Skip to main content
Log in

Mesenchymal Stem Cells Enhance Chemotaxis of Activated T Cells through the CCL2-CCR2 Axis In Vitro

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Activation and migration of donor T cells to the host target organs are critical mechanisms in the pathogenesis of graft-versus-host disease (GVHD). The role of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor CCR2 in the recruitment of T cells during immune or inflammatory response is also well known. For elucidation of the mechanism of the therapeutic effect of human bone marrow derived-mesenchymal stem cells (MSC) in GVHD, we studied the effect of these cells on migration of activated donor T cells through the CCL2-CCR2 axis in vitro. MSC were expanded from donors’ bone marrow mononuclear cells. After co-culturing of IL-2-activated T cells with allogeneic MSC at different ratios, the levels of CCL2 in supernatants were measured by ELISA, and CCR2 expression in CD4+/CD8+ T cells subsets were detected by flow cytometry. The effect of MSC on the migration of activated T cells in the Transwell system was studied in the absence or presence of CCL2. Our results show that CCL2 levels in supernatants of co-cultures were significantly higher than in MSC monoculture and this increase depended on the number of MSC. MSC inhibited proliferation of T cells, but did not change the percentages of CD4+ and CD8+ T cells subsets. MSC can up-regulate the CCR2 expression in CD8+ subsets rather than in CD4+ subsets; MSC enhanced migration of IL-2-activated T cells to CCL2 by increasing the expression of CCR2. The data demonstrate that MSC can enhance chemotaxis of cytokine-activated T cells through the CCL2-CCR2 axis in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abumaree M, Al Jumah M, Pace RA, Kalionis B. Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev. Rep. 2012;8(2):375-392. doi: https://doi.org/10.1007/s12015-011-9312-0

    Article  CAS  PubMed  Google Scholar 

  2. Baron F, Storb R. Mesenchymal stromal cells: a new tool against graft-versus-host disease? Biol. Blood Marrow Transplant. 2012;18(6):822-840. doi: https://doi.org/10.1016/j.bbmt.2011.09.003

    Article  PubMed  Google Scholar 

  3. Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus- host disease biology and therapy. Nat. Rev. Immunol. 2012;12(6):443-458. doi: https://doi.org/10.1038/nri3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradley LM, Asensio VC, Schioetz LK, Harbertson J, Krahl T, Patstone G, Woolf N, Campbell IL, Sarvetnick N. Islet-specific Th1, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. J. Immunol. 1999;162(5):2511-2520.

    CAS  PubMed  Google Scholar 

  5. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl Acad. Sci. USA. 1994;91(9):3652-3656. doi: https://doi.org/10.1073/pnas.91.9.3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Daly C, Rollins BJ. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation. 2003;10(3-4):247-257. doi: https://doi.org/10.1038/sj.mn.7800190

    Article  CAS  PubMed  Google Scholar 

  7. Flaishon L, Hart G, Zelman E, Moussion C, Grabovsky V, Lapidot Tal G, Feigelson S, Margalit R, Harmelin A, Avin- Wittenberg T, Shoseyov D, Alon R, Girard JP, Shachar I. Antiinflammatory effects of an inflammatory chemokine: CCL2 inhibits lymphocyte homing by modulation of CCL21-triggered integrin-mediated adhesions. Blood. 2008;112(13):5016-5025. doi: https://doi.org/10.1182/blood-2007-12-129122

    Article  CAS  PubMed  Google Scholar 

  8. Gu L, Rutledge B, Fiorillo J, Ernst C, Grewal I, Flavell R, Gladue R, Rollins B. In vivo properties of monocyte chemoattractant protein-1. J. Leukoc. Biol. 1997;62(5):577-580. doi: https://doi.org/10.1002/jlb.62.5.577

    Article  CAS  PubMed  Google Scholar 

  9. Hildebrandt GC, Duffner UA, Olkiewicz KM, Corrion LA, Willmarth NE, Williams DL, Clouthier SG, Hogaboam CM, Reddy PR, Moore BB, Kuziel WA, Liu C, Yanik G, Cooke KR. A critical role for CCR2/MCP-1 interactions in the development of idiopathic pneumonia syndrome after allogeneic bone marrow transplantation. Blood. 2004;103(6):2417-2426. doi: https://doi.org/10.1182/blood-2003-08-2708

    Article  CAS  PubMed  Google Scholar 

  10. Kebriaei P, Robinson S. Treatment of graft-versus-host-disease with mesenchymal stromal cells. Cytotherapy. 2011;13(3):262- 268. doi: https://doi.org/10.3109/14653249.2010.549688

    Article  PubMed  Google Scholar 

  11. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo M. E, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O; Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579-1586. doi: https://doi.org/10.1016/S0140-6736(08)60690-X

  12. Moreno DF, Cid J. Graft-versus-host disease. Med. Clin. (Barc). 2019;152(1):22-28. doi: https://doi.org/10.1016/j.medcli.2018.07.012

    Article  PubMed  Google Scholar 

  13. Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19-31. doi: https://doi.org/10.1002/cyto.a.23242

    Article  CAS  PubMed  Google Scholar 

  14. New JY, Li B, Koh WP, Ng HK, Tan SY, Yap EH, Chan SH, Hu HZ. T cell infiltration and chemokine expression: relevance to the disease localization in murine graft-versus-host disease. Bone Marrow Transplant. 2002;29(12):979-986. doi: https://doi.org/10.1038/sj.bmt.1703563

    Article  CAS  PubMed  Google Scholar 

  15. Panoskaltsis-Mortari A, Hermanson JR, Taras E, Wangensteen OD, Charo IF, Rollins BJ, Blazar BR. Post-BMT lung injury occurs independently of the expression of CCL2 or its receptor, CCR2, on host cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2004;286(2):L284-L292. doi: https://doi.org/10.1152/ajplung.00154.2003

    Article  CAS  PubMed  Google Scholar 

  16. Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E, Forner K, Boivin MN, Doody K, Tremblay M, Annabi B, Galipeau J. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood. 2008;112(13):4991-4998. doi: https://doi.org/10.1182/blood-2008-07-166892

    Article  CAS  PubMed  Google Scholar 

  17. Ramachandran V, Kolli SS, Strowd LC. Review of graft-versus- host Disease. Dermatol. Clin. 2019;37(4):569-582. doi: https://doi.org/10.1016/j.det.2019.05.014.

    Article  CAS  PubMed  Google Scholar 

  18. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts A. I, Zhao R. C, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2(2):141-150. doi: https://doi.org/10.1016/j.stem.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  19. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228-234. doi: https://doi.org/10.1182/blood-2006-02-002246

    Article  CAS  PubMed  Google Scholar 

  20. Terwey TH, Kim TD, Kochman AA, Hubbard VM, Lu S, Zakrzewski JL, Ramirez-Montagut T, Eng JM, Muriglan SJ, Heller G, Murphy GF, Liu C, Budak-Alpdogan T, Alpdogan O, van den Brink MR. CCR2 is required for CD8-induced graftversus- host disease. Blood. 2005;106(9):3322-3330. doi: https://doi.org/10.1182/blood-2005-05-1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tolar J, Villeneuve P, Keating A. Mesenchymal stromal cells for graft-versus-host disease. Hum. Gene Ther. 2011;22(3):257- 262. doi: https://doi.org/10.1089/hum.2011.1104

    Article  CAS  PubMed  Google Scholar 

  22. Wolf D, von Lilienfeld-Toal M, Wolf AM, Schleuning M, von Bergwelt-Baildon M, Held SA, Brossart P. Novel treatment concepts for graft-versus-host disease. Blood. 2012;119(1):16- 25. doi: https://doi.org/10.1182/blood-2011-08-339465

    Article  CAS  PubMed  Google Scholar 

  23. Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, Serody JS. Leukocyte migration and graft-versus-host disease. Blood. 2005;105(11):4191-4199. doi: https://doi.org/10.1182/blood-2004-12-4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Qiao.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 186-196, September, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.L., Qiao, S.K., Xing, L.N. et al. Mesenchymal Stem Cells Enhance Chemotaxis of Activated T Cells through the CCL2-CCR2 Axis In Vitro. Bull Exp Biol Med 172, 263–269 (2021). https://doi.org/10.1007/s10517-021-05373-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05373-3

Key Words

Navigation