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Abstract The study evaluates two alternative seismic intensity measures (IMs) that

reduce the collapse capacity dispersion of inelastic non-degrading single-degree-of-free-

dom (SDOF) systems vulnerable to the P-delta effect. This dispersion of collapse capacity

is caused by record-to-record variability, which refers to frequency content variation of the

ground motions used in the dynamic analyses. This reduction (of dispersion) is achieved

utilizing efficient elastic pseudo-spectral acceleration based IMs. The first set of evaluated

IMs is based on the spectral pseudo-acceleration averaged in a certain period interval

between the structural period and an elongated period. The ‘‘optimal’’ lower bound of the

period interval corresponds to the structural period of vibration, since naturally in an SDOF

system no higher modes effects do exist. The ‘‘optimal’’ upper bound of the period interval

for averaging, referred to as elongated period, is found to be 1.6 times the system period.

The second IM considered in the study is the 5 % damped spectral pseudo-acceleration at

the system period in the presence of gravity loads, which is a single target IM. The most

widely accepted IM, the 5 % damped pseudo-spectral acceleration at the system period

without P-delta, serves as the benchmark IM. The results show that both proposed IMs lead

to a reduction of the collapse capacity dispersion compared to the benchmark IM out-

comes. The IM based on the averaged spectral acceleration of the ‘‘optimal’’ period

interval is more efficient up to a negative post-yield stiffness ratio of 0.45, while the single

target IM based on the system period in the presence of gravity loads is superior for

extreme negative post-yield stiffness ratios larger than 0.45. Additionally, the sufficiency

and the scaling robustness property of the considered IMs with respect to the natural

logarithm of the record-dependent individual collapse capacities is discussed for a wide

range of structural configurations.
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1 Introduction

The second generation of performance-based earthquake engineering (PBEE) method-

ologies (FEMA P-58-1 2012; FEMA P-695 2009) considers the inherent uncertainties in

response prediction within a probabilistic framework. The variance on the seismic struc-

tural response depends on several factors such as the selected set of earthquake ground

motions, the type of structure (e.g., mass and stiffness regularity), the considered response

quantity, and the choice of the intensity measure (IM). In this paper, efficient IMs are

evaluated to reduce the collapse capacity dispersion, due to record-to-record (RTR) vari-

ability, of highly inelastic non-deteriorating single-degree-of-freedom (SDOF) systems

vulnerable to second-order effects.

Fundamental studies of the P-delta effect on inelastic SDOF systems subjected to

earthquakes have been presented, for instance, by Husid (1967), Bernal (1987), and

MacRae (1994). More recently, in the research group of the authors (Adam and Jäger

2012a; Jäger and Adam 2013) collapse capacity of P-delta sensitive SDOF systems has

been assessed for a set of characteristic structural parameters. In Adam and Jäger (2012a)

and Tsantaki et al. (2015) the presentation of the collapse capacity and its dispersion has

been referred to as collapse capacity spectra, providing a compact and easily applicable

tool for the practicing engineer.

The ground motion uncertainty is represented by one parameter or a vector of a few

parameters related to a set of appropriately selected earthquake records, referred to as IM

(Jalayer et al. 2012). The IM is the interface between seismology and earthquake engi-

neering (Baker 2007). It quantifies the severity of a seismic event, and it serves as a scale

factor for non-linear dynamic analysis. Since there is no unique definition of intensity of an

earthquake record, several IMs have been proposed. They can be classified into (a) elastic

ground motion based scalar IMs (Adam and Jäger 2012b), such as peak ground acceler-

ation (PGA), peak ground velocity (PGV) and peak ground displacement (PGD); (b) elastic

and inelastic spectral based IMs such as spectral acceleration and spectral displacement at

the fundamental period of the structure, as well as spectral values related to higher modes

effect or period elongation (Cordova et al. 2001; Haselton and Baker 2006; Luco and

Cornell 2007; Bianchini et al. 2009; Kadas et al. 2011; Cantagallo et al. 2012; Vamvatsikos

and Cornell 2005; Bojorquez and Iervolino 2011); and (c) vector valued IMs (e.g., Baker

and Cornell 2005; Vamvatsikos and Cornell 2005). Currently, the most widely accepted IM

is the 5 % damped pseudo-spectral acceleration at the (fundamental) period of the struc-

ture, which serves in the present study as the benchmark IM.

Although many advanced IMs have been proposed, there are still a few limitations, such

as the derivation of attenuation relations, the selection of the spectral values in case of

higher modes and period elongation incorporation, their validation for several structural

systems, etc. Based on information theory concepts, Jalayer et al. (2012) quantified the

suitability of commonly used IMs against some others. The importance of the spectral

shape consideration has been clearly demonstrated by Baker and Cornell (2006). Haselton

(2009) evaluated several ground motion selection and modification methods utilizing a

point of comparison methodology, and O’Donnell et al. (2013) investigated both
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experimental and analytical scaling methods for elastic systems. However, most of these

studies did not address the collapse limit state, and were mainly focused on the efficiency

of the considered IMs. The properties of sufficiency, scaling robustness and hazard

computability have been studied by Shome and Cornell (1999), Luco and Cornell (2007),

Bianchini et al. (2009), and Bojorquez and Iervolino (2011), among others.

In the present study, a slightly modified version of an IM proposed by Bianchini et al.

(2009) is employed, based on the geometric mean of the pseudo-spectral acceleration over

a certain period interval that yields the smallest dispersion of the collapse capacities. A

preliminary study of Tsantaki and Adam (2013) showed that for the considered P-delta

vulnerable SDOF systems this IM satisfies better the property of efficiency, compared with

outcomes of benchmark studies (Adam and Jäger 2012a; Jäger and Adam 2013), where the

5 % damped spectral pseudo-acceleration at the structural period has been used as IM.

Eads et al. (2015) evaluated the efficiency and sufficiency of a similar IM for collapse

prediction using almost 700 moment-resisting frame and shear wall structures. Also,

Kazantzi and Vamvatsikos (2015) compared the effectiveness of several IMs based on the

geometric mean concept superposing the spectral acceleration read at different logarith-

mically and linearly equally spaced periods. Lin et al. (2013a, b) demonstrated the

importance of the conditioning period for the conditional spectrum in an intensity-based

assessment, in contrast to a risk-based assessment.

The averaged period intervals depend on certain structural parameters, and system’s

level of inelasticity. Several codes and standards provide recommendations for the elon-

gated period and higher mode effect intervals. For example, spectral matching period

intervals of 0.2 to 2.0 T (Eurocode 8 2004), 0.4 to 1.5 T (NZSEE 2006) and 0.2 to

1.5 T (ASCE/SEI 41-13 2014) are proposed, with T denoting the fundamental period of

vibration. Recently, Katsanos et al. (2012) suggested to reduce the period interval specified

in Eurocode 8 (i.e., 0.2T\T\ 1.5 T), at least for new buildings designed for low or

moderate levels of ductility and low-to-medium stiffness degradation. Moreover, period

elongation has been investigated numerically (Katsanos et al. 2012), as well as experi-

mentally by testing full-scale models (Pinho and Elnashai 2000; Zembaty et al. 2006) and

conducting response measurements of instrumented buildings (Mucciarelli et al. 2004;

Clinton et al. 2006; Mucciarelli et al. 2012). However, most of the proposed code-bounds

of the period intervals are based on expert elicitation, without referring to specific research

studies. Thus, Sect. 3 presents a parametric study aimed to derive an ‘‘optimal’’ upper

period bound that leads to the smallest collapse capacity dispersion of P-delta vulnerable

SDOF systems. Subsequently, in Sect. 4 a single target IM is introduced for the collapse

capacity assessment of P-delta vulnerable non-deteriorating SDOF systems. This IM is the

5 % damped pseudo-acceleration at the period of vibration in the presence of gravity loads,

TPD
SDOF and referred to as ‘‘P-delta’’ IM, SaðTPD

SDOFÞ. A comparison of the efficiency property

of the utilized IMs is provided in Sect. 5, followed by a comparison of the sufficiency and

scaling robustness property in Sect. 6.

2 Definitions and framework

2.1 P-delta effect on an inelastic SDOF system

In an inelastic SDOF system the gravity load generates a shear deformation of its hysteretic

force–displacement relationship. Characteristic displacements (such as the yield dis-

placement xy) of this relationship remain unchanged, whereas the characteristic forces
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(such as the strength fy) are reduced. As a result, the slope of elastic and post-elastic branch

of deformation is decreased. The magnitude of this reduction can be expressed by means of

the stability coefficient h (MacRae 1994). The parameter h is a function of the gravity load

P, geometry, and stiffness. Based on an inverted mechanical pendulum of length h and

rotational base spring stiffness kr (Fig. 1a), the stability coefficient is (Adam and Jäger

2012a)

h ¼ Ph

kr
; P ¼ #W ð1Þ

where W is the effective seismic weight, and # = (live load ? dead load)/dead load.

Figure 1 shows the P-delta effect on the non-dimensional hysteretic behavior of a SDOF

system with non-deteriorating bilinear characteristics. In this example, the post-yield

stiffness is negative, because the stability coefficient h is larger than the hardening ratio a.
A negative slope of the post-yield stiffness; i.e., h - a[ 0, is a necessary condition for

structural collapse under severe earthquakes. Adam and Jäger (2012a) showed that collapse

of inelastic SDOF systems vulnerable to P-delta is mainly governed by the following

parameters:

• the negative slope of the post-yield stiffness expressed by h - a,
• the elastic structural period of vibration TSDOF,
• the viscous damping coefficient f (usually 5 %), and

• the shape of the hysteretic loop.

In this paper SDOF systems with bilinear hysteretic behavior (Fig. 1b) are studied,

considering a wide range of system configurations for various values of TSDOF, h - a,
and f.

2.2 Collapse capacity variability

Collapse capacity is defined as the maximum ground motion intensity at which the

structure still maintains dynamic stability (Krawinkler et al. 2009). An Incremental

Dynamic Analysis (IDA) is commonly used to predict collapse capacity, and consists of a

m
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xy
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Fig. 1 a P-delta vulnerable SDOF system. b Normalized bilinear cyclic behavior with and without
destabilizing effect of gravity loads (modified from Adam and Jäger 2012a)
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series of time history analyses in which the intensity of the ground motion record is

monotonically increased (Vamvatsikos and Cornell 2002). In IDA curves, the IM is plotted

against an engineering demand parameter (e.g., roof drift), until this parameter grows

unbounded, indicating structural failure. The corresponding IM is referred to as collapse

capacity of the considered structure.

When the IM is an acceleration quantity such as the PGA, or the 5 % spectral pseudo-

acceleration at a target period of the structure, it is beneficial to relate the IM at collapse to

the product of the base shear coefficient at onset of yield, c, and acceleration gravity, g,

CCijIM¼
IMijcollapse

gc
; c ¼ fy

mg
ð2Þ

In this equation, fy is the yield strength, andm themassof theSDOFsystem.CCijIM is the relative

collapse capacity of the considered SDOF system subjected to the ith ground motion record.

Since RTR variability leads to different collapse capacities for different ground motion

records, the collapse capacities are determined for all records of the considered ground

motion set, and evaluated statistically. Shome and Cornell (1999) and Ibarra and

Krawinkler (2005, 2011) provide good arguments for representing a set of collapse

capacities by a log-normal distribution. The log-normal distribution of the individual

collapse capacities, CCj, can be characterized by the median, the 16th, and 84th percentiles

of the collapse capacities denoted as CC, CCP16, and CCP84, respectively. In the following,

the dispersion quantity s� (Adam and Jäger 2012a)

s� ¼ ln
ffiffiffiffiffiffiffi

susl
p

; su ¼
CCP84

CC
; sl ¼

CC

CCP16

ð3Þ

is utilized as a representative measure of the variability of the individual collapse capac-

ities. In the log-domain s� is related to the standard deviation: r & s� (Limpert et al.

2001).

In this study, ground motion induced uncertainties are computed employing the 44 far-

field ground motions of the FEMA P-695 far-field record set (FEMA P-695 2009), referred

to as FEMA P-695-FF, and also known as PEER-NGA-FF and ATC63-FF. The records of

the PEER- FEMA P-695-FF set originate from severe seismic events of magnitude

between 6.5 and 7.6, and closest distance to the fault rupture larger than 10 km. Only

strike-slip and reverse sources are considered. The 44 records were recorded on NEHRP

site classes C (soft rock) and D (stiff soil).

Exemplarily, Fig. 2 shows record dependent collapse capacity spectra based on the con-

ventional IM SaðTSDOFÞ for an SDOF system subjected to the FEMAP-695-FF record set. The

SDOF system consists of a bilinear hysteretic loop, h - a = 0.20 and f = 0.05. Black lines

with circle markers represent the corresponding 16th, 50th, and 84th percentile spectra.

2.3 Evaluated intensity measures

In Sects. 3, 4, and 5 of this paper the efficiency of the following three IMs is evaluated with

respect to the collapse capacity dispersion attributed to RTR variability:

• the benchmark IM, SaðTSDOFÞ; i.e., the 5 % damped pseudo-acceleration at the period

of vibration TSDOF,

• a set of ‘‘averaged’’ IMs, abbreviated by Sa,gm, where the 5 % damped pseudo-

acceleration is averaged in a certain period interval, taking into account the period

elongation due to the presence of gravity loads and inelastic deformations, and
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• a single target IM, referred to as ‘‘P-delta’’ IM, SaðTPD
SDOFÞ; i.e., the 5 % damped

pseudo-acceleration at the period of vibration in the presence of gravity loads, TPD
SDOF .

This IM is introduced, because in the presence of gravity loads the initial period of

vibration of an SDOF system, TSDOF, is elongated by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð1� hÞ
p

: TPD
SDOF ¼

TSDOF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð1� hÞ
p

.

According to Bianchini et al. (2009) an appropriate IM should comply with three

additional characteristics:

• Hazard computability; i.e., the IM quantifies appropriately the ground motion hazard at

the site. The single target spectral pseudo-acceleration based IMs, SaðTSDOFÞ and

SaðTPD
SDOFÞ, fulfill this property since attenuation relationships that describe the

probability distribution of spectral pseudo-accelerations at single target periods are

widely available. Seismic hazard analysis for the averaged IMs Sa,gm can also be

applied based on correlation equations between spectral accelerations at multiple

periods derived by Baker and Jayaram (2008).

• Sufficiency; i.e., the IM is conditionally statistically independent of ground motion

characteristics such as magnitude, distance, and epsilon, among others.

• Scaling robustness; i.e., the independence of IMs from scaling factors.

The sufficiency and the scaling robustness property of the utilized IMs is further dis-

cussed in Sect. 6.

3 Averaged intensity measure

3.1 Definition

In the present study, a slightly modified form of an averaged IM as defined in Bianchini

et al. (2009) is implemented. This averaged IM is based on the geometric mean of the 5 %

damped spectral pseudo-accelerations Sa over the period interval DT,

Fig. 2 FEMA P-695-FF 44 record dependent collapse capacity spectra (grey lines) based on the
conventional IM Sa(TSDOF), corresponding statistical spectra (black lines with circle markers), and smooth
empirical approximations (red lines)
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DT ¼ Tn � T1 ; Tn [ T1 ð4Þ

between a lower bound period T1 and an elongated upper bound period Tn larger than T1. In

contrast to Bianchini et al. (2009), where Sa is discretized at 10 log-spaced periods within

DT, in the present study Sa is discretized at equally spaced periods Ti within DT,

Ti ¼ T1 þ i� 1ð ÞdT ; i ¼ 1; . . .; n; dT ¼ DT
n� 1

¼ Tn � T1

n� 1
ð5Þ

The discrete values of Sa(Ti) (i = 1, …, n) are combined as proposed in Bianchini et al.

(2009):

Sa;gmðT1; TnÞ ¼
Y

n

i¼1

SaðTiÞ
 !1=n

ð6Þ

Ti is the ith period in the set of n periods T1, …, Ti, …, Tn, and in general, it does not

coincide with a system period.

3.2 Sets of averaged intensity measures

The effect of various spectral-averaged IMs Sa,gm such as Sa;gmðT1 ¼ TSDOF ; Tn [TSDOFÞ,
Sa;gmðT1\TSDOF ; Tn ¼ TSDOFÞ and Sa;gmðT1\TSDOF ; Tn [TSDOFÞ on the collapse capacity
dispersion s� is evaluated, and compared with the benchmark IM SaðTSDOFÞ. Note that all

Sa,gm based IMs are equivalent to the conventional IM SaðTSDOFÞ for DT equal to 0. For the

analyses presented in this section, the SDOF systems have a bilinear cyclic behavior and

viscous damping f of 5 %, unless otherwise indicated.

The first set of averaged IMs Sa;gmðT1 ¼ TSDOF; Tn [ T1Þ � Sa;gmðTSDOF; TnÞ has a

lower bound period T1 ¼ TSDOF , and an upper bound period Tn ¼ TSDOF þ DT , which
varies with the selected intervals DT of 0.4 s, 0.6 s, 0.8 s, 1.0 s, 1.2 s, and 1.4 s. The

considered SDOF systems exhibit a negative post-yield stiffness ratio of h - a = 0.20,

and system periods in the range 0\TSDOF � 5:0 s, equally spaced at increments of 0.1 s.

The collapse capacity is calculated at each discrete period TSDOF for all FEMA P-695-FF

ground motions using an IDA approach, and the dispersion measure s� is evaluated using

Eq. 3. This dispersion s� is plotted in Fig. 3 as a function of TSDOF. The red solid line

corresponds to s� for the original base case study using the conventional IM Sa(TSDOF), as

presented in Adam and Jäger (2012a). Black lines represent outcomes utilizing the aver-

aged IM Sa,gm(TSDOF, Tn) for various period intervals DT. As observed, the conventional

IM renders the smallest dispersion for very stiff systems, up to a period TSDOF = 0.22 s.

As discussed in Jäger and Adam (2013), collapse capacity of a rigid system (TSDOF = 0)

does not exhibit aleatory uncertainty; i.e. s� = 0, when using the spectral acceleration at

TSDOF as IM. However, the conventional IM leads to the largest dispersion for flexible

systems with TSDOF[ 0.8 s. For larger TSDOF the Sa,gm(TSDOF, Tn) IM is more efficient,

and leads to smaller s� values. For systems with periods 0:22 s� TSDOF � 0:9 s the IM

based on interval DT = 0.4 s leads to the smallest dispersion. For more flexible systems

with TSDOF[ 1.58 s, the parameter s� is smallest for the IM with DT = 1.4 s., although

the difference between the outcomes based on DT = 1.2 s and DT = 1.4 s is negligible.

Note that for the considered SDOF systems the largest efficiency of the spectral averaged

IM is for systems with periods 2:6 s�TSDOF � 2:9 s, where the reduction of s� is more than

55 %, compared to the outcome using the conventional IM.
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The study is extended considering a series of negative post-yield stiffness ratios h - a
and additional intervals DT to find a general trend for the effect of the Sa,gm(TSDOF, Tn)

averaged IM on s�. The following values of h - a and DT values are assigned to the SDOF

systems: h - a = 0.04, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80; and DT = 1.8 s,

2.4 s, 3.0 s, and 4.0 s. The mean Eh�a½s�� of s� for each negative post-yield stiffness ratio

h - a at a certain period TSDOF is determined as

Eh�a½s�� ¼
1

10

X

10

k¼1

s� ðh� aÞk
� �

In Fig. 4, Eh�a½s�� is plotted against TSDOF for each IM (with different DT) separately.
The solid line in red corresponds to Eh�a½s�� based on the conventional IM Sa(TSDOF),

whereas lines in black and blue represent the mean dispersion for different intervals DT of

the IM Sa;gmðTSDOF; TnÞ. These results confirm the findings of Fig. 3. Except for very stiff

structures, the conventional IM leads to a mean dispersion Eh�a½s�� of the collapse capacity
of about 0.37, while Eh�a½s�� based on Sa,gm exhibits an average minimum of about 0.23,

when considering only the most efficient period intervals DT at different periods TSDOF.

Therefore, an averaged IM Sa;gmðTSDOF ; TnÞ can reduce the collapse capacity dispersion

caused by RTR variability.

Additionally, for IMs Sa;gmðTSDOF ; TnÞ (0�DT � 1:4 s) the mean of dispersion s�, read
at 53 discrete periods TSDOF;j (j ¼ 1; 2; . . .; 53) in the range 0:001 s�TSDOF;j � 5 s),

ETSDOF ½s�� ¼
1

53

X

53

j¼1

s�ðTSDOF;jÞ

is determined at each discrete negative post-yield stiffness ratio h - a. Figure 5 displays

ETSDOF ½s�� as a function of h - a. In this representation, the conventional IM (i.e., DT = 0)

leads to the poorest performance in the entire range of h - a. For small h - a
(h� a\0:10) the reduction of ETSDOF ½s�� based on Sa;gmðTSDOF; TnÞ is small compared to

that obtained for larger h� a (h� a[ 0:10). These trends, as well as the increase of

ETSDOF ½s�� as h - a becomes larger than 0.40, will be discussed further in Sect. 6.

Fig. 3 Dispersion measure s� of the collapse capacity. IM: Sa;gmðTSDOF ; TnÞ with various intervals DT C 0.

Negative post-yield stiffness ratios h - a = 0.20
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For SDOF systems the collapse capacity dispersion cannot be reduced by averaging the

pseudo-acceleration for periods smaller than TSDOF because of the lack of higher mode

effects. For the sake of completeness, however, s* is quantified assuming that the lower

bound period T1 of interval DT is smaller than the system period; i.e., T1\TSDOF, and the

upper bound period Tn = TSDOF. The corresponding set of IMs is Sa;gmðT1\TSDOF ; Tn ¼
TSDOFÞ referred to as Sa;gmðT1; TSDOFÞ. As shown in Fig. 6, the use of averaged IM Sa,gm in

which T1\TSDOF leads to a larger collapse capacity variability compared to that obtained

from the conventional IM Sa(TSDOF).

As expected, the use of sets of IMs Sa;gmðT1\TSDOF; Tn [ TSDOFÞ � Sa;gmðT1; TnÞ, such
as Sa;gmð0:2TSDOF; 1:6TSDOFÞ, leads to larger collapse capacity dispersions compared to

those based on IM Sa;gmðTSDOF; 1:6TSDOFÞ, as shown in Fig. 7. The use of IM

Sa;gmðTSDOF ; 1:6TSDOFÞ leads to the smallest s* for most periods. Also, the use of an IM

Fig. 4 Mean values of the dispersion measure s� with respect to the considered post-yield stiffness ratios
h - a. IM: Sa;gmðTSDOF ; TnÞ with various intervals DT C 0

Fig. 5 Mean values of the dispersion measure s� with respect to the considered structural periods TSDOF as
a function of the post-yield stiffness ratio h - a. IM: Sa;gmðTSDOF ;TnÞ with various intervals DT C 0
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with the period interval DT below the system period (T1 = 0.2TSDOF and Tn = TSDOF)

performs poor with respect to s*, except for very stiff systems.

3.3 ‘‘Optimal’’ averaged intensity measure

Based on the above results, an extensive parametric IDA study has been carried out to

identify the upper bound period limit Tn ¼ TSDOF þ DT [TSDOF that leads to the ‘‘opti-

mal’’ (i.e., the minimum) dispersion s� of collapse capacities.

According to Fig. 4, there is no ‘‘optimal’’ IM with constant DT for the entire range of

system periods, because the ‘‘optimal’’ interval DT is a function of TSDOF. That is, the

larger the elastic period TSDOF becomes, the larger the elongated inelastic period, and

consequently, the larger is the required DT to render the minimum achievable dispersion

measure s*. To obtain a relation between TSDOF and the ‘‘optimal’’ interval DTopt
(mins� ! DTopt), the dispersion measure s* is determined as a function of DT for discrete

system periods. Figure 8 shows the mean dispersion Eh�a½s�� for nine system periods

(TSDOF = 0.2, 0.5, 0.7, 1.0, 1.5, 2.1, 3.0, 4.0, and 5.0 s) plotted against interval DT of the

averaged IM Sa;gmðT1 ¼ TSDOF ; Tn [ TSDOFÞ and the conventional IM Sa(TSDOF) (i.e.,

DT = 0). Eh�a½s�� is determined comprising the complete set of considered post-yield

stiffness ratios h - a (i.e., 0.04, 0.06, 0.08, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80).

(a) (b)

Fig. 6 Dispersion measure s* of the collapse capacity. IMs: SaðTSDOFÞ; Sa;gmðT1; TSDOFÞ. Negative post-

yield stiffness ratio a h� a ¼ 0:20, b h - a = 0.40

(a) (b)

Fig. 7 Dispersion measure s* of the collapse capacity. Various intensity measures. Negative post-yield
stiffness ratio a h - a = 0.20, b h - a = 0.40
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Alternatively, only the collapse capacities for h - a in the range of 0:08� h� a� 0:40
(referred to as ‘‘most common’’ h - a) are used to calculate the mean dispersion measure

Eh�a½s��. In the latter set of h - a, extreme (unlikely) values, which might distort the

general trend of the response behavior, are excluded. Exemplarily for a system with

TSDOF = 1.5 s, Fig. 9 shows both the dispersion s* for each discrete h - a value and the

corresponding Eh�a½s�� values. It can be observed that the trend of the dispersion for

systems with an extremely large negative post-yield stiffness ratio of h - a = 0.80 is very

different from the other depicted cases. The results of Fig. 8 confirm that the ‘‘optimal’’

interval DTopt strongly depends on the system period TSDOF, and that the optimal interval

DTopt becomes larger with increasing TSDOF. In all the plots of Fig. 8, the interval DTopt
that leads to the minimum mean dispersion is specified. For example, for TSDOF = 1.0 s

the minimum mean dispersion is 0.21 (all h - a), compared to 0.38 for the benchmark IM

(i.e., DT = 0). For the minimum mean Eh�a½s�� the corresponding DTopt is about 0.8 s. The

ratio eopt between the ‘‘optimal’’ upper bound period Tn;opt ¼ TSDOF þ DTopt and period

T1 ¼ TSDOF is

eopt ¼
Tn;opt

TSDOF
ð7Þ

This ratio eopt lies between 1.4 and 2.0 for all the evaluated periods.

Figure 10 shows ratio eopt as a function of TSDOF for three stiffness ratios h - a of 0.10,

0.20 and 0.40, and for the mean of s* with respect to these h - a values. As observed, for

rigid SDOF systems eopt is 1, because the dispersion is 0 when using the benchmark IM

Fig. 8 Mean values of dispersion s* with respect to the negative post-yield stiffness ratios h - a as a
function of period interval DT for nine discrete structural periods TSDOF. Black curves: mean from all
considered discrete values of h - a. Blue curves: mean from discrete values of h - a in the range of
0.08 B h - a B 0.40. Intensity measure Sa,gm(TSDOF, Tn) with various intervals DT C 0
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Fig. 9 Dispersion measure s* for various negative post-yield stiffness ratios h - a as a function of period
interval DT. Black graph: mean from all considered discrete values of h - a. Blue graph: mean from
discrete values of h - a in the range of 0.08 B h - a B 0.40. Intensity measure Sa,gm(TSDOF, Tn) with
various intervals DT C 0

(a) (b)

(c) (d)

Fig. 10 Ratio eopt of the ‘‘optimal’’ elongated period Tn,opt and the system period TSDOF leading to the
minimum dispersion s*. Viscous damping f = 0, 2, and 5 %. a–c Ratios for individual negative post-yield
stiffness ratios as specified, d ratios based on Eh�a½s��
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Sa(TSDOF) (Jäger and Adam 2013). Then follows a sharp rise of eopt for stiff systems with

TSDOF\ 0.5 s. In this period range eopt can be larger than 2. For periods TSDOF[ 0.8 s, eopt
fluctuates around 1.6. For smaller values of h - a the fluctuation of eopt around 1.6 is

larger. The mean of s*with respect to outcomes for different h - a values exhibits the same

global behavior. Figure 10 reveals that the impact of h - a on eopt is insignificant. In

addition to the evaluation of 5 % damped SDOF systems, Fig. 10d also presents results for

undamped and 2 % damped systems. As can be seen, the fluctuation around 1.6 is

preserved.

Figure 11 compares the dispersion measure s* that corresponds to the optimal period

interval DTopt (and thus to Tn,opt and to eopt) to the dispersion obtained from the benchmark

IM Sa(TSDOF) for the same systems. According to Fig. 11d the mean Eh�a½s�� is on average

about 0.23 for the entire period interval TSDOF. This value remains the same considering

the complete set of h - a and, alternatively, the set including the ‘‘most common’’ h - a.
The mean dispersion of collapse capacities based on the benchmark IM Sa(TSDOF); i.e.,

Eh�a½s��, is on average about 0.37, which is about 60 % larger than the dispersion based on

DTopt, proving the superiority of the averaged IM Sa,gm in reducing the effect of RTR

variability on the collapse capacity dispersion. Furthermore, the results of Fig. 11 show

that, not only the ratio eopt, but also the dispersion measure s* is globally unaffected from

viscous damping for all utilized IMs. The outcomes for individual negative stiffness ratios

h - a confirm these findings. It is also shown that dispersion measure s* is practically

independent from h - a.

(a) (b)

(c) (d)

Fig. 11 Smallest dispersion measure s�. Intensity measures: Sa,gm(TSDOF, Tn,opt), Sa(TSDOF). Viscous
damping f = 0, 2, and 5 %. a–c s* for individual negative post-yield stiffness ratios as specified; d mean
Eh�a½s��
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Based on the above observations, the following analytical approximation for eopt,
denoted as ea, is proposed:

eaðTSDOFÞ ¼
1þ 4TSDOF 0�TSDOF � 0:15 s

1:6 TSDOF � 0:15 s

�

ð8Þ

The expression is independent of h - a, viscous damping in the range 0 B f B 0.05,

and TSDOF � 0:15 s. Additionally, the averaged IM based on the selected ea also leads to an

efficient IM when using the peak-oriented hysteretic model instead of the bilinear model

(Tsantaki 2014). Subsequently, for TSDOF � 0:15 s the corresponding averaged IM

Sa;gmðT1; Tn;aÞ, with the elongated period

Tn;a ¼ eaTSDOF ð9Þ

is denoted as Saa;gmðTSDOF ; 1:6TSDOFÞ , or briefly Saa;gm.

4 ‘‘P-delta’’ intensity measure

In this section, the dispersion of the 5 % damped pseudo-acceleration response spectra Sa
(i),

i = 1, …, 44, of the 44 ground motions of the FEMA P-695-FF is studied when scaled to

the ‘‘P-delta’’ IM SaðTPD
SDOFÞ and to the conventional IM SaðTSDOFÞ. Figure 12a shows the

5 % damped pseudo-acceleration response spectra SðiÞa ðTSDOFÞ scaled at the period (without
P-delta) TSDOF = 3.0 s. Assuming a large stability coefficient of h = 0.40, TPD

SDOF ¼
TSDOF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð1� hÞ
p

becomes 3.87 s. At TPD
SDOF the dispersion of the response spectra, rln Sa,

scaled to TSDOF is already 0.35, see Fig. 11a. Thus, even in the elastic range a distinct

dispersion of the system response can be observed. To correct this additional variability in

the records, Fig. 12b shows the corresponding scaled spectra based on SðiÞa ðTPD
SDOFÞ. The

same reference spectral acceleration equal to 0.1 g was used for both IMs.

Figure 13 shows RTR dispersion spectra s* based on the ‘‘P-delta’’ IM SaðTPD
SDOFÞ for

negative post-yield stiffness ratios h - a of 0.04, 010, 0.20, 0.30, 0.40, 0.60 and 0.80. With

increasing h - a the system becomes more prone to collapse due to the steep negative

post-yielding slope, and less dependent on RTR variability. It is observed that IM

SaðTPD
SDOFÞ reflects appropriately this physical behavior.

(a) (b)

Fig. 12 Scaled individual record dependent elastic pseudo-acceleration response spectra and their

corresponding 50th, 16th and 84th percentiles for a SaðTSDOFÞ, b SaðTPD
SDOFÞ
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5 A comparison of the efficiency of different intensity measures

In this section, the effect of the RTR variability on the collapse capacity variability of P-

delta vulnerable SDOF systems is compared for the ‘‘optimal’’ averaged IM Saa;gm and two

single target pseudo-spectral acceleration IMs: the ‘‘P-delta’’ IM SaðTPD
SDOFÞ and the

benchmark IM SaðTSDOFÞ. System configurations for 50 values of

TSDOF = 0.1, 0.2, 0.3,…, 5 s., and 13 cases of h - a = 0.04, 0.06, 0.08, 0.10, 0.15, 0.20,

0.25, 0.30, 0.35, 0.40, 0.45, 0.60 and 0.80 are considered, using a damping value f = 0.05.

Figure 14 presents the dispersion s* spectra for the three studied IMs and nine h - a
values. For small negative post-yield stiffness ratios; i.e., h� a � 0:10, the two single

target IMs yield similar RTR dispersion spectra that are larger than those based on the

averaged IM Saa;gm. The reduction of RTR variability based on IM Saa;gm becomes more

evident when the post-yield stiffness increases up to 0.20. Also, the efficiency of IM

SaðTPD
SDOFÞ starts to increase noticeably for h� a[ 0.45. For 0:30 � h� a� 0:45 the

collapse capacity dispersion based on IM SaðTPD
SDOFÞ is shifted to smaller RTR values

leading to similar spectra based on the IM Saa;gm. For h� a ¼ 0:60 and 0.80, the IM

SaðTPD
SDOFÞ is the most efficient IM.

These trends are verified in Fig. 15, which summarizes the mean dispersions ETSDOF ½s��
and Eh�a½s�� for the three studied IMs. As observed, ETSDOF ½s�� and Eh�a½s�� are significantly
larger for the benchmark IM SaðTSDOFÞ. Figures 15a shows the mean dispersion ETSDOF ½s��
of s*, as a function of h - a, with respect to 50 values of periods TSDOF. For h� a � 0:10
the period elongation is mainly due to the potential of large inelastic deformations. Hence,

the only IM that reduces the collapse capacity dispersion is Saa;gm.

As h - a increases, the systems become more prone to failure, and less dependent on

the frequency content of the ground motions. Therefore, for very steep negative post-yield

stiffness, collapse capacity dispersion is less affected by RTR variability. The expected

behavior of increasing efficiency with increasing h - a is only observed for outcomes

based on the IM SaðTPD
SDOFÞ.

Fig. 13 RTR dispersion spectra s� for different negative post-yield stiffness ratios h - a based on IM

SaðTPD
SDOFÞ
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A contradicting trend is observed for IM SaðTSDOFÞ if h� a � 0:30, and for the IM

Saa;gm if h� a � 0:45. As h - a increases, the difference between the periods TSDOF and

TPD
SDOF becomes so large that the dispersion starts to increase. At h = 0.41 period TPD

SDOF is

about 1.3 times TSDOF, and thus, it is in the center of averaging period interval DT.
Consequently, at h� a 	 0:45 the efficiency of IM Saa;gm and IM SaðTPD

SDOFÞ is about the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14 RTR dispersion s*spectra. IMs and negative post-yield stiffness ratios h - a as specified

(a) (b)

Fig. 15 Mean dispersion measures a ETSDOF ½s�� and b Eh�a½s��. IMs, negative post-yield stiffness ratios
h - a and system periods TSDOF as specified
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same because ‘‘higher mode effects’’ and effect of period elongation cancel out. Further

increase of h - a ([ 0.45) impairs the efficiency of IM Saa;gm.

It can be concluded that IM Saa;gm is the most efficient IM for h� a � 0:45. However,

for larger h - a values, IM SaðTPD
SDOFÞ leads to the smallest collapse capacity dispersion.

Figure 15b shows the mean with respect to 13 values of h - a as a function of TSDOF. A

fluctuation of the mean collapse capacity variability Eh�a½s�� around 0.23 is observed for

relative IMs Saa;gm and SaðTPD
SDOFÞ, as opposed to 0.37 for the IM SaðTSDOFÞ.

Note that an averaged IM, where the lower bound period corresponds to P-delta affected

period; i.e. T1 ¼ TPD
SDOF , is not more efficient than IM Saa;gmðTSDOF; 1:6TSDOFÞ proposed in

Sect. 3.3. Additionally, for such IM the ratio between the upper bound and lower bound

period is not constant, but depends strongly on the negative post-yield stiffness ratio and

actual system period. Consequently, the definition of a simple ‘‘global’’ IM with T1 ¼
TPD
SDOF valid for a wide range of system parameters is not possible (Tsantaki 2014).

6 Sufficiency and scaling robustness of the utilized intensity measures

The sufficiency and scaling robustness properties of the utilized IMs with respect to the

natural logarithm of the 44 collapse capacities of the FEMA P-695-FF record set are

examined for 500 structural configurations with system periods TSDOF = 0.1, 0.2, 0.3, …,

4.8, 4.9, 5.0 s, and post-yield stiffness ratios h - a = 0.04, 0.06, 0.08, 0.10, 0.20, 0.30,

0.40, 0.50, 0.60, 0.80. The sufficiency property is studied for two ground motion charac-

teristics: the earthquake magnitude (M), and the natural logarithm of the source-to-site

distance (Bozorgnia and Campbell 2004; Bommer and Akkar 2012). The selected mea-

sures of source-to-site distance are the epicentral distance Repi as a point-source distance

metric, and the Joyner-Boore distance RJB as an extended-source distance metric. The

present evaluation on the linear or logarithmic dependencies of the natural logarithm of the

collapse capacities is consistent with the studies of Cornell et al. (1979), Abrahamson and

Silva (1997), Bianchini et al. (2009), and Bojórquez and Iervolino (2011) on the considered

ground motion characteristics, such as the magnitude, the natural logarithm of the source-

to-site distance, and the natural logarithm of the scaling factors.

Initially, scatter plots have been used to explore by visual inspection the possible linear

or non-linear relationship between paired sets consisting of the natural logarithm of the

collapse capacities and the considered parameter. For instance, Fig. 16 shows the scatter

plots of the natural logarithm of the 44 collapse capacities of the FEMA P-695-FF record

set for two system configurations, TSDOF = 1.0 s, h - a = 0.10, and TSDOF = 3.0 s,

h - a = 0.20, for all the utilized IMs as a function of the magnitude M. Figure 17 shows

similar scatter plots as a function of the scaling factors SF. Note that these figures show the

non-logarithmic values plotted in logarithmic scaled axes (for logarithmic quantities). The

scatter plots of all the considered structural configurations have not revealed any apparent

non-linear relationship. Therefore, only a linear relationship is further examined. Firstly,

linear regression analyses were conducted, and the linear regression slope coefficients b
estimated, where a b value close to 0 indicates negligible correlation of the two paired sets.

For each parameter set and IM of Figs. 16 and 17, the corresponding linear regression fit

and estimate of the linear regression coefficient b are specified.

In a further step the potential correlation between the evaluated parameters for all the

considered structural configurations is quantified in terms of the linear correlation
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coefficient r and the p value function. The linear correlation coefficient r measures the

strength and direction of a linear regression between two variables, and it is computed from

the covariance of the two variables divided by the product of their standard deviations.

Correlation coefficient r varies from -1 to 1 (Fenton and Neil 2012), where values close to

0 indicate a negligible correlation, values smaller than 0.5 a weak correlation, and values

(a) (b) (c)

(d) (e) (f)

Fig. 16 Scatter plots and linear regression fits about the sufficiency property with respect to the earthquake

magnitudeM for IM a, d SaðTSDOFÞ, b, e Saa;gm c, f SaðTPD
SDOFÞ and the 44 collapse capacities of the FEMA P-

695-FF record set for two system configurations (a–c) TSDOF ¼ 1:0 s; h� a ¼ 0:10 and (d–f)
TSDOF ¼ 3:0 s; h� a ¼ 0:20

(a) (b) (c)

(d) (e) (f)

Fig. 17 Scatter plots and linear regression fits about the scaling robustness property for IM a, d SaðTSDOFÞ,
b, e Saa;gm, c, f SaðTPD

SDOFÞ with respect to the scaling factors and the 44 collapse capacities of the FEMA P-

695-FF record set for two system configurations a–c TSDOF ¼ 1:0 s; h� a ¼ 0:10 and d–f
TSDOF ¼ 3:0 s; h� a ¼ 0:20
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larger than 0.8 a strong correlation (Roberts and Roberts 2015). The p value determines the

‘‘statistical significance’’ of the correlation coefficients r, representing the probability of

obtaining a correlation as large as the observed linear correlation coefficient by random

chance when the true correlation is zero (MATLAB and Statistics Toolbox Release 2015a,

2015). Since a p value is a probability quantity, it ranges from 0 to 1 (GraphPad Statistics

Guide 2015). A threshold p value equal to 0.05 was predefined before conducting the

statistical test. A p value smaller than this threshold indicates the ‘‘statistical significance’’

of the observed values and the rejection of the null hypothesis of non-correlation. This

means that the computed r-values would rarely occur (i.e., with a probability equal to 0.05)

due to random sampling if the two paired sets were correlated from identical populations.

For the considered system configurations, IMs, and paired sets in Figs. 16 and 17 also the

corresponding correlation coefficient r and the p value are specified.

Figures 18, 19, 20 and 21 show the correlation coefficients r and p values as a function

of TSDOF for the negative post-yield stiffness ratios h - a = 0.04, 0.10, 0.20, 0.30, 0.40

and 0.80. Figures 18, 19 and 20 reveal that the correlation coefficients r with respect to the

sufficiency property ranges in general from -0.25 to 0.25 for all considered ground motion

parameters, IMs, and h - a values. Exceptions are larger r values for the extremely large

negative post-yield stiffness ratio h - a = 0.80, and a few structural parameter configu-

rations with steep post-yield negative slopes, such as h - a = 0.30 and 0.40, in particular

for the benchmark IM Sa(TSDOF). In the period range 0\TSDOF\ 2 s, the r-value fluc-

tuates around 0, in contrast to longer system periods where larger r-values are observed.

Correspondingly, the p values are in general above the threshold 0.05 for the majority of

configurations, except for h - a = 0.80 and a few additional h - a cases in system period

domains with values larger than 2.0 s. As observed, the system period regions with r-

values larger than 0.25 correspond, in general, to the system period domains with a p value

smaller than 0.05. These system period domains depend on the ground motion charac-

teristics and the underlying IM. For example, the period domain is TSDOF [ 3:0 s for

magnitude M and IM SaðTSDOFÞ, TSDOF [ 4:0 s for M and IM Saa;gm, TSDOF [ 2 :5 s for

(a) (b) (c)

(d) (e) (f)

Fig. 18 a–c Correlation coefficient and d–f p value plots as a function of system period TSDOF about the

sufficiency property of a, d SaðTSDOFÞ, b, e Saa;gm, c, f SaðTPD
SDOFÞ IM with respect to the earthquake

magnitude (M). Negative post-yield stiffness ratios h� a as specified
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point-source distance metric Repi and SaðTSDOFÞ, TSDOF [ 4 :0 s for Repi and IM Saa;gm,

2:0 s\TSDOF\3:5 s for the extended-source distance metric RJB and IM SaðTSDOFÞ, and
2:0 s\TSDOF\2:8 s for RJB and SaðTPD

SDOFÞ. In all other combinations just a few narrow

banded and scattered period domains are observed.

The correlation coefficients r with respect to scaling robustness property is expressed by

the relation between the natural logarithm of the collapse capacities and the natural log-

arithm of the scaling factors. In general, this coefficient ranges between -0.50 and 0.0 for

(a) (b) (c)

(d) (e) (f)

Fig. 19 a–c Correlation coefficient and d–f p value plots as a function of system period TSDOF about the

sufficiency property of a, d SaðTSDOFÞ, b, e Saa;gm, c, f SaðTPD
SDOFÞ IM with respect to the epicentral distance

(Repi). Negative post-yield stiffness ratios h - a as specified

(a) (b) (c)

(d) (e) (f)

Fig. 20 a–c Correlation coefficient and d–f p value plots as a function of system period TSDOF about the

sufficiency property of a, d SaðTSDOFÞ, b, e Saa;gm, c, f SaðTPD
SDOFÞ IM with respect to the Joyner-Boore

distance (RJB). Negative post-yield stiffness ratios h - a as specified
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all considered IMs and system configurations, except for systems with h - a = 0.80

(Fig. 21). For both single-target IMs, r is around 0.35 if TSDOF\ 3 s. In contrast, in this

period range for the averaged IM Sa,gm
a the r-value is only about 0.20. For system periods

TSDOF[ 3 s the collapse capacities based on the benchmark IM exhibit smaller correlation

coefficients r varying from 0 to -0.25, while for the ‘‘P-delta’’ and the averaged IM r is in

general about 0.25, except for a few cases of h - a values. Also, p values less than 0.05

are observed for all IMs, however, in case of the single target IMs the corresponding period

regions are more extended and include larger numbers of the considered h - a values.

The p values in Figs. 18, 19, 20 and 21 below the selected threshold of 0.05 indicate that

the computed r values are ‘‘statistical significant’’. For such cases, the selected IM is

conditionally linearly dependent with respect to the natural logarithm of collapse capacities

on the considered parameters, such as ground motion characteristics and scaling factors.

Therefore, these period domains do not strictly meet the properties of sufficiency and

scaling robustness. However, the period intervals in which p values are below the pre-

defined threshold of 0.05 are very limited, except for the scaling robustness property

(Fig. 21). More important, in all cases the correlation coefficient is smaller than r\ 0.5,

indicating a weak correlation between the selected IM and the ground motion character-

istics or scaling factors.

For instance, the natural logarithm of scaling factors is weakly correlated (r\ 0.5) with

the natural logarithm of the 44 collapse capacities of the FEMA P-695-FF record set, and

for some scenarios it is statistically significant (p value\ 0.05). This correlation is neg-

ative (Figs. 17 and 21), revealing a decrease of the natural logarithm of collapse capacities

as the natural logarithm of scaling factors increases. This finding is consistent with results

of Bianchini et al. (2009). In all other cases with p values larger than the selected threshold,

the correlation is considered as ‘‘statistical insignificant’’.

(a) (b) (c)

(d) (e) (f)

Fig. 21 a–c Correlation coefficient and d–f p value plots as a function of system period TSDOF about the

scaling robustness property of a, d SaðTSDOFÞ b, e Saa;gm c, f SaðTPD
SDOFÞ IM. Post-yield stiffness ratios h - a

as specified

Bull Earthquake Eng (2017) 15:1085–1109 1105

123



7 Conclusions

Two alternative elastic pseudo-spectral acceleration based IMs were compared with the

widely accepted IM, Sa(TSDOF); i.e., the 5 % damped pseudo-spectral acceleration at the

system period TSDOF of the structure without P-delta. The efficiency of the two alternative

IMs to reduce collapse capacity dispersion caused by record-to-record (RTR) variability

was presented. Initially, three different sets of averaged IMs were studied with different

lower and upper bounds of the period interval to obtain the ‘‘optimal’’ averaged IM that

leads to the smallest collapse capacity dispersion due to RTR variability. From the results

of this parametric study in a wide range of structural configurations, the following con-

clusions can be drawn for the considered type of P-delta vulnerable and non-deteriorating

simple systems:

• The lower bound of the period interval corresponds to the SDOF period of vibration

because no higher modes effects do exist. This result cannot be transferred to multi-

degree-of-freedom (MDOF) structures.

• The ‘‘optimal’’ upper bound of the period interval for the averaging IM is on average

about 1.6 times the system period. The period elongation is either a result of large

inelastic deformations in the case of small negative post-yield stiffness slopes, or the

results of the presence of gravity loads in systems with steeper negative slopes.

• An ‘‘optimal’’ averaged IM Saa;gmðTSDOF ; 1:6TSDOFÞ , or briefly Saa;gm is introduced for

system periods larger than 0.15 s, which is composed of the geometric mean of the 5 %

damped spectral acceleration in the range between the system period and 1.6 times this

period. Note that the upper limit of this period range is similar to values proposed in

several guidelines, without being clearly verified by or/and related to previous research

studies.

Subsequently, an alternative single target IM is introduced, SaðTPD
SDOFÞ, which corre-

sponds to the 5 % damped pseudo-spectral acceleration at the system period considering

gravity load effects. This ‘‘P-delta’’ IM leads to smaller collapse capacity dispersion as the

negative post-yield stiffness ratio becomes larger than 0.45.

The most efficient IM, leading to the smallest RTR dispersion, for systems with neg-

ative post-yield stiffness ratios h� a� 0:45 is Saa;gm; for systems with h - a[ 0.45 the

most efficient IM is SaðTPD
SDOFÞ.

For IMs Saa;gm and SaðTPD
SDOFÞ, the mean RTR variability is on average 0.23, with respect

to the considered post-yield stiffness ratios. In contrast, for SaðTSDOFÞ, this mean is 0.37;

i.e., about 60 % larger.

The sufficiency and scaling robustness property of the utilized IMs with respect to the

natural logarithm of the 44 collapse capacities of the FEMA P-695-FF record set were

examined for the considered structural configurations. The sufficiency property was studied

for two ground motion characteristics; i.e., the earthquake magnitude and the natural

logarithm of the source-to-site distance. Two measures of source-to-site distance were

selected: the epicentral distance as a point-source distance metric, and the Joyner-Boore

distance as an extended-source distance metric. The scatter plots revealed that there is no

apparent non-linear relationship between the natural logarithm of the collapse capacities

and the corresponding ground motion characteristics. Therefore, only the potential of linear

relationship was further examined, quantifying the linear correlation coefficients r and their

corresponding p values. The outcomes can be summarized as follows.
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• For the selected structural configurations the period domains and negative post-yield

stiffness ratios h - a with r[ 0.25 and p value\ 0.05 were identified for all the

considered paired sets and IMs. Note that p values below the selected threshold of 0.05

indicate that the computed r values are ‘‘statistically significant’’. For such cases, the

selected IM is conditionally linearly dependent on the considered ground motion

parameters or scaling factors (with respect to the natural logarithm of collapse

capacities), and may not meet the properties of sufficiency and scaling robustness.

These domains are more extended for the conventional IM Sa(TSDOF).

• The natural logarithm of scaling factors exhibits a weak correlation with the natural

logarithm of the collapse capacities. This correlation is negative, revealing a decrease

of the natural logarithm of collapse capacities as the natural logarithm of scaling factors

increases.

The presented results are only valid for single-degree-of-freedom systems and should

not be extrapolated to multi-degree-of-freedom structures.
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