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Abstract
One of the general criteria G. H. Hardy identifies and discusses in his famous essay A
Mathematician’s Apology, Cambridge University Press, Cambridge, 1940) by which
a mathematician’s patterns must be judged is seriousness. This article focuses on one
of Hardy’s examples of a non-serious theorem, namely that 8712 and 9801 are the only
numbers below 10000 which are integral multiples of their reversals, in the sense that
8712 = 4·2178, and 9801 = 9·1089. In the context of a discussion ofgenerality, which
he considers an essential quality of seriousness, he explains that there is nothing in this
example which “appeals much to a mathematician” and that it is “not capable of any
significant generalization.” Interestingly, since the publication of the Apology, more
than a dozen papers—including one by the renowned mathematician Neil Sloane—
have been published that discuss generalizations of Hardy’s example. By identifying
the most important aspect of Hardy’s notion of generality, it is argued that, contrary
to the views of several researchers, Hardy’s claim regarding the non-capability of any
significant generalization is still tenable. Furthermore, this case study is presented and
discussed as an example of the multifaceted nature of mathematical interest.

Keywords G. H. Hardy · A mathematician’s apology · Values in mathematics ·
Serious mathematics · Mathematical interest · Reverse multiples

1 Introduction

In his famous essayA Mathematician’s Apology from1940, theEnglishmathematician
Godfrey Harold Hardy (1877–1947) provides a justification for a serious study of
mathematics and,with it, for the life of a professionalmathematician.Hardy argues that
mathematics must be justified as a creative art. As he famously puts it: “Beauty is the
first test: there is no permanent place in the world for ugly mathematics” (1940/2012,
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p. 85). The general criteria Hardy identifies and discusses in his essay by which a
mathematician’s patterns must be judged are beauty and seriousness.

References to Hardy’s thoughts presented in his essay readily appear in the works
of philosophers and researchers in mathematics education when investigating, for
instance, mathematical problem choice (Ashton 2018), whether mathematics can be
treated as an art (Tymoczko 1993), values in mathematics ((Ernest 1998), (Weisgerber
2023)) and aesthetic considerations in mathematical inquiry more generally (Sinclair
2004, 2006, 2011) or mathematical beauty ((Dutilh Novaes 2019), (Sa et al. 2023))
and depth (Urquhart 2015) in particular.

In this article, I focus onHardy’s notion of seriousness and in particular on a specific
example proposed by him (example (a) below) as an example of a non-serious math-
ematical theorem. Roughly speaking, a serious theorem is a theorem which connects
significant mathematical ideas, while a significant idea is an idea which “can be con-
nected, in a natural and illuminating way, with a large complex of other mathematical
ideas” (Hardy 1940/2012, p. 89).

One quality that Hardy says is essential to the significance of a mathematical idea
or the seriousness of a theorem is generality. While discussing this quality, he presents
the following two examples that (allegedly) lack this quality “conspicuously” (in ways
we will discuss in more detail later) and therefore cannot be serious (ibid., pp. 104f.):

(a) 8712 and 9801 are the only four-figure numbers which are integral multiples
of their ‘reversals’:

8712 = 4 · 2178, 9801 = 9 · 1089,

and there are no other numbers below 10,000 which have this property.
(b) There are just four numbers (after 1) which are the sums of the cubes of their

digits, viz.

153 = 13 + 53 + 33, 370 = 33 + 73 + 03,

371 = 33 + 73 + 13, 407 = 43 + 03 + 73.

After having introduced these examples, Hardy states that (hereinafter referred to
as (D), where “D” is meant to remind of “diagnosis”)

(D) These are odd facts, very suitable for puzzle columns and likely to amuse
amateurs, but there is nothing in them which appeals much to a mathemati-
cian. The proofs are neither difficult nor interesting—merely a little tiresome.
The theorems are not serious; and it is plain that one reason (though perhaps
not themost important) is the extreme speciality of both the enunciations and
the proofs, which are not capable of any significant generalization. (ibid., p.
105)

Interestingly, since the publication of Hardy’sApology, more than a dozen papers—
including one by the renowned mathematician Neil Sloane—have been published
on the phenomenon of reverse multiples, i.e., on numbers with the special property
described in example (a), that discuss nontrivial (in terms of difficulty) generalizations.

123



Global Philosophy             (2024) 34:1 Page 3 of 24     1 

My main goal in this article is to clarify what Hardy meant by his diagnosis and to
examine it for accuracy, especially in light of the research that has been done since his
claims were made. In doing so, I will, among other things, identify and argue for what
I believe to be the most important aspect of Hardy’s notion of generality. Taking this
result into account, I will further argue that his upshot that example (a) is “not capable
of any significant generalization” is still tenable, which contradicts several authors
dealing with the phenomenon of reverse multiples—again including Sloane—who
explicitly refer to (part of) (D). Finally, I will present and discuss this phenomenon
as an example of the multifaceted nature of mathematical interest.

At this point, a few words should be said about Hardy’s Apology and its cultural
and historical context. Hardy wrote on it as a professor at Cambridge during the early
months ofWorldWar II. One of the concluding sections of theApology, namely §28, is
based on Hardy’s article “Mathematics in War-Time” which was published in January
1940, where he states with respect to the functions of mathematics in war that they fill
him “with intellectual contempt and moral disgust” (1940, p. 5). A major theme in his
justification of a serious study of mathematics presented in his Apology is the (alleged)
harmlessness—in terms of the effects on war—of (real) mathematics. Hardy’s essay
can thus not only be regarded as a philosophical piece, but in some ways as a political
one as well.

In general, Hardy was not unique in his time in justifying mathematics in his Apol-
ogy—or earlier in his career (at least indirectly), e.g., in his inaugural lecture he gave
in Oxford (Hardy 1920)—on aesthetic grounds rather than with reference to possible
applications. There has already been a tradition among British puremathematicians, at
least since the last decades of the 19th century, to justify their mathematics by appeal
to its aesthetics (cf. (Heard 2019, Chapter 7)).

The structure of this paper is as follows. In Sect. 2, some of themain research results
on the phenomenon of reverse multiples are presented. After having introduced, in
Sect. 3, Hardy’s main ideas on seriousness relevant to the present study, a closer look
is taken at his notion of generality in Sect. 4. First, Hardy’s proposed ways in which
(a) lacks generality are discussed (4.1). Then, the most important aspect of Hardy’s
notion of generality is identified (4.2). Finally, in Sect. 5, diagnosis (D) is discussed
by, among other things, evaluating researchers’ interpretations (5.1) and by examining
mathematical interests in reverse multiples (5.2).

2 The General Phenomenon of Reverse Multiples

In this section, I present some of the main research that has been carried out on the
general phenomenon of reverse multiples. In order to provide some self-containment,
I will cover Ludington Young’s (1992a) contribution and, to a certain degree that of
Sloane (2014), in some detail.

Sloane listed in (2014) all the work on the general phenomenon of reverse multiples
of which he was aware at the time. His earliest references are two brief responses
published in volume XV of L’Intermédiaire des mathématiciens in 1908 (Laisant
et al. 1908, pp. 132f., 278f.) to a problem that has been posed in volume VI of the
same journal published in 1899. There, J. Jonesco asks, among other things, “[w]hat
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are then the numbers n smaller than the base of the system, such that there are products
nNwhich are the reversals of N?”1 (Laisant and Lemoine 1899, p. 200, problem 1622).
So, Jonesco was not just interested in the base-10 case, as in Hardy’s example (a).
One of the respondent gave two examples of this general case, namely 1015 in base
8, since 5 · 1015 = 5101, and 18 in base 13, since 5 · 18 = 81.

Alan Sutcliffe’s (1966) “Integers that are multiplied when their digits are reversed”
published in Mathematics Magazine, appears to be the first paper after the publication
ofHardy’sApology that discusses generalizations of reversemultiples (see also (Sloane
2014, p. 99)). In this work, Sutcliffe is interested in the general phenomenon of base-g
reverse multiples, i.e., he is interested in the solution of

k(an−1gn−1 + an−2gn−2

+ · · · + a1g + a0) = a0gn−1 + a1gn−2 + · · · + an−2g + an−1 (1)

where k, a0, . . . , an−1 are all less than g and k > 1, a0 > 0 and an−1 > 0.2 He
is mainly concerned with a characterization of 2- and 3-digit numbers. For 2-digit
numbers he proves, for instance, that there is a solution of Equation (1) in base g > 3
if and only if g + 1 is non-prime. He notes that things are problematic for numbers
with more digits since “for each additional digit there is one new equation but two new
variables” (1966, p. 287). He also conjectured that if there exists a 3-digit solution for
the base g, then there also exists a 2-digit solution for g, but explains that “no general
proof has been found” (ibid., p. 285). T. J. Kaczynski (1968)—who is, as Lara Pudwell
(2007, p. 129) puts it, “[b]etter known for other work”—proved that this conjecture
is correct. Based on Sutcliffe and Kaczynski’s results, Pudwell (2007) asks whether
there is any value of g for which there is a 5-digit solution but no 4-digit solution
which she answers in the negative.

In Anne Ludington Young’s (1992a; 1992b) two articles on k-reverse multiples,
which appeared in the same issue of The Fibonacci Quarterly, she focuses on the task
of determining all k-reverse multiples in base g, for given k and g, once those with a
small number of digits are known. To this end, she introduces a graphical notation in the
form of specific rooted trees (see as an example Fig. 1). By comparing corresponding
digits of Equation (1), she gets the following set of equations:

ka0 = an−1 + r0g
ka1 + r0 = an−2 + r1g

…
kai + ri−1 = an−1−i + ri g

…
kan−2 + rn−3 = a1 + rn−2g
kan−1 + rn−2 = a0

(2)

1 “Quels sont alors les nombres n plus petits que la base du système, tels qu’il existe des produits nN qui
soient les renversés de N?”
2 Note that the letters that I have used in the statement of the general equation in which Sutcliffe is interested
in, have been changed to be consistent with (Ludington Young 1992a, b) and (Sloane 2014).
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where 0 ≤ ri < g for i = 0, . . . , n − 2. The ri ’s are called the “carry numbers” or
simply “carries.” For instance, if we think of Hardy’s first mentioned reverse multiple,
namely 2178, we have (r2, r1, r0) = (0, 3, 3); for example, the first equation of (2) is
4 · 8 = 2 + 3 · 10. Now, Ludington Young considers two equations of (2) at a time.
She sets r−1 = rn−1 = 0 for convenience. At the (i + 1)-st step for i = 0, 1, . . . , one
has

kai + ri−1 = an−1−i + ri g
kan−1−i + rn−2−i = ai + rn−1−i g

(3)

where ri−1 and rn−1−i are known from the previous step. If the non-negative numbers
in (3) also satisfy

a0, an−1>0, ai < g for i =0, 1, . . . , n − 1, r0>0 and ri < k for i =0, . . . , n − 2,

(4)

then Ludington Young writes

(rn−1−i , ri−1)

(rn−2−i , ri )

(an−1−i , ai )

and conversely. That is to say that the existence of non-negative solutions to (3) and
(4) is equivalent to the existence of a tree of the form

(0, 0)

(rn−2, r0)

(rn−3, r1)

. . .

(rn−1−i , ri−1)

(rn−2−i , ri )

(an−1, a0)

(an−2, a1)

(an−1−i , ai )

(5)

As an example, Ludington Young (1992a, p. 128, Example 1) considers the case for
g = 10 and k = 4 for which she gets the graph or rooted tree shown in Fig. 1 Note
that although these trees are in essence infinite, the tree in Fig. 1 is pruned after the
nodes from which no new information would emerge.
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Fig. 1 Pruned rooted tree for
g = 10 and k = 4

Now, how dowe use these trees to determine k-reversemultiples? LudingtonYoung
answers this with the help of two theorems:

Theorem 1 (Ludington Young 1992a, Theorem 1, p. 129): For a given g and k,
suppose a tree of the form (5) exists. Then there is an n = 2i + 2-digit number x
satisfying (1) if and only if rn−2−i = ri . In this case, x is given by

x = an−1an−2 . . . an−1−i ai . . . a1a0.

The theorem says that if there is a tree of the form (5) with a path of length n/2
for an even number n from the root to a node of the form (u, u), then there exists an
n-digit reverse multiple. Given a tree with such a node, we can then simply read off
the corresponding reverse multiple by first listing all the left entries of the labels of the
edges while following the path until we reach the node of the form (u, u), and then,
while going back to the root, listing all the right entries of these labels.

As an example, consider Fig. 1. The path from the starting node (0, 0) to the first
appearance of the node (3, 3) gives us the number 2178, which is one of the four-digit
reverse multiples from Hardy’s example (a). We could also pick the path from the root
to the second appearance of the node (3, 3). In this case, we would get the reverse
multiple 219978. Note that the tree in Fig. 1 is pruned; there are infinitely many more
4-reverse multiples in base 10.

Theorem 2 (Ludington Young 1992a, Theorem 3, p. 130): For a given g and k,
suppose a tree of the form (5) exists. Then there is an n = 2i + 3-digit number x
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satisfying (1) if and only if the graph contains

(rn−1−i , ri−1)

(rn−2−i , ri )

(ri , rn−2−i ).

(an−1−i , ai )

(an−2−i , ai+1)

Further, when this occurs, an−2−i = ai+1 = M = (rn−2−i g−ri )/(k−1). The desired
n-digit number x is given by

x = an−1an−2 . . . an−1−i Mai . . . a1a0.

In Fig. 1, there is an edge from (3, 3) to (3, 3)which ensures the existence of reverse
multiples with an odd number of digits according to the previous theorem, such as
21978. In this case, an−2−i = ai+1 = M = 9.

In her follow-up article (1992b), Ludington Young examines these trees in more
detail. Her main results are essentially of the type that if one or more labelled edges are
known along with their nodes, then other parts of the tree are also known in principle.

The mathematician Neil Sloane, who is best known for his role as the founder
and maintainer of the On-Line Encyclopedia of Integer Sequences (OEIS) (The OEIS
Foundation Inc. 2023), extends Ludington Young’s work in (Sloane 2014), which also
appeared in The Fibonacci Quarterly. He introduces, inter alia, modified versions of
Ludington Young’s trees, which are finite, directed graphs and which he calls Young
graphs, and determines the possible values of k for bases 2 ≤ g ≤ 100. Further,
he shows how to use the transfer-matrix method from combinatorics (by applying it
to the Young graphs) in order to enumerate the (g, k)-reverse multiples with a given
number of base-g digits. The Young graphs result from Ludington Young’s pruned
rooted trees by essentially identifying equal nodes, except for the starting node and
other occurrences of (0, 0). For instance, the pruned tree of Fig. 1 gives the Young
graph shown in Fig. 2 (2014, p. 104, Figure 4) (Note that Sloane uses square brackets
for the nodes and double brackets for the starting node.):

Sloane (2014) shows, among other things, how to apply the transfer-matrix method
to these Young graphs in order to determine their generating functions, i.e., formal
power series of the form

C(x) =
∑

t≥0

ct x
t ,

where the ct ’s denote the numbers of (g, k)-reverse multiples with t digits. One of
his concrete examples is the generating function for the number of all base-10 reverse
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Fig. 2 The (10, 4) Young graph

multiples, regardless of the multiplier. He gets (2014, p. 109)

C(x) = 2
∞∑

t=4

F� t
2 �−1xt = 2x4 + 2x5 + 2x6

+2x7 + 4x8 + 4x9 + 6x10 + 6x11 + 10x12 + 10x13 + · · · , (6)

where F� t
2 �−1 is the (� t

2�−1)-st Fibonacci number. So, in the base-10 case, the reverse

multiples are basically enumerated by the Fibonacci numbers.3 Note that the first 2,
i.e., the coefficient of x4, corresponds to the two reverse multiples in Hardy’s example
(a).

In general, Sloane (2014) identifies and characterizes in more detail three particular
families of Young graphs. For example, one such family is the isomorphism class of
the (10, 4) Young graph, which also contains the (10, 9) Young graph. Note that
two Young graphs are isomorphic if and only if their underlying directed graphs are
the same and some particular nodes of both graphs, each playing the same role in
identifying the reverse multiples, correspond to each other.

Furthermore, he presents several computer-generated results for bases g ≤ 20. For
example, all (g, k) values for which reverse multiples exist in this case are listed along
with a specification of the respective Young graphs (see (ibid., p. 115, Table 1)).

Sloane also raises some open questions and makes several conjectures, some of
which have been addressed by Lev Kendrick (2015). As Kendrick himself explains in
the abstract of his article:

3 Sloane (2014, p. 100) states in the introduction that “the first mention of this fact appears to have been
by D. W. Wilson” in his comment in OEIS on the sequence A001232 (1997). However, already in a talk
presented at a meeting of theBerliner Mathematischen Gesellschaft in 1915, the member Robert Burgmade
the connection between the numbers of base-10 reverse multiples and the Fibonacci numbers (Burg 1916,
pp. 15f.). There, Burg also noticed that (10, 9)-reverse multiples are precisely the numbers γ · β, where
γ = 99 and β is any positive palindromic decimal number consisting only of the digits 1 and 0, but where a
single 1 or 0 may never occur (1916, p. 18). This fact is again attributed by Sloane (2014, p. 100) to Wilson
(1997).

123



Global Philosophy             (2024) 34:1 Page 9 of 24     1 

We prove Sloane’s isomorphism conjectures for 1089 graphs [i.e., graphs that
are isomorphic to the (10, 4) and (10, 9) Young graphs; S.W.] and complete
graphs, namely that the Young graph for g and k is a 1089 graph if and only if
k + 1 | g and is a complete Young graph on m nodes if and only if �gcd(g −
k, k2 − 1)/(k + 1)� = m − 1. We also extend his study of cyclic Young graphs
and prove a minor result on isomorphism and the nodes adjacent to the node
[0, 0]. (2015, p. 1)

Besides these studies on reverse multiples, Benjamin Holt’s work should also be
mentioned. In a series of three papers (2014; 2016; 2017) that have all been published in
the electronic journal Integers, he also investigates the general phenomenon of reverse
multiples. In (Holt 2014), he establishes somegeneral properties of reversemultiples of
any base with an arbitrary number of digits using only elementary methods. In (2016),
Holt builds on Sloane and Kendrick’s work and is concerned with several families of
derived reverse multiples, i.e., reverse multiples where the carry numbers themselves
are digits of lower-base reversemultiples. Finally, in (Holt 2017), he generalizes results
on reverse multiples to an arbitrary permutation, i.e., he investigates numbers which
are integer multiples of some permutation of their digits, which he calls permutibles.

3 Hardy on SeriousMathematics

As mentioned earlier, Hardy’s Apology is meant to provide a justification of the study
of mathematics and that of a professional mathematician’s life, in particular that of
his own. He thinks that the “real” mathematics, i.e., the mathematics of the best
mathematicians (pure or applied), such as Fermat, Euler, Gauss, Abel and Riemann
(p. 119)4, but alsoMaxwell, Einstein, Eddington and Dirac (p. 131), is “almost wholly
‘useless’” (p. 119), so that one cannot justify it by its practical utility. According to
Hardy, the real mathematics must be justified as (a creative) art.

I have alreadypointed out in the introduction thatHardy introduces examples (a) and
(b) in his Apology as examples of non-serious mathematical theorems. They appear
together with his diagnosis (D) in §15, where he starts to explain a littlemore precisely
what he means by a “serious” theorem and a “significant” mathematical idea. In the
remainder of this section, I present Hardy’s main thoughts on these qualities which he
sets forth in his Apology.

The first time Hardy mentions the seriousness of a theorem and the significance
of a mathematical idea is in §11, where he explains quite at the beginning that con-
trary to chess problems which are “genuine mathematics,” but “in some way ‘trivial’
mathematics,” since “there is something essential lacking,” namely importance, “[t]he
best mathematics is serious as well as beautiful—‘important’ if you like, but the word
is very ambiguous, and ‘serious’ expresses what I mean much better” (pp. 88f.). To
further illustrate his ideas, he says that (hereinafter referred to as (S1))

4 Page references without additional information in the remainder of this article always refer to (Hardy,
1940/2012).
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(S1) The ‘seriousness’ of a mathematical theorem lies, not in its practical con-
sequences, which are usually negligible, but in the significance of the
mathematical ideaswhich it connects.Wemay say, roughly, that amathemat-
ical idea is ‘significant’ if it can be connected, in a natural and illuminating
way, with a large complex of other mathematical ideas. Thus a serious math-
ematical theorem, a theorem which connects significant ideas, is likely to
lead to important advances in mathematics itself and even in other sciences.
No chess problem has ever affected the general development of scientific
thought; Pythagoras, Newton, Einstein have in their times changed its whole
direction. (pp. 89f.)

He continues by emphasizing that “[t]he seriousness of a theorem, of course, does not
lie in its consequences, which are merely the evidence for its seriousness” (p. 90).

He then goes on and gives some examples of serious mathematical theorems. He
also provides proofs for two of them, namely Euclid’s proof that there are infinitely
many prime numbers (§12) and Pythagoras’s proof that

√
2 is irrational (§13). He

concludes these two sections by pointing out that compared to “Dudeney’s most inge-
nious puzzles” or “the finest chess problems that masters of that art have composed,”
the superiority of both Euclid’s theorem and that of Pythagoras stands out and that
“there is an unmistakable difference of class” (p. 98). The two ways in which their
superiority stands out is in their beauty and their seriousness. In §14, he then starts to
discuss the latter notion in more detail. There he says that this superiority is “obvious
and overwhelming” (p. 99) and explains that (hereinafter referred to as (S2))

(S2) The chess problem is the product of an ingenious but very limited complex
of ideas, which do not differ from one another very fundamentally and have
no external repercussions. We should think in the same way if chess had
never been invented, whereas the theorems of Euclid and Pythagoras have
influenced thought profoundly, even outside mathematics. (ibid.)

With respect to Pythagoras’s proof, Hardy points out that it is

capable of far-reaching extension, and can be applied, with little change of prin-
ciple, to very wide classes of ‘irrationals’. We can prove very similarly (as
Theodorus seems to have done) that

√
3,

√
5,

√
7,

√
11,

√
13,

√
17

are irrational, or (going beyond Theodorus) that 3
√
2 and 3

√
17 are irrational. (p.

100)

In general, he emphasizes the importance of both theorems in the development of
(modern) mathematics. While “Euclid’s theorem is vital for the whole structure of
arithmetic” (p. 99), “Pythagoras’s theorem and its extensions tell us that, when we
have constructed this arithmetic, it will not prove sufficient for our needs, since there
will be many magnitudes which obtrude themselves upon our attention and which it
will be unable to measure” (p. 100).
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Hardy begins §15 by reiterating that “[a] ‘serious’ theorem is a theorem which
contains ‘significant’ ideas” (p. 103). Since he thinks that “[w]e can recognize a
‘significant’ idea when we see it,” he tries to give “some sort of analysis” (ibid.). He
mentions “two things at any rate which seem essential” to a significant idea, namely “a
certain generality and a certain depth” (ibid.). With respect to the notion of generality,
he gives the following, tentative characterization:
Characterization of Generality: “A significant mathematical idea, a serious mathe-
matical theorem, should be ‘general’ in some such sense as this.”

(G1) “The idea should be one which is a constituent in many mathematical constructs,
which is used in the proof of theorems of many different kinds.”

(G2) “The theorem should be one which, even if stated originally (like Pythagoras’s
theorem) in a quite special form, is capable of considerable extension and is typical
of a whole class of theorems of its kind.”

(G3) “The relations revealed by the proof should be such as connect many different
mathematical ideas.” (p. 104)5

I speak of a “tentative” characterization, since immediately after he has presented the
ideas above, Hardy states that “[a]ll this is very vague, and subject to many reserva-
tions” (ibid.). He continues, however, as follows (hereinafter referred to as (A), where
“A” is meant to remind of “assessment”):

(A) But it is easy enough to see that a theorem is unlikely to be serious when
it lacks these qualities conspicuously; we have only to take examples from
the isolated curiosities in which arithmetic abounds. I take two, almost at
random, from Rouse Ball’s Mathematical Recreations. (ibid.)

He then presents his two examples (a) and (b), immediately followed by his diag-
nosis (D)which closes §15.

In §16, Hardy discusses the fact that in some sense, all mathematics is equally
general, or abstract, which should not be confused with his notion introduced in his
previous section. As he emphasizes, “[w]e are looking for differences of generality
between one mathematical theorem and another” (p. 107).

Finally, in §17, he addresses the notion of depth, which a significant idea should
have in addition to its generality. The notion of depth, however, “is still more difficult to
define” (p. 109) and is an elusive one even for mathematicians capable of recognizing
it (p. 112). He explains that “[i]t has something to do with difficulty; the ‘deeper’ ideas
are usually the harder to grasp: but it is not at all the same” (p. 109). Presumably as a
kind of first approximation, Hardy states:

It seems that mathematical ideas are arranged somehow in strata, the ideas in
each stratum being linked by a complex of relations both among themselves and
with those above and below. The lower the stratum, the deeper (and in general
the more difficult) the idea. (p. 110)

5 Note that Hardy does not present this within a “characterization” environment in the original text, along
with an enumeration (G1)–(G3). I have introduced this for ease of reference in my later discussion. In the
Apology the individual sentences that appear in my “characterization” simply occur as a continuous text.
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This is why he considers the “idea of an ‘irrational’” to be “deeper than that of an
integer”; and, because of that, Pythagoras’s theorem as deeper than Euclid’s (ibid.).
Moreover, he regards Euclid’s theorem to be “very important, but not very deep” since
the deepest notion involved in the proof is that of divisibility (p. 111).

Taking into account the research that has been done on the general phenomenon of
reverse multiples, which I discussed at least in part in Sect. 2, I would now like to take
a closer look at Hardy’s assessments of this phenomenon, which he makes in (A)and
(D), in terms of their accuracy.

4 A Closer Look at Hardy’s Notion of Generality

We will now begin with evaluating Hardy’s comments about his example (a). In this
regard, we will first discuss his assessment (A) in which he addresses his qualities
(G1) to (G3). After that, I will identify and argue for what I think is the most important
aspect of Hardy’s notion of generality. This will be crucial to my evaluation of Hardy’s
diagnosis (D), which I will turn to in Sect. 5.

4.1 Example (a) and the Three Qualities of Generality

Let us now take a closer look at Hardy’s assessment of example (a)made in (A) in
which he refers to the statements (G1)–(G3), by going through all these properties
one by one (in reverse order). Although it is not easy to evaluate his assessment—not
least because all the qualities he proposes in his characterization are “very vague, and
subject to many reservations”—I think it is worth doing anyway, partly because it will
help bring some clarity to what I think is the most important aspect of generality.
In assessing his statements, we should also keep in mind the context in which they
appear in his Apology: Hardy tries to characterize the best mathematics, which is both
beautiful and serious. In this regard, I will compare the respective findings with his
two most elaborated examples of serious theorems, namely those of Pythagoras and
Euclid.

Although Hardy does not give a specific proof of example (a) in his Apology, he
must have had a rather straightforward one in mind. A proof in this category can be
found, for instance, in (Webster and Williams, 2012/2013). To avoid some repetitive
work, one can first establish the fact that in base 10, the only possible values for k
are 4 and 9. A proof of this must not be restricted to the four-digit case, since it can
be essentially the same for an arbitrary number of digits—as the one proposed by
Webster andWilliams. For all the other possible values for k, i.e., 2, 3, 5, 6, 7 or 8, one
can arrive at contradictions with the help of the observation that kan−1 must be less
than or equal to 9 (to retain the number of digits) and (in the more “difficult” cases)
by comparing possible values for an−1 and a0. After this, one can convince oneself
that there are no 4 and 9-reverse multiples with less than four digits by obtaining some
simple contradictions and similarly that 1089 and 2178 are the only two four-digit
reverse multiples.
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Now, if we admit that Hardy is right in (A) that example (a) lacks quality
(G3) conspicuously, one might wonder whether his two examples from Greek math-
ematics do not also lack this quality, especially since, as Hardy himself points out,
“[t]hey are ‘simple’ theorems, simple both in idea and in execution” (p. 92).

With respect to (G2), possible examples of theorems of the kind of example (a) are
theorems of the form

• a, b, c, …are the only n-digit reverse multiples in base g;
• there are only m k-reverse multiples in base g with less than n digits;
• all k-reverse multiples in base g are of the form ABC D . . . E FG H (see, for
instance, Theorem 2.10 in (Webster and Williams, 2012/2013));

• the generating function for (g, k)-reverse multiples is given by C(x) = ∑
t≥0 ct xt ;

• the (g, k) Young graph is isomorphic to the (g′, k′) Young graph;
• the digits of the reverse multiple x of the familyF of reverse multiples correspond
to the carry numbers of the higher-base reverse multiple y;

• etc.

While I do think that Hardy was well aware that one could produce countless
theorems of the form listed in the first two to three points above (that are not only
concerned with the base-10 case)—which is why he probably added the restriction
“considerable” to (G2)—I nevertheless think that he might have underestimated the
potential of (a)with respect to (G2), given the other items of the enumeration.

Besides the particular examples of irrationals to which Pythagoras’s proof can be
applied “with little change of principle” which I have reproduced in Sect. 3, Hardy
also refers in a subsequent footnote to Chapter IV of An Introduction to the Theory of
Numbers (1938) which he co-authored with E.M.Wright “where there are discussions
of different generalizations of Pythagoras’s argument” (p. 100).More precisely, Hardy
and Wright present two proofs of the theorem that

m
√

N is irrational, unless N is the m-th power of an integer n.

one of which is a (close) generalization of Pythagoras’s proof that Hardy provides
in the Apology, and one proof of the theorem that

If x is a root of an equation xm +c1xm−1+. . .+cm = 0,with integral coefficients
of which the first is unity, then x is either integral or irrational.

which is a generalization of a “very similar” argument to that of Pythagoras (1938,
pp. 39–41).

However, compared to these extensions of Pythagoras’s proof or to the case of
Euclid’s theorem, where Hardy mentions no extension at all, it seems that (a) is not
worse off.

To sum up, I take it to be the case that example (a) is not (decisively) worse off than
Hardy’s two serious theorems with respect to the qualities (G3) and (G2).

That being said, I think this is quite different for quality (G1). Although again
he does not elaborate on how exactly example (a) conspicuously lacks this quality, I
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think that “the idea” he speaks of in (G1) refers in this case to the concept of a reverse
multiple itself.6

First, while there are—as we saw in Sect. 2—some possible “constructs” in which
this idea is a constituent, such as Ludington Young’s rooted trees, Sloane’s Young
graphs, and Holt’s permutibles, I do not think there are enough to count as “many” (as
required by (G1)). Secondly, and, what I take to be much more important, is the fact
that the idea of a reverse multiple—even considering all the research that has been
carried out on this phenomenon since the publication of Hardy’s Apology—does not
(yet) occur in proofs of theorems of many different kinds. For instance, (so far) Young
graphs do not appear in proofs of theorems of other areas of research.

This is in stark contrast to Hardy’s twomain examples of serious theorems. Because
of the fundamental character of the ideas contained in the theorems of Euclid and
Pythagoras for the development of mathematics, namely the idea of the infinity of
primes or the notion of a prime number itself and the idea of an irrational number, it
is clear that they score highly in terms of quality (G1).

4.2 TheMost Important Aspect of Generality

We should now take a step back and have a look at qualities (G1)–(G3) themselves
and how they relate to each other. While quality (G1) is explicitly about the generality
of mathematical ideas themselves, (G2) addresses theorems in general and (G3) their
proofs.

When comparing these qualities of generality—which itself is introduced as an
essential property of a significant mathematical idea and a serious theorem—we find
that a general theme present in all of them is the connectednesswithmoremathematics.
As the reader may recall (cf. especially (S1)), according to Hardy, the seriousness of
a mathematical theorem lies in the significance of the ideas which it connects or
contains, which makes quality (G1) the most fundamental and important one out of
the three, even if one is interested in the generality (and ultimately in the seriousness)

6 If this seems obvious to the reader, so much the better for my argumentation. There are, however, some
complications in trying to evaluate his assessment made in (A) in terms of the quality (G1) in thinking about
example (a). Aswe now know, for Hardy a serious theorem is one that connects or contains significant ideas.
The question that arises in this context is whether we should treat theorems and their proofs separately.
The passage of the Apology in which Hardy discusses the “purely aesthetic” qualities of the theorems
of Euclid and Pythagoras seems to contradict such an interpretation. There, indeed, the theorems and
proofs are considered as a kind of unity. As Hardy puts it: “In both theorems (and in the theorems, of
course, I include the proofs) there is a very high degree of unexpectedness, combined with inevitability and
economy” (p. 113). The same approach of considering theorems together with their proofs is also inherent
in his discussion of why Euclid’s theorem is important, but not very deep (cf. the end of Sect. 3). In fact,
(G3) itself indicates that a proof of a theorem can also play a role in evaluating theorems in terms of their
seriousness. In general, we might wonder whether a theorem, which is about rather “non-general” (with
respect to (G1)), “superficial” or non-significant ideas, but which requires a highly nontrivial proof that
involves a huge amount of significant ideas might nevertheless turn out to be serious. In this context, one
might also wonder whether different proofs of a theorem have different effects on the seriousness of a
theorem. With respect to the former question, a possible indication that it would have been answered by
Hardy in the negative can be found in his discussion of the notion of depth where he compares this notion to
difficulty and explains that there are not only cases of deep theorems which are not difficult, but also those
which “may be essentially superficial and yet quite difficult to prove” (p. 110). Nevertheless, we cannot
answer these questions satisfactorily with what Hardy gives us in his Apology.
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of a theorem and its proof. This is also immanent in the discussion of Sect. 4.1 above,
for as we have seen, it is precisely this quality that distinguishes the serious (and thus
general(!)) theorems of Euclid and Pythagoras.

As a reminder, in Hardy’s first, rough characterization of significance (cf. (S1)), he
explains that a mathematical idea is significant “if it can be connected, in a natural
and illuminating way, with a large complex of other mathematical ideas.” I think that
part of this characterization is that these “other mathematical ideas” should also be
distinctly different from each other in a large number. This is supported, first and
most importantly, by the fundamental quality (G1) itself, where he explicitly talks
about “many different kinds” (emphasis added) (and for that matter also by (G3),
where the emphasis is on a connectedness to many different mathematical ideas).
Secondly, indirectly by his comparison of serious mathematical theorems with chess
problems: recall that in §14 of theApology, Hardy discusses the seriousness of Euclid’s
theorem and that of Pythagoras as one important way in which their superiority lies
when compared to chess problems. There, he emphasizes that a chess problem “is
the product of an ingenious but very limited complex of ideas, which do not differ
from one another very fundamentally and have no external repercussion” (cf. (S2)).
Finally, I think that the aspect of connectedness to other, different mathematics is also
indirectly emphasized in (A), when Hardy uses its antonym to refer to his examples
(a) and (b) by calling them isolated curiosities—especially since I am convinced that
in the case of (a) he was well aware that one could produce innumerable theorems of
the form given in the first two items of my list presented in Sect. 4.1.

For these reasons, I believe that (nontrivial) connectedness to a large complex
of appreciably different mathematical ideas is not only the most important aspect of
Hardy’s notion of generality, but also a necessary condition for an idea to be considered
significant or a theorem to be serious.

Beforemoving on to the next sectionwherewewill have a look at Hardy’s diagnosis
here referred to as (D), there are three points which should be made.

First, I have added the term “nontrivial” to my characterization of the most impor-
tant aspect of generality (at least in parentheses) to do justice to the fact that qualities
(G1)–(G3) do not talk about any connectedness to other mathematical ideas, but about
quite specific ones. For instance, given the foundational role of set theory, essen-
tially all mathematical concepts and results can be formalized within this theory, thus
establishing a connection between all of them. However, if this was the apparent only
connection between two different concepts, it would be quite trivial in some respects.7

Secondly, one should notice that, according to my conclusion, scoring well on
quality (G2)while lacking the other two, makes a theorem not general, at least not

7 Note that part of Hardy’s first, rough characterization of the significance of a mathematical idea is not
only its connectedness to a large complex of other mathematical ideas, but also the way these other ideas
are connected to the one, particular idea. They are supposed to be connected in a natural and illuminating
way. The need of adding this condition seems to be in line with the example of set theory as a foundation
for mathematics above. (Thanks to an anonymous referee for prompting me to address this point.) One
might wonder, however, in what way this additional condition relates to Hardy’s discussions of generality
and depth in §15 and §17, respectively. Perhaps this condition is (at least partially) implicitly addressed in
these discussions; or it should even be seen as a further condition for an idea to be considered significant in
the first place. Unfortunately, Hardy does not address this issue. And since I am mainly concerned in this
article with his discussion of generality presented in §15, I will not speculate further on it here.
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in the sense required for it being serious. I think this is a welcome result, since a
rather isolated mathematical theorem is not made much less isolated, at least not if it
is understood as part of the broad mathematical research landscape, when only other
results of its kind are added. Moreover, it seems that such a theorem is very unlikely
to lead to important advances in mathematics, unlike serious theorems (cf. (S1)).

Thirdly, while I believe that Hardy admits that the seriousness of a theorem and
the significance of a mathematical idea can come in degrees, I do not think that this
compromises the correctness of my conclusion above, especially with respect to its
secondpart that themost important aspect I have identified is also anecessary condition
for significance and seriousness. To begin with, that these notions can actually come
in degrees is in my opinion contained in Hardy’s conclusion of the Apology. While
he focuses on examples of the best mathematics in his discussion of the seriousness
of a theorem, in his ultimate conclusion on the value of his own mathematical life
he declares that his work differs only in degree, not in kind, from that of the great
mathematicians:

The case for my life, then, or for that of any one else who has been a mathe-
matician in the same sense in which I have been one, is this: that I have added
something to knowledge, and helped others to add more; and that these some-
things have a value which differs in degree only, and not in kind, from that of
the creations of the great mathematicians, or of any of the other artists, great or
small, who have left some kind of memorial behind them. (p. 151)

That he does not think, however, that all mathematics is of this kind with respect to
seriousness is shown, amongother things, by his demarcation of chess problems,which
are “genuine mathematics,” but lack something essential, namely importance or seri-
ousness, and “real”mathematics (cf. Sect. 3); and by his examples (a) and (b) “inwhich
arithmetic abounds” themselves as proposed examples of mathematical(!) theorems
which are not serious.8 I think my discussion above makes it perfectly reasonable to
call theorems—within Hardy’s framework—not of that kind which are conspicuously
lacking in the most important aspect of generality, as I have identified it.

5 Hardy’s Diagnosis Revisited

As a reminder, in §15–§17 of the Apology (cf. Sect. 3), Hardy explains a little more
precisely what makes a mathematical idea significant, or a theorem serious. Specif-
ically, in §15, he focuses on the notion of generality in the sense that this quality is
essential to a serious theorem or a significant idea. After having introduced his ten-
tative characterization of generality consisting itself of the qualities (G1)–(G3), he
presents (a) and (b) as examples which are said to be conspicuously lacking in these
qualities (cf. (A)). He then concludes the section with diagnosis (D).

8 Note that Hardy’s distinction between real mathematics and “trivial” mathematics which he addresses
in §25–§28 is primarily based on their “aesthetic merit” (p. 134), i.e., on the second criterion, besides
seriousness, by which the patterns of mathematicians ought to be judged.
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5.1 Example (a) and its Generalizations

Let us first evaluate the second part of (D), namely Hardy’s statement that “[t]he
theorems are not serious; and it is plain that one reason (though perhaps not the most
important) is the extreme speciality of both the enunciations and the proofs, which are
not capable of any significant generalization,” with respect to example (a).

To begin with, I just want to take a quick look at Hardy’s insertion that the reason he
gives is “perhaps not the most important” one, because he does not further elaborate
on this. As mentioned in Sect. 3, for Hardy a certain generality is not the only thing
which seems essential for a significant idea. The other one he mentions in §15 and
elaborates in §17 is depth. So perhaps he meant to imply that the main reason why the
examples (a) and (b) are not serious is that they are not deep. However, I will refrain
from any further speculations on this issue and turn to the more interesting part of his
statement, at least with regards to my concerns here.

First, I think that we should not confuse his use of the word “significant” in this
sentence with his rather technical notion of significance, which he uses in the context
of a “significant idea.” This is because at this point in the Apology he has only begun a
more detailed analysis of his technical notions of significance and seriousness, which
will occupy him up to and including §17. A reference to this notion in the conclusion
of §15, i.e., in the last sentence of (D), would then in principle transform it into a
statement such as “These are not serious theorems, because they are not serious.”

Moreover, when we try to make sense of this sentence, we must of course consider
the context inwhich it appears. It is the last sentence of §15—inwhichHardy ismainly
concerned with the notion of generality—and should be understood as such, namely
as his concluding remark about why examples (a) and (b) are not serious, given his
assessment of their generality. While he has already stated in (A) that these examples
are conspicuously lacking in qualities (G1)–(G3), I think he added the phrase “which
are not capable of any significant generalization” (emphasis added) to emphasize
that there are also no generalizations of (a) and (b) that would qualify as “general”
themselves—at least not in the sense or to the extent necessary to count as significant
ideas or serious theorems themselves. In other words, he wanted to make clear that not
only examples (a) and (b) show an extreme speciality in both their enunciations and
their proofs, but also that there are no generalizations which would make them much
less isolated, to the point where one might start doubting whether his two examples
are in fact examples of non-serious theorems.

It is necessary to stress this point, since I think it has been misinterpreted by several
of the researchers who have recently contributed to the general phenomenon of reverse
multiples. So, before I will evaluate whether Hardy’s upshot is still tenable after all
the research that has been carried out on this phenomenon, let us first have a look at
what some of the researchers have to say about this.

For instance, Lara Pudwell (2007, p. 129) states that

In A Mathematician’s Apology [(Hardy 1993); S.W.] G. H. Hardy states, “8712
and 9801 are the only four-figure numbers which are integral multiples of their
reversals”; and, he further comments that “this is not a serious theorem, as it is not
capable of any significant generalization.”However, Hardy’s commentmay have
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been short-sighted. In 1966, A. Sutcliffe [(1966); S.W.] expanded this obscure
fact about reversals. Instead of restricting his study to base 10 integers and their
reversals, Sutcliffe generalized the problem to study all integer solutions of

k(ahnh + ah−1nh−1 + · · · + a1n + a0) = a0nh + a1nh−1 + · · · + ah−1n + ah

with n ≥ 2, 1 < k < n, 0 ≤ ai ≤ n − 1 for all i , a0 	= 0, ah 	= 0.

Benjamin Holt (2014, pp. 1f.) claims that

The most well-known examples of base-10 palintiples include 87912 and 98901
since 87912 = 4 · 21978 and 98901 = 9 · 10989. […] At first glance it may
seem that such numbers are merely curiosities that only make for cute puzzle
problems. Such was the belief of G. H. Hardy who, in his classic essay A Math-
ematician’s Apology [(Hardy 1993); S.W.], cited the fact that “8712 and 9801
are the only four-figure numbers which are integral multiples of their ‘rever-
sals’” as an example of a theorem that is not “serious.” Furthermore, “[this fact
is] very suitable for puzzle columns and likely to amuse amateurs, but there is
nothing in them which appeals much to a mathematician” and is “not capable of
any significant generalization.” Sutcliffe [(1966); S.W.], Pudwell [(2007); S.W.],
and Young [(Ludington Young 1992a); S.W.] demonstrate otherwise; in spite of
Hardy’s comments the palintiple problem generalizes quite naturally.

And Lev Kendrick (2015, pp. 1f.) says that

Ironically, themost prominentmention of these numbersmaywell have curtailed
their prominence: G. H. Hardy, in A Mathematician’s Apology, refers to the fact
that 1089 and 2178 are the only four-digit (10, k) reverse multiples as one “very
suitable for puzzle columns and likely to amuse amateurs,” but “not serious” and
“not capable of any significant generalization.”While we abstain from judgment
on the first two counts, it is clear, after the intervening decades, that Hardy
misjudged regarding the third. [footnote: The only refuge for his position being in
the nebulous qualifier “significant.”] A number of works generalize the problem,
a list of most of which may be found in Sloane’s 2013 paper [(2014); S.W.] on
the topic [cf. Sloane’s comment below; S.W.]; […].

Despitewhat these researchers say, I do not think that thework done so far on reverse
multiples, and especially not the papers explicitly or, in Kendrick’s case, implicitly
mentioned by them (and by Sloane in his comment below), namely (Sutcliffe 1966),
(Pudwell 2007) and (LudingtonYoung 1992a), show thatHardywaswrong. In general,
I believe their diagnoses are ultimately due to a misinterpretation of the “nebulous
qualifier ‘significant’” (as Kendrick puts it).

As I have already explained above, the context in which diagnosis (D)appears
in the Apology—and hence the phrase “which are not capable of any significant
generalization”—suggests that this qualifier refers to Hardy’s assessment of the gen-
erality of the “isolated curiosities” (a) and (b), and to whether possible generalizations
would call into question their (alleged) status of being isolated. I have argued in
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Sect. 4.2 that the most important aspect of generality and at the same time a necessary
condition for an idea to be considered significant or a theorem to be serious is the
(nontrivial) connectedness to a large complex of appreciably different mathematical
ideas. Although the research done so far has shown that the general phenomenon of
reverse multiples is anything but trivial (in terms of difficulty), I do not think it has
shown that this phenomenon is connected to so much other, different mathematics
that it would no longer be considered “isolated.” In particular, in the case of Lud-
ington Young’s (1992a) work, presented in the comments by the researchers above
as a counterexample to Hardy’s claim, the reader can easily see for themselves, as I
discussed it quite extensively in Sect. 2, that while Ludington Young has introduced
a new technique (in the form of graphical representations) for studying reverse mul-
tiples, this technique does not in itself show that this phenomenon is connected to
a much larger complex of other, different mathematical ideas, which would make it
much less isolated. Moreover, as I have already mentioned in Sect. 4.1 in the context
of evaluating example (a)with respect to quality (G1), even the follow-up work on
these graphical representations in form of Sloane’s Young graphs has not (yet) shown
that the phenomenon of a reverse multiple is (nontrivially) connected to other areas
of research, since these graphs do not (yet) appear in proofs of theorems of different
kinds.

In my opinion, Neil Sloane has misinterpreted the phrase “not capable of any
significant generalization” in a similar way to Pudwell, Holt, and Kendrick. But in
doing so, he also presents another interpretation of the entire passage. He says (2014,
p. 99):

In 1940, G. H. Hardy [(Hardy 2000); S.W.] famously remarked that the exis-
tence of these two numbers was “likely to amuse amateurs”, but was not of
interest to mathematicians, since this result is “not capable of any significant
generalization”. It seems fair to say that Hardy was wrong, since references
[(Grimm and Ballew 1975), (Laisant et al. 1908), (Kaczynski 1968), (Klosinski
and Smolarski 1969), (Pudwell 2007), (Sutcliffe 1966), (Webster and Williams
2012/2013), (LudingtonYoung 1992a), (LudingtonYoung 1992b); S.W.] discuss
generalizations.9

Similarly, the mathematician Solomon Golomb (2014) explains in his review of
Sloane’s article that

Using the special case of the two numbers 1089 and 2178, G. H. Hardy gave
this problem notoriety in his A mathematician’s apology [(Hardy, 1940); S.W.],
by commenting that it was “likely to amuse amateurs” but was not of interest
to mathematicians, since it was “not capable of any significant generalization”.
With the present paper, there are now at least ten works that discuss nontrivial

9 Note that two of the papers listed by Sloane have not been mentioned in Sect 2. Both of them are rather
short papers, not longer than three pages. After characterizing all base-10 reverse multiples, Klosinski and
Smolarski (1969) determine two specific families of reverse multiples of bases not restricted to 10. Grimm
and Ballew (1975) first list all base-10 reverse multiples less than 109 which they have determined using a
CDC 3400 (where they allow “reverse multiples” to have a zero as their first digit). Then, they present an
algorithm for generating 3-digit reverse multiples of bases not restricted to 10.
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generalizations.This furnishes yet another example (alongwith his statement that
relativity and quantum mechanics were unlikely to have practical applications)
of the unreliability of Hardy’s assertions in his famous Apology.

However, in (D), Hardy is only using the phrase “not capable of any significant
generalization” in his upshot of why examples (a) and (b) are not serious. While Hardy
might have been of the opinion that (a) is ultimately not of interest to mathematicians
because it is not capable of any significant generalization, this is not what he says in
(D). In this context, one might also wonder whether Hardy thought that only serious
theorems are, or rather should be of interest to a (real) mathematician. Especially the
final conclusion of his Apology (cf. the end of Sect. 4.2), which occurs in the context of
his justification of his ownmathematical life, makes such a normative view onHardy’s
part not implausible. Although I will not go into this any further here, I will return to
mathematicians’ interests more generally in Sect. 5.2.

Overall, while I do not want to completely rule out the possibility that at some point
it might turn out that reverse multiples can be (nontrivially) connected with a large
complex of different mathematics, I still think Hardy’s conclusion, expressed in the
last sentence of diagnosis (D) is tenable.

Note that some (if not all) of the above comments by researchers, especially those of
Pudwell and Holt, seem to suggest that Hardy was not aware that his base-10 example
(a) can also be generalized to arbitrary bases and that one can also seek solutions to
the general Equation (1). However, this assumption does not seem very convincing to
me. Why should he not have been aware of this obvious, natural idea? In this respect, I
think my interpretation, together with my evaluation of Hardy’s assessment of (a)with
respect to (G2) (cf. Sect. 4.1) is much more plausible.

5.2 Mathematical Interest is Multifaceted

In the first sentence of (D), Hardy states that examples (a) and (b) “are likely to amuse
amateurs, but there is nothing in them which appeals much to a mathematician.” What
about the accuracy of this statement in light of the research that has been conducted
on the general phenomenon of reverse multiples since the publication of Hardy’s
Apology?

Section 2 shows that quite a few researchers are/were interested in reverse multi-
ples over the last sixty years or so. While some of them might qualify as “amateur
mathematicians”—meaning that they have not donemuch other, more traditional work
at the university research level—and in this sense maybe qualify as “amateurs” in
Hardy’s understanding, such as Sutcliffe, Holt and Kendrick,10 this does not apply to
everyone. For example, not to Lara Pudwell, who, although still a doctoral student
at the time of publication of her (2007), is now a full professor in the department of
mathematics and statistics at ValparaisoUniversity; and not toAnne LudingtonYoung,
who is an emeritus professor of mathematics at Loyola University Maryland; and, of

10 The online bibliographic database MathSciNet mentions in the case of Alan Sutcliffe only one further
article which has been published in the academic journal of mathematics education The Mathematical
Gazette also in 1966; besides the three papers on reverse multiples only one from 2005 which also appeared
in Integers in the case of Benjamin Holt; and no other work in Lev Kendrick’s case.
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course, not to the renowned mathematician Neil Sloane. At least these examples sug-
gest that, although, as Kendrick appropriately points out, Sloane’s list of references “is
rather short for a problem given such exposure as a mention in Hardy’s book” (2015,
p. 2), Hardy’s diagnosis that there is nothing in example (a) “which appeals much to a
mathematician” is not true in all its generality. Concerning the “appeal” of some of the
research carried out on reverse multiples, Sloane makes some interesting comments
to which we will now turn.

After having determined the generating function for the number of all base-10
reverse multiples, regardless of the multiplier (Equation (6)), Sloane (2014, p. 109)
asks: “Would this generating function have changedHardy’s opinion of the problem?,”
which, most likely, is meant to mainly address the appeal of example (a) for Hardy,
based on what Sloane said in a talk about this topic. In this talk which he gave at
the Rutgers Experimental Mathematics Seminar at Rutgers University on October 10,
2013, this question also appeared on his slides after he has determined the generating
function (6). Although he did not read it out loud, he said with respect to his result
“Thismight even have impressedHardy” but added immediately after “Though I doubt
it” (2013, 22:18–22:22).

Furthermore, Sloane explains in the abstract of his article: “These Young graphs
are interesting finite directed graphs, whose structure is not at all well understood”
(2014, p. 99, emphasis added). And, in his talk, he calls Ludington Young’s (1992a;
1992b) “two really interesting papers” (2013, 6:10–6:18).

These are all statements in which Sloane expresses his own appreciation of (some
results on) the phenomenon of reverse multiples.

We could even go a step further and argue with the help of Robert Thomas’s (2017),
that the articles mentioned in Sect. 2, because they all have been published in journals,
already show value, namely the aesthetic value of being interesting. As Thomas (2017,
p. 118) claims—mainly based on his ten years of experience as a managing editor
of a mathematical research journal—“‘interesting’ is a sine qua non of publishable
mathematical research” and, consequently, that it “is an aesthetic feature seen in all
published mathematics.”

In this context, one might wonder, however, whether one should treat all pub-
lications in the same way. In mathematics, there is an (alleged) distinction that is
occasionally brought up, namely that between serious and recreational mathematics,
which is perhaps also partly reflected in Hardy’s discussion. As a reminder, examples
(a) and (b)were taken, by Hardy, “almost at random, from Rouse Ball’s Mathematical
Recreations” (cf. (A)). So, if a paper, such as Grimm and Ballew’s (1975) is published
in a journal devoted to recreational mathematics, is then its aesthetic feature of being
interesting of the same kind as a paper published in journals exclusively devoted to
“seriousmathematics”?Or should not also all the other work done on reversemultiples
be characterized as rather recreational? Furthermore, is there a general difference in
kinds between interesting serious and interesting recreational mathematics?

The problem with these questions is that there is no sharp boundary between “seri-
ous” and “recreational” mathematics. For instance, a problem may start out as a mere
recreation, but develop into quite useful mathematics. As Ian Hacking (2014, p. 77)
explains:
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There are paths that lead on from mere amusements to things that Hardy might
count as serious. The example of squaring the square is a case in point. Tutte’s
own (1958) account of the events was published in Gardner’s column. The prob-
lem began in part with Dudeny’s puzzle of Lady Isabel’s Casket (§1.28). It
turned into moderately deep questions with applications to electrical analysis.
And Hardy’s collaborator Littlewood used the proof, of the impossibility of a
cube dissection, as an exemplar of good proof. A silly puzzle evolves into fairly
good maths.

There would be much more to say about the merits of recreational mathematics
and its connection to more “serious” mathematics, but that is beyond the scope of this
article. Let us conclude this section by returning once again to Neil Sloane.

As for him, he is not much concerned with such a distinction. In an interview
published in Quanta Magazine (Klarreich 2015), Sloane was asked whether he felt
“that there is a divide between ‘serious mathematics’ and ‘recreational mathematics’,”
or whether he tended “not to think in those terms” to which he answered:

I don’t think in those terms. I don’t think there’s much difference. If you look
hard enough, you can find interesting mathematics anywhere. (ibid.)

Therefore, I think Sloane’s disagreement with Hardy on the appeal of reverse
multiples to a mathematician is a genuine example of the multifaceted nature of math-
ematical interest.

6 Conclusion

Aswe have seen, somework has been done on the general phenomenon of reversemul-
tiples since the publication of Hardy’s Apology. Among other things, particular finite,
directed graphs, called Young graphs, were introduced to study this phenomenon.

I have argued, however, that this work does not (yet) threaten Hardy’s claim that his
example (a) is “not capable of any significant generalization.” To do this, I have first
argued that when read in its context, this phrase should be understood as an empha-
sis that there are no generalizations of this example (and of example (b)) that would
qualify as “general” themselves, at least not in the sense or to the extent necessary to
qualify as candidates for serious theorems. Then, with the help of what I take to be the
most important aspect of Hardy’s notion of generality and a necessary condition for
an idea to be considered significant or a theorem to be serious, namely its (nontriv-
ial) connectedness to a large complex of appreciably different mathematical ideas, I
have argued that Hardy’s upshot is still tenable, which is in contrast to what several
researchers, who worked on the general phenomenon of reverse multiples, say.

Finally, I have suggested that especially Sloane’s appreciation of some results on
reverse multiples, in contrast to Hardy’s generally dismissive attitude towards the
notion of a reverse multiple, makes this phenomenon a genuine example of the mul-
tifaceted nature of mathematical interest.
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