 
site condition results from Jayaram and Baker (2009), while the Event 24 results are far 
more consistent with the unclustered case.

In Fig. 13 it is apparent for response periods of 0.3 and 0.5 s that the empirical vari-
ograms have not reached a stable plateau at 20 km separation distance. In the fitting pro-
cess there is a trade-off between the sill, or partial sill, level and the correlation length, and 
around these intermediate response periods the relatively long correlation lengths shown in 
Fig. 14 are partially biased as a result of these total sill levels being too high. To generate 
Fig. 13 the within-event residuals have been normalised and so there is an expectation that 
the total sill should be very close to unity for large separation distances. For this dataset 
this expectation is not always realised. In order to develop the initial model for use in the 
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Groningen field, a subset of the dataset and fitting method combinations was identified that 
appeared to give the most stable and internally consistent results.

Figure 15 shows a subset of the correlation lengths previously shown in Fig.  14, but 
also with a degree of filtering applied. Four combinations of data and fitting approach were 
considered: (1) the entire dataset when used with Cressie’s loss function; (2) the dataset 
excluding the Flexible network with Cressie’s loss function; (3) the dataset excluding the 
Flexible network with the number of pairs weighting in the loss function; and (4) the Flex-
ible network data for Event 24 using the variance reduction function. In addition, only 
the correlation lengths for which the total sill from the fitted variogram was in the range 
[0.85,1.15] were retained. This filtering resulted in the removal of some points just to the 
right of the maxima shown in Fig.  15. The reason for favouring the variance reduction 
estimates from Event 24 is that as further refinements are made to the site zonation and 
site response modelling then any effects of apparent clustering that imply larger correlation 
lengths are likely to reduce. Therefore, the shorter correlation lengths are likely to be more 
representative as the model continues to evolve in the future.

Previously in Sect.  4.1, Fig.  7 compared the correlation functions from an earlier 
advanced regression analysis that was conducted for the Groningen field (without any 
of the Flexible or Household network data) and the model of Jayaram and Baker (2009) 
with the implied correlation that arises from making different assumptions about the cor-
relations among difference components of variability in Eq.  (6). The new model shown 
in Fig. 15 remains consistent with these previous results and suggests that the degree of 
spatial correlation being approximated with the current Groningen risk model is unlikely to 
change significantly following the introduction of the new model. However, the use of the 
new correlation model will remove abrupt changes in correlation at the boundaries of site 
amplification zones and will also predict weaker correlations of motions over any given 
site zone. This effect may be offset slightly by stronger correlations across site zones, but 
Fig. 7 already suggests that correlations at separation distances beyond about 3 km (that 
captures the vast majority of site zones, as shown in Fig. 6) are already relatively weak.

Fig. 15  Initial correlation model proposed for use in the Groningen field (thick blue line, the surrounding 
grey ribbon is the 95% confidence interval). Markers represent estimates of the correlation length from dif-
ferent datasets and fitting approaches, as explain in the text. The grey line shows the unclustered correlation 
length from Jayaram and Baker (2009)
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5  Discussion and conclusions

The model developed herein and presented in Fig. 15 acts to strengthen earlier assump-
tions and preliminary analyses that have been made with respect to the modelling of 
spatial correlations within the Groningen field. At face value, it appears that the incor-
poration of the new model is unlikely to lead to drastic changes in risk estimates that 
account for aggregated spatial effects, such as group risk or portfolio loss. However, a 
number of further areas for development and active investigation remain. In particular, 
all of the empirical data that has been used to develop the model to date come from 
small magnitude events (the maximum magnitude being  ML 3.6). Correlations implied 
by the numerical waveform modelling for PGA are broadly consistent with those 
obtained from the empirical data. However, the numerical waveform modelling sug-
gests that there may well be magnitude-dependence in the spatial correlation within the 
Groningen field. The initial results that have been presented for PGA in Fig.  11 sug-
gest a decreasing correlation length with increasing magnitude. However, it is unlikely 
that this trend persists for larger magnitude events as we expect that variations over 
greater spatial scales at the source will manifest as stronger spatial correlations at the 
surface for intermediate and long response periods. These sorts of assumptions are read-
ily tested using the numerical waveform modelling and will be investigated as part of 
the ongoing development of this work. The end goal of the spatial correlation work is to 
ensure robust representation of spatial fields over the entire magnitude range deemed of 
importance for the Groningen field.

The other key area of development of this work is understanding the origins of the 
apparent spatial correlation by making use of the numerical waveform simulations. The 
residual distributions shown in Fig. 8 undoubtedly represent both random and system-
atic features. Ultimately, within a fully non-ergodic ground-motion modelling frame-
work, any such systematic features will be identified and explicitly modelled as explicit 
source-to-site path effects. It is rarely possible to constrain such patterns empirically, 
especially at some depth below the surface. However, the Groningen field includes a 
good number of borehole instruments (only the surface instruments have been used in 
the present work), and a very high-resolution 3D velocity model. These data, combined 
with significant computational resources, enable meaningful numerical simulations to 
be obtained over a very broad frequency range and to potentially constrain the compo-
nents of Eq. (6).

Thus far all of the spatial variograms have been computed as omni-directional (or 
isotropic). The numerical waveform modelling suggests that the reality may be quite 
different to this and that directionality in path scaling should be accommodated within 
a fully non-ergodic model for the Groningen field. Systematic deviations from the aver-
age path scaling currently manifest as correlated within-event residuals and get mapped 
into apparent spatial correlation. Furthermore, these systematic deviations can also be 
responsible for variations in the total sill levels in the computed variograms as the sepa-
ration distance changes. Under the assumption that the waveform simulation results are 
sufficiently realistic to be treated as ‘data’, the extremely high spatial-resolution of these 
simulations offers unique opportunities for refining the correlation models in the future.

Finally, the waveform simulations also have the potential to constrain the scal-
ing of the component-to-component variability model presented herein. Currently it 
is assumed that the high component-to-component variability within the field linearly 
tapers down to typical tectonic levels over two units of magnitude. This assumption can 
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also be tested in future developments using the waveform simulation results. Since the 
component-to-component variability over the small magnitude range is so large, it is 
important to try to understand the extent to which this high variability persists for larger 
events.
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