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Abstract This study proposes an ‘‘optimal’’ spectral acceleration based intensity measure

(IM) to assess the collapse capacity of generic moment frames vulnerable to the P-delta

effect. The IM is derived from the geometric mean of the spectral pseudo-acceleration over

a certain period interval. The optimized IM includes for first time a flexible lower limit for

the period interval, corresponding to the structural period associated with the exceedance

of 95% of the total effective mass. This flexible lower limit bound provides an efficient IM,

independently of the contribution of higher modes to the total response. The upper bound

period is 1.6 times the fundamental period to account for period elongation due to inelastic

deformations and gravity loads. In a parametric study on generic frames, structural

parameters are varied to quantify the performance of this IM compared to classical

benchmark IMs. The ‘‘optimal’’ IM provides minimum, or close to the minimum, dis-

persion for the entire set of frames with different fundamental periods of vibration, number

of stories, and P-delta vulnerability.

Keywords Backbone curve deterioration � Collapse capacity � Efficiency � Geometric

mean of spectral acceleration � Ground motion uncertainty � Intensity measure � P-delta

effect � Sufficiency

1 Introduction

In earthquake engineering analysis the intensity measure (IM), i.e., one parameter or a

couple of parameters associated with a set of ground motion records, quantifies the severity

of a seismic event and characterizes the uncertainty related to earthquake excitation. For
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the definition of the intensity of an earthquake record various approaches have been

proposed. In its simplest form the IM is a scalar quantity directly related to the recorded

ground motion, such as the peak ground acceleration (PGA) and peak ground velocity

(PGV). A second group of frequently used scalar IMs comprises elastic and inelastic

spectral values, such as the spectral acceleration and spectral displacement at the fun-

damental structural period. Advanced definitions may include the effects of higher modes

and period elongation due to inelastic deformation (e.g., Cordova et al. 2001; Haselton

and Baker 2006; Luco and Cornell 2007; Bianchini et al. 2009; Kadas et al. 2011;

Vamvatsikos and Cornell 2005; Bojórquez and Iervolino 2011; Adam et al. 2014; Eads

et al. 2015). Vector valued IMs (e.g., Vamvatsikos and Cornell 2005; Baker and Cornell

2005) combine several intensity related parameters, and thus, when appropriately defined

they capture more comprehensively the intensity of earthquake excitation. The appli-

cability of an IM, however, is limited to the availability of appropriate attenuation

relations, as well as its validation for a wider class of structural systems. Thus, one of the

main challenges other IMs face is the lack of relationships between earthquake char-

acteristics, and IM magnitudes at different distances, and soil conditions, among other

factors. For instance, Baker and Cornell (2006) revealed the significance of the spectral

shape on the IM. Jalayer et al. (2012) examined the suitability of commonly used IMs

compared to some others, using concepts of information theory. Most of these studies

have not focused on earthquake excited structures in the collapse limit state. Currently,

the most widely accepted IM for this limit state is the 5% damped pseudo-spectral

acceleration at the (fundamental) period of the structure, T1, which serves in the present

study as the benchmark IM.

According to Luco and Cornell (2007) and Bianchini et al. (2009) an appropriate IM

should comply with the following properties:

• Hazard computability (practicability), i.e., for the IM appropriate ground motion

prediction equations must be available to quantify the ground motion hazard at the site.

• Efficiency, i.e., the record-to-record (RTR) variability of peak structural response,

measured by an appropriate Engineering Demand Parameter (EDP), should be low at

any level of the IM. The more efficient an IM is, the smaller the number of ground

motion records required to predict the structural response within a certain confidence

level.

• Sufficiency, i.e., the distribution of the IM given the EDP is conditionally independent

of seismological characteristics, such as the magnitude, Mw, and the source-to-site

distance, R, or alternatively, the distribution of the EDP given the IM is independent on

those characteristics (Kazantzi and Vamvatsikos 2015a).

• Scaling robustness, i.e., the independence of the IM from scaling factors.

Most studies were mainly focused on the efficiency of the considered IMs. The prop-

erties of sufficiency, scaling robustness and hazard compatibility have also been studied

(e.g., Shome and Cornell 1999; Luco and Cornell 2007; Bianchini et al. 2009; Bojórquez

and Iervolino 2011; Eads et al. 2015).

More recently, IMs based on the geometric mean of spectral pseudo-acceleration over a

specific period interval have attracted the attention of several researchers. The studies of

Tsantaki (2014) and Tsantaki et al. (2017) have shown that for P-delta vulnerable single-

degree-of-freedom (SDOF) systems this IM based on the geometric mean concept of

spectral accelerations satisfies better the properties of efficiency and sufficiency, compared

with outcomes of benchmark studies (Adam and Jäger 2012a; Jäger and Adam 2013;

Tsantaki et al. 2015), where the 5% damped spectral pseudo-acceleration at the structural
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period has been used as IM. In Eads et al. (2015) the efficiency and sufficiency of a similar

IM for collapse prediction of about 700 moment-resisting frame and shear wall structures

has been evaluated. In this investigation for the IMs a lower bound period of 20% of T1 and

an upper bound of three times T1 was used. Kazantzi and Vamvatsikos (2015a) compared

the effectiveness of various geometric mean based IMs superposing the spectral acceler-

ation read at different linearly equally and logarithmically spaced periods. In their study an

IM that combines the spectral acceleration read at five periods ranging from the second-

mode period to twice the first-mode period was found to perform best in terms of efficiency

and sufficiency across the practical range of peak floor acceleration and interstory drift

values of low-rise and high-rise structures.

For selection and modification of earthquake records, several codes consider the

elongated period interval due to nonlinear behavior, as well as to higher mode effects

associated to shorter periods of vibration. For instance, spectral matching period intervals

of 0.2T1 to 2.0T1 (Eurocode 8, 2004), 0.4T1 to 1.5T1 (NZSEE 2006) and 0.2T1 to 1.5 T1

(ASCE/SEI 41-13, 2014) are specified in current codes, where T1 denotes the fundamental

period of vibration. Katsanos et al. (2012) suggested to reduce the period interval specified

in Eurocode 8 (2004) to 0.2T1 \T1 \ 1.5T1 at least for new buildings designed for low or

moderate levels of ductility and low-to-medium stiffness degradation. However, most of

the proposed code-bounds of the period intervals are based on expert elicitation, without

being referred to specific research studies.

In this paper, the choice of an appropriate IM is investigated based on the geometric

mean of spectral pseudo-acceleration over a specific period interval for defining the col-

lapse capacity of multi-story moment-resisting frames vulnerable to the destabilizing effect

of gravity loads (i.e., global P-delta effect). Thus, in the first part of this study the effi-

ciency of this IM for various lower and upper bound periods, depending on the funda-

mental period and for various structural configurations of P-delta sensitive generic frame

structures, is studied. Based on these analyses, an ‘‘optimal’’ IM based on the geometric

mean of spectral accelerations is proposed, which renders minimum dispersion due to RTR

variability for all the evaluated frames. This ‘‘optimized’’ IM includes a flexible lower

bound period interval that corresponds to the structural period associated with the

exceedance of 95% of the total effective mass, to efficiently consider small or large high

mode contributions. It follows a quantitative and qualitative evaluation of the efficiency

property of this IM in the collapse limit state with respect to the characteristic structural

parameters. After that, the sufficiency of the identified ‘‘optimal’’ IM is studied.

2 Spectral acceleration based intensity measures

2.1 Definitions

Nowadays a single target spectral value is commonly used as IM. In its simplest form, the

spectral acceleration is read at an ‘‘arbitrary’’ period, such as 1.0 s, i.e., SaðT ¼ 1:0 sÞ. A

more elaborated IM is the 5% damped spectral acceleration at the fundamental period, T1,

of the structure, SaðT ¼ T1Þ, see Fig. 1a. This IM is correlated to ground motion and

building information. Thus, for an elastic structure that is first mode dominated it is

generally more efficient than IMs such as SaðT ¼ 1:0 sÞ or the peak ground acceleration

(PGA).
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For tall buildings, where higher modes contribute significantly to the seismic response,

the efficiency of the IM is improved by superposition of the spectral value at the first mode

with the spectral values of the first m higher modes (see Fig. 1b),

IM ¼
Ym

j¼1

SaðTjÞ
 !1=m

ð1Þ

The superposition is based on the geometric mean, and Tj is the jth mode period of the

structure. For example, Shome and Cornell (1999) found that inclusion of the spectral

accelerations at the second and the third mode, SaðT2Þ and SaðT3Þ, respectively, reduces the

RTR dispersion of the elastic EDP demand of high-rise structures. At this point it should be

noted that in the collapse limit state only one failure mode dominates the response, as it has

been shown in Brozovič and Dolšek (2014). This failure mode can be very different from

the mode shapes obtained from modal analysis of the elastic structure, however, it is

triggered by the fundamental as well higher modal modes in combination with the given

ground motion record (Brozovič and Dolšek 2014). Thus, subsequently the generic

expression higher mode effect refers to the effect of higher modes on the failure mode.

However, in particular in taller structure the shape of the failure mode close to collapse

significantly depends on the ground motion used (Brozovič and Dolšek 2014).

When a structure responds inelastically, the structural periods elongate depending on

the plastic deformation. The first studies considering period elongation (Mehanny and

Deierlein 2000; Cordova et al. 2001) included a second spectral value at a period longer

than the first mode, leading to an IM of the form IM ¼ SaðT1Þð1�bÞ
SaðcT1Þb. With the

suggested values b ¼ 0:5 and c ¼ 2, this IM represents the geometric mean of the two
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Fig. 1 Pseudo-spectral acceleration of a ground motion record. a Spectral acceleration at the fundamental
mode T1, b at T1 and higher mode periods, c at T1 and 2T1, d at equally spaced periods between a lower

bound period T ð1Þ and an upper bound period T ðnÞ
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spectral accelerations read at the periods T1 and 2T1, i.e., IM ¼ SaðT1ÞSað2T1Þð Þ1=2
, see

Fig. 1c.

In an effort to capture both higher mode effects and period elongation due to plastic

deformations Vamvatsikos and Cornell (2005) conducted a parametric Incremental

Dynamic Analysis (IDA) study up to collapse to identify the optimal periods Ta, Tb, Tc and

exponents b and c of a similar IM composed of three spectral values according to

IM ¼ SaðTaÞð1�b�cÞ
SaðTbÞbSaðTcÞc, where a\1, b\1, and 1 � a� b� 0. They found that

the optimal parameters depend strongly on the actual deformation of the structure, i.e.,

elastic, moderately inelastic, or at onset of collapse.

Bianchini et al. (2009) proposed to calculate the geometric mean of discrete spectral

acceleration values SaðT ðiÞÞ (i ¼ 1; . . .; n) as,

Sa;gmðTð1Þ; TðnÞÞ ¼
Yn

i¼1

SaðT ðiÞÞ
 !1=n

ð2Þ

within the period interval DT

DT ¼ T ðnÞ � T ð1Þ; TðnÞ [ T ð1Þ ð3Þ

The period interval DT has a lower bound period T ð1Þ and an elongated upper bound

period TðnÞ. Also, TðiÞ is the ith period of the set of n periods T ð1Þ; . . .; T ðiÞ; . . .; T ðnÞ. In

general, TðiÞ does not comply with a system period Tj. In contrast to Bianchini et al. (2009),

where Sa is discretized at 10 log-spaced periods within DT , Tsantaki et al. (2017) dis-

cretized Sa at equally spaced periods T ðiÞ within DT (Fig. 1d),

T ðiÞ ¼ Tð1Þ þ i� 1ð ÞdT; i ¼ 1; . . .; n; dT ¼ DT
n� 1

¼ T ðnÞ � T ð1Þ

n� 1
ð4Þ

Based on parametric IDAs on P-delta vulnerable highly inelastic SDOF systems,

Tsantaki et al. (2017) found that the upper elongated period T ðnÞ leading to the minimum

RTR dispersion of the collapse capacity is around 1:6TSDOF , fluctuating between 1:4TSDOF
and 2:0TSDOF . According to this study, for these SDOF systems the ‘‘optimal’’ lower bound

period T ð1Þ corresponds to the elastic period, i.e., T ð1Þ ¼ TSDOF . The collapse capacity

dispersion due to RTR variability of SDOF systems based on the IM

Sa;gmðTSDOF ; 1:6TSDOFÞ is 50% lower than that obtained from the common IM SaðTSDOFÞ.
In a preliminary study on collapse capacity dispersion due to RTR variability of multi-

story frame structures sensitive to P-delta, Adam et al. (2014) proposed as IM

Sa;gmð0:2T1; 1:6T1Þ. In this IM, the lower bound interval is 20% of the fundamental period,

i.e., T ð1Þ ¼ 0:2T1, to account for higher mode effects, in agreement with Eurocode 8 (2004)

and ASCE/SEI 41-13 (2014) specifications.

Another possibility is to superpose discrete spectral accelerations that are weighed with

respect to their importance with a period dependent shape function uðTÞ,

�Sa;gmðT ð1Þ; T ðnÞÞ ¼
Yn

i¼1

uðTðiÞÞSaðT ðiÞÞ
 !1=n

; 0�uðTÞ� 1 ð5Þ

It is reasonable to assume that at the fundamental period the function uðTÞ is 1,

uðT ¼ T1Þ ¼ 1, and then decreases on both sides up to 0 when the lower and upper bound
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period is reached, i.e., uðT ¼ T ð1ÞÞ ¼ uðT ¼ T ðnÞÞ ¼ 0. The appropriate shape of uðTÞ for

IM �Sa;gmðTð1Þ; TðnÞÞ must be identified in a parametric investigation, but it is not part of the

scope of this paper.

Recently, Kazantzi and Vamvatsikos (2015b) proposed for seismic vulnerability studies

a new scalar IM that combines the geometric mean concept of spectral accelerations with a

significant duration property of the ground motions based on the Arias Intensity.

2.2 Studied intensity measures

Subsequently, the choice of an appropriate IM, Sa;gm according to Eq. (2), is evaluated

based on the geometric mean of fifty 5% damped spectral pseudo-accelerations at equally

spaced periods between predefined lower and upper bound periods. The appropriateness of

the IM is associated to the collapse capacity dispersion of moment-resisting frames (MRFs)

vulnerable to the P-delta effect due to RTR variability. The single target 5% damped

spectral pseudo-acceleration, SaðT1Þ serves as the benchmark IM. This IM fulfills the

hazard computability property since attenuation relationships describing the probability

distribution of spectral pseudo-accelerations at single target periods are widely available.

Seismic hazard analysis for the geometric mean based IMs, Sa;gm, can also be applied based

on correlation equations between spectral accelerations at multiple periods derived by

Baker and Jayaram (2008). According to Bianchini et al. (2009) the choice of a period

interval has never been comprehensibly evaluated. In their study of collapse limit state, for

instance, Eads et al. (2015) fixed the lower bound period to T ð1Þ ¼ 0:2T1 and the upper

bound period to T ðnÞ ¼ 3:0T1. A first attempt to assess the appropriate period interval has

been conducted in Adam et al. (2014). Subsequently, the efficiency of IM Sa;gm at collapse

is studied for various lower and upper bound periods and various structural configurations

of P-delta sensitive generic frame structures to identify an ‘‘optimal’’ IM.

3 Testbed generic frame structures

3.1 General set-up

Generic multi-story frames as shown in Fig. 2a, similar to the ones evaluated by Medina

and Krawinkler (2003), are used to assess collapse capacity dispersion. All stories of these

moment-resisting single-bay frame structures of N stories are of uniform height h, and they

are composed of elastic flexible columns and rigid beams. Inelastic rotational springs are

located at the base of the first floor columns and at both ends of the beams, according to the

weak beam-strong column design philosophy. Thus, the computed collapse capacity of

frames exhibiting column yielding, other than at the base of first floor columns, will be

overestimated (Ibarra and Krawinkler 2005). To each joint of the frames an identical

lumped mass ms=2 is assigned. The desired straight-line fundamental mode shape is the

governing condition for adjusting the bending stiffness of the columns and the initial

stiffness of the springs. The rotational springs are modeled with a bilinear backbone curve.

The inelastic branch of this backbone curve with reduced stiffness is characterized by the

strain-hardening coefficient, a, which is the same for all springs. The initial strength of the

springs is tuned such that yielding is initiated simultaneously at all spring locations in a

static pushover analysis (without gravity loads) based on a first mode design load pattern.
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The hysteretic response of the springs is assumed to be bilinear. Since the focus of this

study is on purely P-delta vulnerable structures, a post-capping stiffness is not considered.

That is, the deformation associated with the post-capping strength is set to infinity. How-

ever, unloading stiffness and strength cyclic deterioration is simulated with the modified

Ibarra-Medina-Krawinkler deterioration model (Ibarra and Krawinkler 2011; Lignos and

Krawinkler 2012). The controlling unloading stiffness deterioration and cyclic strength

deterioration parameters, KK and KS, respectively, are assumed to be equal to each other for

all springs of the frame, KK ¼ KS. Three material deterioration levels are used to represent

slow, medium, and rapid deterioration based on Lignos and Krawinkler (2012) database.

Rayleigh type damping is set at 5% viscous damping for the first mode and the mode in

which the sum of modal masses exceeds 95% of the total mass. The damping matrix is

proportional to the mass matrix and the tangent stiffness matrix.

3.2 Modeling of the P-Delta effect

The P-delta effect on the studied frame structures is quantified by means of two base shear-

roof drift relations (global pushover curves) resulting from two different pushover analyses

based on a fundamental mode design load pattern, as outlined in Adam and Jäger (2012b).

In the first pushover analysis identical gravity loads are assigned to each story joint to

simulate P-delta effects. The second pushover analysis is conducted without gravity loads.

Since in the evaluated frames all springs yield simultaneously, both pushover curves are

bilinear, as illustrated in Fig. 2b. The P-delta effect reduces for a given roof displacement,

xN , the base shear, V, and consequently, the elastic and post-yield stiffness become

apparently smaller. According to Medina and Krawinkler (2003) the stability coefficient of

a multi-story frame structure is non-uniform in the elastic and inelastic branch of defor-

mation, in contrast to a single-degree-of-freedom (SDOF) oscillator. If the pushover curves

are bilinear, two stability coefficients can be identified, i.e., a stability coefficient in the

elastic range of deformation (he) and a stability coefficient in the post-yield range of

1

1

V no P-delta effect

with P-delta effect

11

xNxNy

Vy
VPy

θeKS

1 θe( )KS

θiKS
αS θi( )KS

αS KS

N

i

rigid

elastic

inelastic

h

1
(a)

mS / 2

EJi
Ki

mS / 2

mS / 2

xN

(b)

Fig. 2 a Generic test-bed frame. b Global pushover curve of a considered generic P-delta vulnerable multi-
story frame structure (red curve), and the corresponding outcome disregarding gravity loads (black curve).
[modified from Adam and Jäger (2012b)]
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deformation (hi), as observed in Fig. 2b. It has been shown in Medina and Krawinkler

(2003) that hi is larger than he, and with increasing P-delta vulnerability also the difference

between the elastic and the inelastic stability coefficient is increasing, i.e., hi [ ð[ Þhe. In

many flexible frame structures the collapse capacity is not significantly affected by cyclic

deterioration of its structural components. In those structures a negative post-yield stiffness

is a precondition for seismic collapse. This precondition can be expressed as hi � aS [ 0,

i.e., the difference of inelastic stability coefficient hi and lateral global hardening ratio aS
must be larger than zero, as it is illustrated in Fig. 2b (Adam and Ibarra 2015). It should be

noted that the strain hardening coefficient assigned to each rotational spring, a, and the

global hardening coefficient, aS, are generally different.

3.3 Characteristic structural parameters

Collapse capacity dispersion due to RTR variability of the considered P-delta vulnerable

MDOF systems is primarily influenced by

• the fundamental period T1 (without gravity loads),

• the negative slope of the post-yield stiffness hi � aS in the capacity curve,

• the period elongation due to inelastic deformations,

• higher modes correlated with the number of stories N and the structural periods.

In this study the elastic fundamental period T1, the negative post-yield stiffness ratio

hi � aS, and the number of stories N serve as variables. Variation of these parameters affects

the fundamental period including the effect of gravity loads, which is subsequently denoted

as TPD
1 . The period elongation at collapse is largely controlled through hi � aS, and dete-

rioration of the unloading stiffness and strength. Thus, results are presented for frames with

non-deteriorating springs, and springs subjected to slow, medium, and rapid deterioration.

In total 2048 generic frame structures are studied. All predefined basic model param-

eters of the considered generic frame structures are summarized in Table 1.

4 Incremental dynamic analysis and ground motions

4.1 The seismic collapse capacity and its record-to-record variability

The IDA procedure (Vamvatsikos and Cornell 2002) is used to predict collapse capacity of

the testbed structures. An IDA consists of a series of time history analyses, in which the

Table 1 Range of basic model parameters of the considered generic frame structures

Parameter Description Parameter range

N Number of stories 1, 3, 6, 9, 12, 15, 18, 20

T1 Fundamental period 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4.0

hi � aS Negative post-yield stiffness ratio 0.03, 0.04, 0.05, 0.06, 0.10,
0.20, 0.30, 0.40

a Strain hardening coefficient of rotational springs 0.03

KK ¼ KS Deterioration parameter for no deterioration; and slow,
medium, and rapid deterioration

1, 2.0, 1.0, 0.5
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intensity of a particular ground motion is monotonically increased. As a result, the IM is

plotted against the EDP (here the roof drift), and the procedure is stopped when this

parameter grows unbounded, indicating that structural failure occurs. The corresponding

IM, IMijcollapse, is referred to as the structural collapse capacity CCi of the structure

subjected to ground motion record i,

CCi ¼ IMijcollapse ð6Þ

Collapse capacities are computed for all records of the selected bin, and subsequently

evaluated statistically given that RTR variability leads to different collapse capacities for

different ground motion records. Shome and Cornell (1999) and Ibarra and Krawinkler

(2011) provide good arguments for representing a set of corresponding collapse capacities

by a log-normal distribution. The log-normal distribution is characterized by the median

llnCC of the natural logarithm and the standard deviation b of the logarithm of individual

collapse capacities (FEMA-350 2000),

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xr

i¼1

ðlnCCi � llnCCÞ2

r � 1

s

ð7Þ

where r is the number of ground motion records, and thus, of individual collapse capacities,

CCi, i ¼ 1; . . .; r.

4.2 Utilized ground motion sets

The uncertainty in the frames collapse capacity caused by RTR variability is computed

employing the far-field ground motions of both the FEMA P-695 far-field record set

(FEMA P-695 2009), referred to as FEMA P-695-FF, and the LMSR-N record set

(Medina and Krawinkler 2003). The FEMA P-695-FF records include seismic events of

magnitude Mw between 6.5 and 7.6, and closest distance to the fault rupture larger than

10 km. The Joyner-Boore distance is between 7.1 and 26 km. Only strike-slip and

reverse sources are considered. The 44 records of this set were recorded on NEHRP site

classes C (soft rock) and D (stiff soil) (FEMA P-695 2009). The second bin, LMSR-N,

contains 40 ground motions recorded in California on NEHRP site class D during

earthquakes of moment magnitude Mw between 6.5 and 7 and closest distance to the

fault rupture between 13 km and 40 km. This set of records has strong motion duration

characteristics insensitive to magnitude and distance (Medina and Krawinkler 2003).

5 Identification of an optimal intensity measure

To identify the optimal IM, three evaluations are performed varying the period interval

bounds. The first evaluation focuses on the effect of upper bound variations on collapse

capacity dispersion, whereas the second evaluation considers the effect of different lower

bounds on this dispersion. The third evaluation simultaneously analyzes the effect of lower

and upper bound variations on collapse capacity dispersion.
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5.1 Intensity measures covering the effect of period elongation

In the first evaluation the effect of period elongation due to the presence of gravity loads

and the potential of inelastic deformations on the efficiency of IM Sa;gm is investigated. The

lower bound period T ð1Þ is the fundamental period T1 (unaffected by P-delta), whereas T ðnÞ

values of 1:6T1, 2:0T1, and 1:3T1 are assigned to the upper bound period. The resulting

period intervals DT are Sa;gmðT1; 1:6T1Þ, Sa;gmðT1; 2:0T1Þ, and Sa;gmðT1; 1:3T1Þ. Tsantaki

et al. (2017) found that the period interval from T ð1Þ ¼ T1 to T ðnÞ ¼ 1:6T1 leads on average

to the smallest collapse capacity dispersion of P-delta vulnerable SDOF systems.

For this evaluation three sets of generic frames that do not exhibit cyclic deterioration

are assessed. Each set includes 1-, 3-, 9-, and 18-story structures. The frames of the first set

exhibit a fundamental period of T1 ¼ 0:5 s, and a small negative post yield-stiffness ratio

of hi � aS ¼ 0:03. The frames of the second and third set are more flexible, T1 ¼ 2:0 s and

T1 ¼ 3:5 s, respectively. These second and third sets also exhibit larger post-yield stiffness

ratios of hi � aS ¼ 0:10 and hi � aS ¼ 0:20, respectively; and therefore are more prone to

collapse.

Figure 3 shows the collapse capacity dispersion b (as defined in Eq. 7) of these frames

when subjected to the 44 records of FEMA P-695-FF set, based on the discussed averaged

IMs and the SaðT1Þ benchmark IM. As observed, IM Sa;gmðT1; 1:6T1Þ is more efficient than

IM SaðT1Þ for all structural configurations. For stiff structures with T1 ¼ 0:5s, IM

Sa;gmðT1; 2:0T1Þ is slightly more efficient than IM Sa;gmðT1; 1:6T1Þ. However, for the most

flexible structures with T1 ¼ 3:5s, IM Sa;gmðT1; 1:6T1Þ leads to the smallest collapse

capacity dispersion, whereas for the 3-, 9-, and 18-story structures IM Sa;gmðT1; 2:0T1Þ is

even less efficient than benchmark IM SaðT1Þ. A statistical analysis of dispersion b of all

considered structures shows that, in general, IM Sa;gmðT1; 1:6T1Þ performs better than IM

Sa;gmðT1; 2:0T1Þ, and better than all other IMs that only consider period elongation.

5.2 Intensity measures covering higher mode effects

Subsequently, two average IMs are utilized to investigate the effect of using period

intervals that account only for higher modes on collapse capacity dispersion. The evaluated

period intervals are Sa;gmð0:2T1; T1Þ and Sa;gmð0:4T1; T1Þ. Six different frame sets are

considered, including the three sets of the previous evaluation. The fourth set consists of

six flexible (T1 ¼ 3:5 s) 18-story frames with hi � aS varying from 0.03 to 0.40. The fifth
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set considers six 9-story frames with constant hi � aS = 0.10, and T1 varying from 0.5 to

3.5 s. The sixth set has six 18-story frames with hi � aS = 0.20, and T1 also varies from

0.5 to 3.5 s. All frames are subjected to FEMA P-695-FF ground motion set.

The results shown in Fig. 4 reveal that IMs that only consider the effect of higher modes

in the period range definition lead to a larger collapse capacity dispersion (even for multi-

story structures) compared to the traditional IM SaðT1Þ. This can be attributed to the large

influence of first mode contributions to the response. It is, thus, more useful to reduce the

RTR variability in the first mode than using an average interval that only considers higher

modes. There is no significant or consistent difference whether the lower bound period is

T ð1Þ ¼ 0:2T1 or Tð1Þ ¼ 0:4T1. Thus, it can be concluded that these IMs are not useful, and

are no longer evaluated.

5.3 Intensity measures covering the effect of period elongation and higher
modes

In the third set of analyses, two IMs Sa;gm are defined to cover the range of periods

associated to higher modes and period elongation: Sa;gmð0:2T1; 1:6T1Þ and

Sa;gmð0:4T1; 1:6T1Þ. A T ð1Þ of 0:2T1 corresponds to the lower bound period suggested in

Eurocode 8 (2004) and ASCE/SEI 41-13 (2014), and T ð1Þ ¼ 0:4T1 is provided in the

standard NZSEE (2006). The collapse capacity dispersion based on these two IMs is

compared to the outcomes based on IM Sa;gmðT1; 1:6T1Þ and on the two single target IMs

SaðT1Þ and SaðTPD
1 Þ.

Six frame sets exhibiting non-deteriorating material properties subjected to FEMA

P-695-FF bin are assessed. The results for the first two frame sets of 1-, 3-, 9- and 18-story
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frames are depicted in Fig. 5a, b. The first set includes stiff frames with T1 ¼ 0:5 s and a

small hi � aS = 0.03. The frames of the second set are more flexible, T1 ¼ 3:5 s, and have

a steeper hi � aS ¼ 0:20. As observed, stiffer frames (T1 ¼ 0:5 s) with IMs

Sa;gmðT1; 1:6T1Þ, Sa;gmð0:2T1; 1:6T1Þ and Sa;gmð0:4T1; 1:6T1Þ lead to a dispersion of the

same order. In contrast, the dispersion for IMs SaðT1Þ and SaðTPD
1 Þ is significantly larger.

IM Sa;gmðT1; 1:6T1Þ is, however, most efficient for all frames of this set, see Fig. 5a.

According to Fig. 5b, IM Sa;gmðT1; 1:6T1Þ yields the smallest collapse capacity dispersion

for the 3.5 s one-story structure, while for the multi-story frames IMs Sa;gmð0:2T1; 1:6T1Þ
and Sa;gmð0:4T1; 1:6T1Þ are more efficient.

This outcome is confirmed by the studies on four additional frame sets. Figure 5c, d

shows the collapse capacity dispersion b for sets of 1- and 9-story frames, respectively. In

both figures, the negative post-yield stiffness ratio hi � aS is varied from 0.03 to 0.40,

keeping the period T1 ¼ 2:0 s (without gravity load) constant. Figure 5e, f presents 1- and

18-story frames, respectively, in which hi � aS ¼ 0:20, and fundamental periods of 0.5,

1.0, 1.5, 2.5, and 3.5 s are investigated. The one-story systems with hi � aS [ 0.20

(Fig. 5c) are the only structural configurations where the dispersion based on IM SaðT1Þ is

different than the dispersion based on SaðTPD
1 Þ. This can be attributed to the fact that SDOF

one-story frames exhibit only one stability coefficient h uniform in both elastic and post-

yield branches of deformation (MacRae 1994). This ‘‘global’’ stability coefficient h is of

the same order as the inelastic stability coefficient hi of the multi-story frames. In the one-

story frame the period elongation due to P-delta is associated with h, i.e.,

TPD
1 = T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1 � hÞ

p
, and therefore, is larger than the corresponding elongation of a

multi-story frame associated with the elastic stability coefficient heð� hiÞ, see Fig. 2. For

this reason, for the one-story frame the target spectral acceleration SaðT1Þ, based on the

period T1, differs from SaðTPD
1 Þ based on the period considering gravity loads, TPD

1 , by 14%
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if h = 0.20. With increasing number stories the difference between the inelastic stability

coefficient hi and the elastic one he becomes larger. Consequently, for a given hi � aS the

elastic stiffness considering P-delta approaches the stiffness unaffected by P-delta, and also

the difference between periods TPD
1 and T1 becomes smaller. Thus, with increasing number

of stories the superior performance of IM SaðTPD
1 Þ over IM SaðT1Þ decreases for a given

hi � aS, as observed when comparing Fig. 5c with Fig. 5d, and Fig. 5e with Fig. 5f.

It is worth to note that in all one-story structures of Fig. 5c, e IM Sa;gmðT1; 1:6T1Þ is

more efficient than IMs Sa;gmð0:2T1; 1:6T1Þ and Sa;gmð0:4T1; 1:6T1Þ because SDOF systems

have no higher mode effects. However, the superior performance of IM Sa;gmðT1; 1:6T1Þ
over IM SaðT1Þ for SDOF systems is already drastically reduced for the three-story

buildings, as observed in Fig. 5b. Further increase of the story number diminishes the

positive effect of this average IM for the collapse capacity dispersion b.

The IMs Sa;gmð0:2T1; 1:6T1Þ and Sa;gmð0:4T1; 1:6T1Þ lead to the smallest collapse

capacity dispersion b for the flexible 3-, 9-, and 18-story frames of Fig. 5b, d, f, except for

T1 = 0.5 s frames of Fig. 5a, in which the IM Sa;gmðT1; 1:6T1Þ is slightly more efficient.

Also, IMs Sa;gmð0:2T1; 1:6T1Þ and Sa;gmð0:4T1; 1:6T1Þ lead to almost the same efficiency for

different MDOF systems, which according to Table 2 implies that the effect of the third

mode on collapse capacity dispersion is very small. This table presents the ratios of second

and third periods to the fundamental period, i.e., T2=T1 and T3=T1, respectively; and the

ratio of effective modal mass to total effective mass for the first three modes, i.e.,

Mi=M; i ¼ 1; . . .; 4. As observed, T2=T1 is around 0.4 for most frames, whereas T3=T1 is

close to 0.2 in most cases. Thus, the lower bound 0:4T1 captures second mode effects,

whereas the lower bound 0:2T1 includes second and third mode effects.

5.4 Optimal intensity measure

Based on the findings for the entire frame set defined in Table 1, it is concluded that the

lower bound period of an ‘‘optimal’’ IM should not be a fixed fraction of the fundamental

period T1 (such as 0:2T1 or 0:4T1), because such an IM reduces the efficiency for SDOF

systems, or systems with low high mode contributions. As a solution it is proposed to relate

the lower bound period of averaging interval DT in analogy to Rayleigh damping with 95%

of the total effective modal mass M, leading to the following IM

Table 2 Period ratios for the first four modes; period associated with the exceedance of 95% of the
cumulative effective modal mass T0.95M; effective modal mass ratios for the first four modes; ratio cumu-
lative effective modal mass at T0.95M to total mass

Stories N T2

T1

T3

T1

T4

T1
T0:95M

M1

M
M2

M
M3

M
M4

M
M95cum

M

1 – – – T1 1 – – – 1.00

3 0.34 0.16 – T2 0.857 0.115 0.028 – 0.97

6 0.38 0.21 0.13 T3 0.808 0.119 0.043 0.019 0.97

9 0.39 0.23 0.15 T3 0.789 0.117 0.045 0.022 0.95

12 0.40 0.24 0.16 T4 0.780 0.115 0.045 0.023 0.96

15 0.40 0.25 0.17 T4 0.774 0.114 0.045 0.024 0.96

18 0.40 0.25 0.17 T4 0.770 0.113 0.045 0.024 0.95
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IMopt ¼ Sa;gmðT0:95M; 1:6T1Þ ð8Þ

which is subsequently referred to as ‘‘optimal’’ IM. Table 2 also shows the period asso-

ciated with exceedance of 95% of the cumulative effective modal mass, T0:95M , and the

ratio cumulative effective modal mass to total mass M95cum=M at this period. Clearly, for

an SDOF system the lower bound period corresponds to the fundamental period T1, i.e.,

Sa;gmð0:2T1; 1:6T1Þ. For the three-story system the lower bound T ð1Þ corresponds to the

second period T2, T ð1Þ ¼ T2, or expressed in terms of the fundamental period,

T ð1Þ ¼ 0:34T1. For an 18-story structure the lower bound period is related to the fourth

mode, i.e., T ð1Þ ¼ T4 ¼ 0:17T1. For the sake of completeness it is noted here that for the

considered generic frames period T0:95M can roughly estimated as

T0:95M � T1= 1 þ 3ðm0:95M � 1Þ=2½ � ð9Þ

where m0:95M is the mode associated with the exceedance of 95% of the total mass,

m0:95M ¼ ceil
ffiffiffiffi
N

p
ð10Þ

Equation (10) applies for all frames and does not depend on the fundamental period. It

yields for all frames the correct mode number except for 18-story frame, where the fifth

mode instead of the fourth mode is obtained.

In a recent study (Adam et al. publ. online 2016) a preliminary evaluation of this IM has

been conducted.

It should be noted here that the definition of a new IM requires hazard curves expressed

in terms of this IM to comply with the property of practicability. For the proposed IM,

hazard curves can be determined in a similar fashion as for the single target spectral IM

SaðT1Þ. However, since for IMopt spectral acceleration Sa is not read at a single period, but

depends additionally on the lower and upper bound period range of the averaging interval,

a matrix (or set) of hazard curves needs to be derived including the information of these

quantities (i.e., Sa at the fundamental period, and lower and upper limit of the considered

period range). Consequently, many more combinations of hazard curves do exist, but when

stored in a database the application is straightforward. The derivation of such a set of

hazard curves is, however, out of the scope of the present study.

6 Efficiency of optimal intensity measure

In this section the efficiency of the ‘‘optimal’’ intensity measure IMopt is qualitatively and

quantitatively assessed. Figure 6 shows dispersion parameter b for nine sets of frames with

non-deteriorating material properties subjected to the 44 FEMA P-695-FF ground motions

based on IM IMopt, and for comparison also for the IMs SaðT1Þ, SaðTPD
1 Þ, Sa;gmðT1; 1:6T1Þ,

and Sa;gmð0:2T1; 1:6T1Þ. As observed, for all structures IMopt is more efficient than single

target IMs SaðT1Þ and SaðTPD
1 Þ. Moreover, for most structures it is the most efficient IM,

and in the remaining cases, the deviation to the most efficient one is 5% at most. To

quantify the efficiency enhancement of the alternative IMs with respect to the benchmark

IM SaðT1Þ, Fig. 7 represents the ratio of the dispersion of the four alternative IMs with

respect to b based on IM SaðT1Þ.
In Fig. 6a, b, c the collapse capacity variability is depicted for three groups of frames, as

a function of the number of stories. The period T1 ¼ 3:5 s is constant, but hi � aS is
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different in each figure. As observed, the collapse capacity dispersion increases as the

number of stories increases. It is also observed that in structures exposed to moderate P-

delta effect, i.e., hi � aS ¼ 0:03, the IMopt efficiency only increases 5–9% as compared to

benchmark IM SaðT1Þ, see Fig. 7a. However, for the two other frame sets the dispersion

based on IMopt is up to 30% smaller than for IM SaðT1Þ. Here it is referred to Fig. 7b, c.

Figure 6d, e, f show the collapse variability for flexible frames with a fundamental

period of 3.5 s as a function of the negative post-yield stiffness ratio for frames of one

(Fig. 6d), nine (Fig. 6e), and 18 (Fig. 6f) stories. For a steeper hi � aS the collapse capacity

dispersion decreases, because the structures are more prone to collapse and less dependent

on RTR variability. For instance, for IMopt the nine-story structure with hi � aS ¼ 0:03

exhibits dispersion b ¼ 0:58, for hi � aS ¼ 0:40 it decreases to b ¼ 0:30, as can be seen in

Fig. 6e. Also, for SDOF frames with a large negative post-yield stiffness ratio, the effi-

ciency enhancement related to IMopt is most pronounced: for hi � aS ¼ 0:40 the dispersion

for IMopt is only 48% of the dispersion based on IM SaðT1Þ, see Fig. 6d. For this structural

configuration the dispersion based on the single-target IM SaðTPD
1 Þ is of the same order as
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for IM SaðT1Þ. On average the reduction of the dispersion based on IMopt is about 20%

compared to benchmark IM SaðT1Þ.
The effect of different fundamental periods of vibration in 1-, 9-, and 18-story frames is

presented in Fig. 6g, h, i, respectively. The parameter hi � aS ¼ 0:20 is constant, and

periods T1 between 0.5 and 4.0 s spaced at 0.5 s in the three frame sets. Figure 6g, h, i

show that the dispersion is not significantly affected by period T1. More important for

dispersion is the number of stories. While for one-story structures and IMopt the variability

b fluctuates around 0.20, for the nine-story and 18-story frames it is on average 0.28.

According to Fig. 7g, h, i the efficiency enhancement of IMopt with respect to IM SaðT1Þ
does not follow a uniform trend. However, it is more pronounced for SDOF systems than

for the multi-story frames, as discussed before. The collapse capacity dispersion associated

with IM SaðT1Þ is similar to outcomes reported in the literature. For instance, Haselton

et al. (2011) obtained for a set of thirty 1- to 20-story RC frame structures collapse

capacity dispersions based on IM SaðT1Þ between 0.36 and 0.48. In the studies of Lazar and

Dolšek (2014a, b) the collapse capacity dispersion of six RC frames varied from 0.35 to

0.44. As it can be observed from Fig. 6, in the current study the SaðT1Þ related collapse

capacity dispersions vary in a larger bandwidth, from b = 0.27 (N = 1, T = 0.50 s,
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hi � aS ¼ 0:20) to b = 0.64 (N = 18, T1 = 3.5 s, hi � aS ¼ 0:03). It must be noted here

that in particular the structural configuration corresponding to the upper bound dispersion

is not realistic. However, when narrowing down the comparison to generic frames with

similar fundamental periods and number of stories, and moderate stiffness ratios, the

bandwidth of variation becomes smaller [i.e., from 0.27 (N = 1, T = 0.50 s,

hi � aS ¼ 0:20) to 0.42 (N = 18, T1 = 2.0 s, hi � aS ¼ 0:20)] and agrees better with the

ones of Haselton et al. (2011) and Lazar and Dolšek (2014a,b).

Subsequently, it is investigated whether the findings for material non-deteriorating

P-delta vulnerable frames can be transferred to structures that are also exposed to rapid

material deterioration, as defined in Table 1. Figure 8 shows the collapse capacity dis-

persion for similar generic frames to those of Fig. 6, but with rapid deterioration of

strength and stiffness. A comparison of the outcomes of these two figures reveals that the

general trend of b with respect to the number of stories N, negative post-yield stiffness

ratio hi � aS, and fundamental period T1 is the same.

Moreover, the superior efficiency of IMopt is confirmed. However, the magnitude of b
becomes (much) smaller compared to the non-deteriorating counterparts, in particular, if
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Fig. 8 Dispersion of the collapse capacity for nine frame sets with parameters as specified. Rapid material

deterioration. Benchmark IM SaðT1Þ, IM SaðTPD
1 Þ, one IM considering period elongation, one IM

considering both period elongation and higher mode effects as specified, and ‘‘optimal’’ IM IMopt . FEMA

P-695-FF record set
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the negative post-yield stiffness ratio is small, i.e., hi � aS ¼ 0:03. For instance, for the first

frame set, whose results are shown in Figs. 6a and 8a, consideration of rapid material

deterioration reduces the dispersion b by 50% compared to the non-deteriorating systems.

Another important observation is that the efficiency of IMopt with respect to the

benchmark IM SaðT1Þ is significantly improved. The corresponding plots of the collapse

capacity ratios of Fig. 9 show that the efficiency enhancement is on average about 30%,

compared to 20% for non-deteriorating frames, see Fig. 7.

The three-dimensional bar plots of Figs. 10 and 11 provide a global overview of col-

lapse capacity dispersion and its trends with respect to period T1, number of stories N and

negative post-yield-stiffness ratio hi � aS. Figure 10 shows the dispersion based on IMs

SaðT1Þ and IMopt for a set of rapidly deteriorating frames with hi � aS ¼ 0:20 as a function

of period T1 and number of stories N. Additionally, the dispersion ratio for these two IMs is

depicted. The structures of Fig. 11 have a period of T1 ¼ 3:5 s, and the dispersion is

plotted against hi � aS and N. As observed before, there is a general trend of larger

dispersion with increasing N. Also, with increasing period T1 the dispersion increases in

most cases, however, not uniformly. With respect to the negative post-yield stiffness ratio,

a coherent trend can be observed.
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Fig. 9 Dispersion of the collapse capacity based on alternative IMs over the dispersion for benchmark IM
SaðT1Þ. Nine frame sets with parameters as specified. Rapid material deterioration. FEMA P-695-FF record
set
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In a final efficiency study the material deteriorating frame sets are subjected to the 40

ordinary ground motions of the LMSR-N record set. In Fig. 12 the corresponding dis-

persion parameter b of the collapse capacities are depicted. Comparing these results with

the outcomes of the same frame set subjected to the records of the FEMA P-695-FF bin

presented in Fig. 8, shows that the findings based on the FEMA P-695-FF bin can be

generalized to other ground motion sets with similar overall properties. For all frames the

general trend of the collapse capacity in magnitude and efficiency is similar for the FEMA

P-695-FF and the LMSR-N ground motions. Detailed inspection reveals that IMopt is for

LMSR-N record set slightly more efficient than for the FEMA P-695-FF record set.

From the entire efficiency study it can be concluded that IMopt is both efficient for

SDOF and MDOF systems vulnerable to P-delta.

7 Sufficiency study

The trend and magnitude of b for the FEMA-P695-FF and the LMSR-N bin is similar, and

thus it provides first evidence of sufficiency of the discussed IMs, because the ground

motion parameters of these sets are different.
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Fig. 10 Dispersion of the collapse capacity for 72 frames with hi � aS ¼ 0:20 plotted against the number of
stories and the fundamental period. a IM SaðT1Þ, b IM IMopt , c dispersion ratio. Rapid material deterioration.
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Fig. 11 Dispersion of the collapse capacity for 64 frames with T1 ¼ 3:50 s plotted against the number of
stories and the negative post-yield stiffness ratio. a IM SaðT1Þ, b IM IMopt, c dispersion ratio. Rapid material

deterioration. FEMA-P695-FF set
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Subsequently, the sufficiency of the evaluated IMs at collapse capacity is examined for

the testbed structures subjected to FEMA P-695-FF ground motions. Sufficiency is

examined against several ground motion parameters, such as earthquake magnitude, Mw,

and the Joyner-Boore distance RJB. As discussed in Kazantzi and Vamvatsikos (2015a), in

the collapse limit state of a structure it is advantageous to check the sufficiency based on

the IM given EDP. Consequently, this study relies on a standard linear regression of the

natural logarithm of the collapse capacities, lnCCi, with the considered ground motion

parameters according to (e.g., Eads et al. 2015),

E½lnCCijMw ¼ x� ¼ a1 þ b1x; E½lnCCijRjb ¼ y� ¼ a2 þ b2y ð11Þ

where x (y) is the value of Mw (RJB), a1 (a2) and b1 (b2) are the regression coefficients, and

E½lnCCijMw ¼ x� (E½lnCCijRjb ¼ y�) is the expected value of lnCCi given x (y). For each

IM and each structural configuration slopes b1 and b2 are identified. In the present study, a

hypothesis test is conducted, applying the null hypothesis that b1ðb2Þ ¼ 0 (i.e., the

expected value of lnCCi does not depend on x (y)). The decision about whether the null

hypothesis can be rejected at some predefined significance level is based on the so-called

0.0

0.1

0.2

0.3

0.4

0.5

1 3 6 9 12 15 18

θi - αS = 0.03
T1 = 3.5 s

di
sp

er
si

on
 β

number of stories N(a)
1 3 6 9 12 15 18

θi - αS = 0.10
T1 = 3.5 s

number of stories N(b)
1 3 6 9 12 15 18

θi - αS = 0.20
T1 = 3.5 s

number of stories N(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.03 0.06 0.1 0.2 0.3 0.4

di
sp

er
si

on
 β

T1 = 3.5 s
N = 1

neg. post-yield stiffness ratio θi - αS(d)
0.03 0.06 0.1 0.2 0.3 0.4

T1 = 3.5 s
N = 9

neg. post-yield stiffness ratio θi - αS(e)
0.03 0.06 0.1 0.2 0.3 0.4

T1 = 3.5 s
N = 18

neg. post-yield stiffness ratio θi - αS(f)

0.0

0.1

0.2

0.3

0.4

0.5

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Sa(T1)
Sa(T1PΔ)
Sa,gm(T1,1.6T1)

Sa,gm(0.2T1,1.6T1)
IMopt

di
sp

er
si

on
 β

θi - αS = 0.20
N = 1

(g) fundamental period T1 [s] 
0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0

θi - αS = 0.20
N = 9

(h) fundamental period T1 [s] 

FEMA P-695-FF set
rapid material
deterioration

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0

θi - αS = 0.20
N = 18

(i) fundamental period T1 [s] 

Fig. 12 Dispersion of the collapse capacity for nine frame sets with parameters as specified. Rapid material

deterioration. Benchmark IM SaðT1Þ, IM SaðTPD
1 Þ, one IM considering period elongation, on IM considering

both period elongation and higher mode effects as specified, and ‘‘optimal’’ IM IMopt. LMSR-N record set
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p value. The p-value is the probability of observing a b1ðb2Þ value at least as large as the

b1ðb2Þ value found by the regression given that the true value of b1ðb2Þ equals 0. Here, a

5% significance value is utilized to judge the sufficiency of the IMs (Eads et al. 2015;

Tsantaki et al. 2017). This means that a p-value less than 0.05 leads to a rejection of the

null hypothesis, and the IM is deemed not sufficient with respect to the ground motion

parameter of interest (Eads et al. 2015). However, a non-rejection of the null hypothesis is

not equivalent to an acceptance of it. Recently Kazantzi and Vamvatsikos (2015a) con-

ducted a more elaborated sufficiency study on IMs based on the geometric mean concept.

Tables 3 and 4 summarize the results of the sufficiency evaluations of the 2048 ana-

lyzed P-delta vulnerable generic frame structures for different material deterioration levels.

In Table 3 for each considered IM the percentage of structures with p-values greater or

equal 0.05 for the relationship of the collapse intensity and magnitude Mw is presented. It is

observed that for IMs SaðT1Þ, SaðTPD
1 Þ, and IMopt at least 91% of the structures exhibit p

values � 0.05, suggesting that these IMs are sufficient with respect to the earthquake

magnitude Mw. It is furthermore indicated that the sufficiency performance of IM

Sa;gmðT1; 1:6T1Þ is less satisfactory, because only 84% of the frames exhibiting rapid

material deterioration pass the test. The results summarized in Table 4 show that also

sufficiency of all studied IMs with respect to the Joyner-Boore distance is indicated.

8 Conclusions

This research proposes an ‘‘optimized’’ average spectral acceleration based intensity

measure (IM) for P-delta vulnerable frames, which leads to the smallest RTR collapse

capacity dispersion. The optimized IM, IMopt, includes for first time a flexible lower limit

Table 3 Percentage of structures with p values � 0.05 for the relationship between collapse capacity and
magnitude Mw based on IMs as specified. FEMA-P695-FF ground motion set

Material deterioration No. of frames % of frames with p values � 0.05

IM SaðT1Þ IM SaðTPD
1 Þ IM Sa;gmðT1; 1:6T1Þ IMopt

No 512 97 97 95 96

Slow 512 96 96 88 96

Medium 512 93 94 87 94

Rapid 512 91 94 84 91

Table 4 Percentage of structures with p values � 0.05 for the relationship between collapse capacity and
distance Rjb based on IMs as specified. FEMA-P695-FF ground motion set

Material deterioration No. of frames % of frames with p values � 0.05

IM SaðT1Þ IM SaðTPD
1 Þ IM Sa;gmðT1; 1:6T1Þ IMopt

No 512 94 95 99 96

Slow 512 94 96 94 97

Medium 512 95 96 97 97

Rapid 512 96 97 93 98
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for the period interval in which the average spectral pseudo-acceleration, Sa;gm, is com-

puted. A parametric study has been carried out considering a set of 2048 generic moment

resisting frames subjected to two ground motion sets to account for the effect of record-to-

record (RTR) variability on collapse capacity uncertainty. Several ‘‘average’’ IMs based on

the geometric mean of Sa;gm over a certain period interval are evaluated. These average IMs

have different lower and upper bounds for the period interval. The lower bound is usually

smaller than the fundamental period of vibration (T1) to account for the influence of higher

modes, and the upper bound is larger than T1 to consider period elongation due to structural

nonlinear behavior. However, the use of a fixed lower bound (e.g. 0.2 T1) increases the

dispersion of systems in which higher mode effects are smaller, or nonexistent, like SDOF

systems. The IMopt flexible lower bound period corresponds to the structural period

associated with the exceedance of 95% of the cumulative effective modal mass. The

efficiency of the evaluated IMs to reduce collapse capacity dispersion due to RTR vari-

ability, and their sufficiency with respect to ground motion parameters is compared to two

single target spectral IMs: the 5% damped spectral pseudo-acceleration SaðT1Þ and SaðTPD
1 Þ

at the elastic fundamental period with and without consideration of gravity loads, T1 and

TPD
1 , respectively. The following conclusions can be drawn:

• The ‘‘optimal’’ upper bound of the period interval for the geometric mean IM is about

1.6 times the system period without consideration of gravity loads. The period

elongation is a result of large inelastic deformations and gravity loads. This upper

bound applies to one-story and multi-story systems.

• For SDOF systems the ‘‘optimal’’ lower bound of the period interval corresponds

precisely to the SDOF period of vibration. In multi-story structures, however, a lower

bound period interval shorter than T1 (e.g. 0.2T1, 0.4T1) increases the IM efficiency

because higher mode effects are taken into account.

• Consequently, an ‘‘optimal’’ IM, IMopt, is defined based on a flexible lower bound

period corresponding to the structural period associated with the exceedance of 95% of

the total effective mass: IMopt ¼ Sa;gmðT0:95M; 1:6T1Þ. This allows a consistent

representation of an IM, both ‘‘optimal’’ for SDOF and MDOF systems.

• ‘‘Average’’ IMs with a period interval that only considers higher mode effects (no

period elongation) increases the collapse capacity dispersion.

• For material non-deteriorating systems IMopt is on average about 20% more efficient

than the traditional benchmark IM SaðT1Þ. For structures subjected to material

deterioration the efficiency of IMopt increases on average up to 30%.

• For non-deteriorating systems with a small negative stiffness ratio hi � aS ¼ 0:03 the

efficiency enhancement of IM IMopt compared to IM SaðT1Þ is minor.

• A larger hi � aS and the consideration of material deterioration reduce the collapse

capacity dispersion. In both cases, the systems become more prone to collapse and less

dependent on RTR variability.

• Analyses based on IMs SaðT1Þ and IMopt show that the collapse capacity dispersion due

to RTR variability increases with a longer fundamental period.

• As the number of stories increases, the collapse capacity dispersion increases due to the

contribution of the higher modes.

• For material non-deteriorating frames and the FEMA-P695-FF record set, IMopt

exhibits a bandwidth of dispersion between 0.092 (T ¼ 3:0 s, N ¼ 1, hi � aS ¼ 0:4)

and 0.78 (T ¼ 4:0 s, N ¼ 18, hi � aS ¼ 0:03). In the case of the single-target IM
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SaðT1Þ, the dispersion limits are between 0.26 (T ¼ 0:5 s, N ¼ 9, hi � aS ¼ 0:3) and

0.82 (T ¼ 4:0 s, N ¼ 18, hi � aS ¼ 0:03).

• For material deteriorating frames and the FEMA-P695-FF record set, IMopt exhibits a

bandwidth of dispersion between 0.095 (T ¼ 3:0s,N ¼ 1,hi � aS ¼ 0:4) and 0.37

(T ¼ 2:0 s, N ¼ 18, hi � aS ¼ 0:03). For IM SaðT1Þ the dispersion is between 0.25

(T ¼ 4:0 s, N ¼ 1, hi � aS ¼ 0:03) and 0.44 (T ¼ 4:0s, N ¼ 20, hi � aS ¼ 0:03).

• Magnitude of trends of the collapse capacity dispersion and its efficiency with respect

to the characteristic structural parameters was confirmed utilizing two different ground

motion sets with similar far-field ground motion characteristics. Then, the results of this

study need to be corroborated for records with other characteristics, such as near-field

and long-duration records.

• The ‘‘optimal’’ IMopt and benchmark IM SaðT1Þ meet the sufficiency criterion, and are

adequate to compute the collapse limit state of the considered structures.

The results and conclusions of this study are valid only for P-delta vulnerable hysteretic

systems, where the post-capping range of deformation is not attained.
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