Skip to main content
Log in

Fragility analysis of the nave macro-element of the Cathedral of Santiago, Chile

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper presents the fragility analysis of a typical nave macro-element of the Metropolitan Cathedral of Santiago, Chile. The analysis is carried out by using the rigid body spring model approach, in which rigid elements are connected to each other by means of axial and shear springs. The 2D model generated is initially verified by comparing modes with a 3D finite element model previously calibrated in DIANA software. The methodology used in this study is based on a set of eleven real seismic records corresponding to four major earthquakes that have affected Santiago city. Nonlinear incremental dynamic analyses together with a damage index based on stiffness degradation, which considers the relation between shear at the base and deformation of the macro-element, are used to generate the fragility curves. As a result of this study, the probability of exceedance for different damage states has been obtained based on a possible peak ground acceleration of the site. In particular, the results of the study demonstrate that the proposed damage index satisfactorily describes the damage suffered by some of the nave transverse sections of the Cathedral after the 2010 Maule earthquake (PGA 2.11 m/s2—Santiago Centro station).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

Ao:

Effective acceleration for the site

bx :

Distance between the axial and shear springs in a vertical interface

by :

Distance between the axial and shear springs in an horizontal interface

C:

Random variable representing the limit state of the structure

dY :

Yielding displacement

dU :

Ultimate displacement

Ebm:

Young’s modulus of brick masonry

Erm:

Young’s modulus of reinforced brick masonry

Esm:

Young’s modulus of stone masonry

E0 :

Elastic Young’s modulus of axial stress in the interface

E*:

Non elastic Young’s modulus for loading and unloading of axial stress in the interface

G0 :

Elastic shear modulus in the interface

G*:

Non elastic shear modulus for loading and unloading in the interface

ik :

Stiffness degradation index

ik2 :

Stiffness degradation index based on change of frequency of modes

kA :

Spring stiffness values for compression loading

kA* :

Spring stiffness values compression unloading

k Qh :

Stiffness of shear springs in horizontal direction

k Qv :

Stiffness of shear springs in vertical direction

k Ax :

Stiffness of axial spring in X direction

k Ay :

Stiffness of axial spring in Y direction

mpi :

Modal mass participation of the ith mode

p:

Value for generation of Chilean spectrum

Pc:

Probability of event C that has full compliance given a PGA value of x

Q:

Variable related to the level of seismic intensity expressed in terms of PGA

Ti:

Periods for generation of Chilean spectrum. Where, i could be a, b, c, or d

wf :

Weighting factor based on natural frequency error

wi :

Weighting factor for each mode

wϕ :

Weighting factor based on modal shape error

x:

PGA for which the cumulative probability is calculated

Z:

Factor of seismic zonification

αJJ :

Factors for generation of Chilean spectrum. Where, J could be A, V, or D

β:

PGA logarithmic standard deviation for compliance with the limit state C

εAc :

Strain at peak compression strength

εAr :

Strain at the start of the residual stage in tension

εAt :

Strain at peak tension strength

εQ* :

Maximum strain reached by the shear spring

εQc :

Strain at peak shear strength

φ[]:

Normal cumulative distribution

ΔVb :

Change in the base shear for each cycle

Δδ:

Displacement of control point for each cycle

μ:

PGA for which the structure reaches 50% of the cumulative probability

σAc :

Peak compression strength

σAr :

Strength at the start of the residual stage in tension

σAt :

Peak tension strength

ωio :

Frequency of the ith mode before the earthquake

ωif :

Frequency of the ith mode after the earthquake

DM:

Damage measure

EDP:

Engineering demand parameter

MAC:

Modal assurance criterion

RBSM:

Rigid body spring model

References

  • Abo-el-ezz A, Nollet M, Nastev M (2013) Seismic fragility assessment of low-rise stone masonry buildings. Earthq Eng Eng Vib 12(1):87–97

    Article  Google Scholar 

  • Aguirre J, Almazán JL (2015) Damage potential reduction of optimally passive-controlled nonlinear structures. Eng Struct 89:130–146

    Article  Google Scholar 

  • Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In International modal analysis conference, pp 110–116

  • Angelillo M, Lourenco P, Milani G (2014) Masonry behaviour and modelling. In Angelillo M (ed) Mechanics of masonry structures (First edit). International Centre for Mechanical Sciences, pp 1–26

  • ASCE. (2010). Minimum design loads for buildings and other structures, ASCE/SEI 7-10. Virginia

  • Asteris PG, Chronopoulos MP, Chrysostomou CZ, Varum H, Plevris V, Kyriakides N, Silva V (2014) Seismic vulnerability assessment of historical masonry structural systems. Eng Struct 62–63:118–134. https://doi.org/10.1016/j.engstruct.2014.01.031

    Article  Google Scholar 

  • Augusti G, Ciampoli M, Giovenale P (2001) Seismic vulnerability of monumental buildings. Struct Saf 23(3):253–274. https://doi.org/10.1016/S0167-4730(01)00018-2

    Article  Google Scholar 

  • Casarin F (2006) Structural assessment and seismic vulnerability analysis of a complex historical building (Ph.D. thesis). University of Trento

  • Casarin F, Modena C (2008) Seismic assessment of complex historical buildings: application to Reggio Emilia Cathedral, Italy. Int J Archit Heritage 2(3):304–327. https://doi.org/10.1080/15583050802063659

    Article  Google Scholar 

  • Caselles JO, Clapes J, Roca P, Elyamani A (2011) Approach to seismic behavior of mallorca cathedral. In 15th World conference on earthquake engineering. Lisbon, Portugal

  • Casolo S (2004) Modelling in-plane micro-structure of masonry walls by rigid elements. Int J Solids Struct 41(13):3625–3641. https://doi.org/10.1016/j.ijsolstr.2004.02.002

    Article  Google Scholar 

  • Casolo S (2009) Macroscale modelling of microstructure damage evolution by a rigid body and spring model. J Mech Mater Struct 4(3):551–570

    Article  Google Scholar 

  • Casolo S, Peña F (2007) Rigid element model for in-plane dynamics of masonry walls considering hysteretic behaviour and damage. Earthq Eng Struct Dyn 36:1029–1048. https://doi.org/10.1002/eqe

    Article  Google Scholar 

  • Casolo S, Sanjust CA (2009) Seismic analysis and strengthening design of a masonry monument by a rigid body spring model: the “Maniace Castle” of syracuse. Eng Struct 31(7):1447–1459. https://doi.org/10.1016/j.engstruct.2009.02.030

    Article  Google Scholar 

  • Casolo S, Milani G, Uva G, Alessandri C (2013) Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Eng Struct 49:465–490. https://doi.org/10.1016/j.engstruct.2012.11.033

    Article  Google Scholar 

  • Cattari S, Lagomarsino S (2012) Performance-based approach for the seismic assessment of masonry historical buildings, 2010–2012

  • CIMNE (2014) GiD. Retrieved from ftp://www.gidhome.com/pub/GiD_Documentation/Docs/GiD_Reference_Manual.pdf

  • Clough R, Penzien J (2003) Dynamics of Structures (3rd editio). Computers & Structures Inc, California

    Google Scholar 

  • Colombo J, Almazán JL (2015) Seismic reliability of continuously supported steel wine storage tanks retrofitted with energy dissipation devices. Eng Struct 98:201–211

    Article  Google Scholar 

  • da Porto F, Silva B, Costa C, Modena C (2012) Macro-scale analysis of damage to churches after earthquake in Abruzzo (Italy) on April 6, 2009. J Earthq Eng 16(6):739–758

    Article  Google Scholar 

  • D’Ayala D, Benzoni G (2012) Historic and traditional structures during the 2010 Chile earthquake: observations, codes, and conservation strategies. Earthq Spectra 28(S1):S425–S451

    Article  Google Scholar 

  • Diaferio M, Foti D (2017) Seismic risk assessment of Trani’s Cathedral bell tower in Apulia, Italy. Int J Adv Struct Eng 9(3):259–267. https://doi.org/10.1007/s40091-017-0162-0

    Article  Google Scholar 

  • Doglioni F, Moretti A, Petrini V (1994) Le chiese e il terremoto. In: Le chiese e il terremoto (C.N.R. Edi). Trieste, Italy

  • Fischer T, Alvarez M, De la Llera JC, Riddell R (2002) An integrated model for earthquake risk assessment of buildings. Eng Struct 24:979–998

    Article  Google Scholar 

  • García N, Meli R (2009) On structural bases for building the Mexican convent churches from the sixteenth century. Int J Archit Heritage 3:24–51. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/15583050701842344

  • Grünthal G (2009) Escala Macrosísmica Europea 1998. Comisión Sismológica Europea, Luxemburgo

    Google Scholar 

  • Haselton C, Fry A, Baker J, Hamburger R, Whittaker A, Stewart J, Pekelnicky R (2014) Response-history analysis for the design of new buildings: a fully revised Chapter 16 methodology proposed for the 2015 NEHRP provisions and the ASCE/SEI 7-16 standar. In F. of E. Engineering (ed) National conference on earthquake engineering. Alaska, United States of America

  • ICOMOS/ISCARSAH Committee (2005) Recommendations for the analysis, conservation and structural restoration of architectural heritage. See https://iscarsah.org/

  • IDIEM, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile (2011) Estudio de ingeniería estructural edificio catedral metropolitana. Technical report. Santiago de Chile

  • Ingeniería Civil - Facultad de Ciencias Físicas y Matemáticas Universidad de Chile (2010) Red de cobertura de acelerógrafos. Retrieved from http://www.renadic.cl/

  • Instituto Nacional de Normalización INN - Chile (2009) NCh 433. Of1996 Modificada en 2009, Diseño Sísmico de. Edificios

  • Irizarry J, Podestá S, Resemini S (2003) Curvas de Capacidad para Edificios Monumentales: La Iglesia de Santa María del Mar de Barcelona. In Sísmica AE de I (ed) 2do Congreso Nacional de Ingeniería Sísmica. Málaga, pp 541–555

  • Jorquera N, Misseri G, Palazzi N, Rovero L, Tonietti U (2017) Structural characterization and seismic performance of San Francisco Church, the most ancient monument in Santiago,Chile. Int J Archit Heritage 11(8):1061–1085

    Google Scholar 

  • Lagomarsino S (2006) On the vulnerability assessment of monumental buildings. Bull Earthq Eng 4(4):445–463. https://doi.org/10.1007/s10518-006-9025-y

    Article  Google Scholar 

  • Lagomarsino S, Cattari S (2015) PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bull Earthq Eng 13:13–47

    Article  Google Scholar 

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assesment of current buildings. Bull Earthq Eng 4:415–443

    Article  Google Scholar 

  • Lagomarsino S, Podesta S (2004) Seismic vulnerability of ancient churches: II. Statistical analysis of surveyed data and methods for risk analysis. Earthq Spectra 20(2):395–412. https://doi.org/10.1193/1.1737736

    Article  Google Scholar 

  • Lourenço PB, Trujillo A, Mendes N, Ramos LF (2012) Seismic performance of the St. George of the Latins church: lessons learned from studying masonry ruins. Eng Struct 40:501–518

    Article  Google Scholar 

  • Mandal T, Pujari N, Sidhhartha G (2013) A comparative study of seismic fragility estimates using different numerical methods. In Papadrakakis M, Lagaros N, Plevris V (eds) Computational methods in structural dynamics and earthquake engineering. Kos Island

  • Mandal TK, Ghosh S, Pujari NN (2016) Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models. Struct Saf 58:11–19

    Article  Google Scholar 

  • Meli R (1998) Ingeniería Estructural de los Edificios Historicos. (Fundación ICA. A.C., ed) (Primera edi). México D.F

  • Negulescu C, Ulrich t, Baills A, Seyedi D (2014) Fragility curves for masonry structures submitted to permanent ground displacements and earthquakes. Nat Hazards 74:1461–1474

    Article  Google Scholar 

  • Oliveira CS (2003) Seismic vulnerability of historical constructions: a contribution. Bull Earthq Eng 1(1):37–82

    Article  Google Scholar 

  • Peña F, Casolo S (2012) RIGID - Programa de Elementos Rígidos para el Análisis dinámico no lineal de Estructuras de Mampostería - Manual de Usuario. Instituto de Ingeniería de la UNAM, México D.F

    Google Scholar 

  • Peña F, García N (2016) Numerical evaluation of the seismic behavior of façades of Mexican colonial churches. Eng Fail Anal 62(April):164–177. https://doi.org/10.1016/j.engfailanal.2016.01.011

    Article  Google Scholar 

  • Pérez F, Beas M, Leonard D, Muzio F, Pardo J, Prado F (2009). El interior de la Catedral: antecedentes histórico morfológicos y bases para su conservación. Santiago de Chile

  • Petrini V, Casolo S, Doglioni F (1999) Models for vulnerability analysis of monuments and strengthening criteria. In: Proceedings of the XI European conference on earthquake engineering. Volume of invited lectures, pp 179–98

  • Porter K, Kennedy R, Bachman R (2007) Creating fragility functions for performance-based earthquake engineering. Earthq Spectra 23(2):471–489. https://doi.org/10.1193/1.2720892

    Article  Google Scholar 

  • Prado C, Barrientos M (2011) Aporte de la arqueología al estudio urbano de la ciudad de Santiago de Chile. El caso de “la manzana de la catedral”. Canto Rodado 6:1–32

    Google Scholar 

  • Rendel M, Lüders C, Greer M, Vial I, Westenenk B (2014) Retrofit, using seismic isolation, of the heavily damaged Basílica del Salvador in Santiago, Chile. In Proceedings of 2014 NZSEE conference, Auckland, New Zealand

  • Roca P, Cervera M, Pelà L, Clemente R, Chiumenti M (2013) Continuum FE models for the analysis of Mallorca Cathedral. Eng Struct 46:653–670

    Article  Google Scholar 

  • Rota M, Penna A, Magenes G (2010) A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Eng Struct 32(5):1312–1323. https://doi.org/10.1016/j.engstruct.2010.01.009

    Article  Google Scholar 

  • Sandoval C, Valledor R, Lopez-Garcia D (2017) Numerical assessment of accumulated seismic damage in a historic masonry building. A case study. Int J Archit Heritage 11(8):1177–1194

    Google Scholar 

  • Simoes A, Milosevic J, Meireles H, Bento R, Cattari S, Lagomarsino S (2015) Fragility curves for old masonry building types in Lisbon. Bull Earthq Eng 13:3083–3105

    Article  Google Scholar 

  • Takeda T, Sozen MA, Nielson NN (1970) Reinforced concrete response to simulated earthquakes. J Struct Div (ASCE) 96:2557–2573

    Google Scholar 

  • TNO DIANA (2015) DIANA finite element analysis. Delft, 2015

  • Tomazevic M (1999) Earthquake-resistant design of masonry buildings (First). Imperial College Press, London

    Book  Google Scholar 

  • Torres W, Almazán JL, Sandoval C, Boroschek R (2016) Determination of modal properties and FE model updating of the Metropolitan Cathedral of Santiago de Chile. In 10th Structural analysis of historical constructions: anamnesis, diagnosis, therapy, controls, pp 804–811.

  • Torres W, Almazán JL, Sandoval C, Boroschek R (2017) Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago, Chile. Eng Struct 143:169–188

    Article  Google Scholar 

  • University of California Santa Barbara (2012) Strong-Motion virtual data center (VDC). Retrieved from http://www.strongmotioncenter.org/vdc/scripts/about.plx

  • Valledor R, López-García D, Sandoval C (2015) Linearly elastic seismic evaluation of masonry historical buildings in Santiago, Chile : the case of the Pereira Palace. In 3rd International conference on mechanical models in structural engineering. 24–26 June 2016, Seville, Spain

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthquake Eng Struct Dyn 31:491–514. https://doi.org/10.1002/eqe.141

    Article  Google Scholar 

  • Vargas Y, Pujades L, Barbat A, Hurtado J (2013) Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado. Revista Internacional de Métodos Numéricos Para Cálculo Y Diseño En Ingeniería 29(2):63–78

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support of the Secretary of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT), through contract number 20120011. Additionally, the first author also wants to thank the financial support given by the Vicerrectoría de Investigación (VRI) of the Pontificia Universidad Católica de Chile for his research stage at the Engineering Institute, UNAM, of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, W., Almazán, J.L., Sandoval, C. et al. Fragility analysis of the nave macro-element of the Cathedral of Santiago, Chile. Bull Earthquake Eng 16, 3031–3056 (2018). https://doi.org/10.1007/s10518-017-0292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-017-0292-6

Keywords

Navigation