
Vol.:(0123456789)

Global Philosophy (2023) 33:13
https://doi.org/10.1007/s10516-023-09662-6

1 3

ORIGINAL PAPER

On Giving Meanings to Programs

Felice Cardone1

Received: 30 September 2022 / Accepted: 22 November 2022 / Published online: 31 January 2023
© The Author(s) 2023

Abstract
In a short section on the semantics of programs within his discussion of program
correctness, Primiero seems to endorse the received view on the Scott-Strachey
approach to denotational semantics as directly related to correctness. While this is
true to some extent, I argue that the mathematical entities associated with programs
play a lesser role in reasoning on program correctness, while the mathematical foun-
dations of denotational semantics, namely the theory of domains, have contributed
significantly to the conceptual understanding of programming and of computation in
general

Keywords Foundations of computing · Denotational semantics · Scott domains

1 Introduction

I would like to focus on a tiny part of Primiero’s monograph, namely his mention
of denotational semantics in Chapter 7. This is due in part to autobiographical rea-
sons, as I have been working for a few decades along the lines of the denotational
approach, mostly in its applications to type theories for programming languages.
Leaving aside this sentimental motivation, I would like to comment extensively
on a statement (Primiero 2019, p. 96) which summarizes the received view of the
Scott-Strachey contribution and starts a short section on semantics as one of several
approaches to correctness:

To establish a precise correspondence between programs and mathemati-
cal entities entirely independently of implementation was also the task of the
denotational semantics developed by Scott and Strachey in the 1960s.

My purpose in this paper will be to argue that the mathematical entities associated with
programs play a lesser role as practical tools for reasoning on program correctness,
while the mathematical foundations of denotational semantics, namely the theory of

 * Felice Cardone
 felice.cardone@unito.it

1 Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10516-023-09662-6&domain=pdf
http://orcid.org/0000-0002-4841-614X

 Global Philosophy (2023) 33:13

1 3

13 Page 2 of 15

domains, have contributed significantly to the conceptual understanding of program-
ming and of computation in general. This will also give us the occasion to touch on
several foundational issues that recur throughout Primiero’s book, such as implementa-
tion, miscomputation and correctness.

2 The Semantical Problem for Programming Languages

2.1 A Simple Language and its Denotational Semantics

In order to give an idea of the denotational approach, I start from a miniature language
whose purpose is not only to give an idea of the general method, but also to expose
some of what I regard as foundational weaknesses in that approach.

The example is suggested by §33 of Wittgenstein’s Brown Book (1936), and con-
sists of basic instructions for moving one step in each direction N, S, E and W along a
grid with integer coordinates. The basic instructions can then be composed to describe
paths: we can imagine this as a toy instruction language for a robot, or a fragment of a
language for choreography; a path is then an algorithm for reaching the end point from
the starting point.

It is easy to interpret these instructions operationally, each as the performance of the
corresponding move. The denotational semantics of an instruction is defined as a func-
tion that maps the starting point of the corresponding path to its end point:

The interpretation is extended to all finite instruction sequences by structural
recursion:

Observe that this extension makes the interpretation, literally, compositional: the
meaning of a compound instruction is computed as a function of the meanings of its
components. For example, we have

as a consequence of the following steps:

[[↑]](x, y) = (x, y + 1),

[[↓]](x, y) = (x, y − 1),

[[→]](x, y) = (x + 1, y),

[[←]](x, y) = (x − 1, y).

[[S1;S2]](x, y) = [[S2]](x
�, y�), where (x�, y�) = [[S1]](x, y).

[[↑ ; → ; ↓]](x, y) = (x + 1, y)

1 3

Global Philosophy (2023) 33:13 Page 3 of 15 13

These calculations show the equivalence of the compound instruction ↑ ; → ; ↓ with
the basic instruction → : indeed, for all (x, y), we have

Observe that this equivalence follows from the decision to regard instructions, exten-
sionally, as transformations from initial to final points. The intepretation of instruc-
tions as whole paths is closer to an operational, intensional viewpoint, and makes
the equivalence above fail, because the paths

have the same endpoints but consist of disjoint moves.
Our simple language exhibits several familiar features of programming lan-

guages: it consists of instructions that are interpreted as state transformations (here
states are points on the cartesian plane with integer coordinates); instructions can
be composed and the interpretation of instructions is compositional; interpretation
automatically defines semantical equivalence of instructions. Furthermore, there is a
constrast between paths as intensional meanings of instructions and their extensional
traces consisting of the coordinates of their extremities. My claim is that, despite its
simplicity, the contemplation of this language exposes general foundational prob-
lems of the denotational approach.

2.2 Meaning, Correctness and Implementation

A first question concerning this toy language is whether the denotational interpreta-
tion that I have sketched is helpful in defining an implementation of the language.1
Observe that implementation here may consist in several different things, according
to the level of abstraction. It might consists in a human performing the instructions
according to their interpretations, or in programming a robot to obey the instruc-
tions, or in a robot obeying the instructions. In any case, implementation has to pass
through a semantic interpretation specifying the meaning of instructions.

[[↑ ; → ; ↓]](x, y) =

= [[→ ; ↓]][[↑]](x, y)

= [[→ ; ↓]](x, y + 1)

= [[↓]][[→]](x, y + 1)

= [[↓]](x + 1, y + 1)

= (x + 1, y)

[[↑ ; → ; ↓]](x, y) = (x + 1, y) = [[→]](x, y)

1 There is a considerable amount of literature on this topic in the philosophy of computing, summarized
and discussed in (Primiero 2019, Ch. 11).

 Global Philosophy (2023) 33:13

1 3

13 Page 4 of 15

Now, one basic observation is that these meanings have been specified by means
of transformations of pairs of integer numbers, but these pairs in themselves do not
have any geometric significance. Their geometric rendering presupposes that we
already know what it means, for example, to move one step right, i.e., assumes that
the meaning of the instruction → is already understood, hence that it is more basic,
for the clause [[→]](x, y) = (x + 1, y) to make any sense. Indeed, how could we teach
this language by explaining the meaning of the instructions by means of this denota-
tional interpretation?

The same applies to the interpretation of ordinary programming constructs. Con-
sider for example the while instruction:

 where b is a boolean expression and S an instruction. Intuitively, this instruction is
executed by performing the following actions starting form a state � :

1. evaluate b in �;
2. if the result is true, then execute S from � and go to 1; otherwise stop.

Denotationally, we must interpret this instruction as a state transformation
� = [[����� (�) �� �]] that satisfies the fixed point equation

This fixed point is the mathematical representation of the process of repeatedly per-
forming � until � becomes false. Therefore this example is subject to the same circu-
larity as before: understanding the interpretation of the while instruction amounts
to having grasped the technique of iterating a transformation, which is the intuitive
meaning of this instruction.

Consider Wittgenstein’s criticism of Russell’s attempt to reduce the practice of
decimal arithmetic to its unary encoding (Wittgenstein 1956, §II 3): I believe that
the same arguments can be turned against any attempt to reduce the meaning of
programming constructs to a denotational specification of their interpretation, if
meaning has to be what allows us to teach a language to people who haven’t seen
it before. Instead, it is most likely that teaching such a basic language as that in the
example can be achieved by developing a practice that consists in making appropri-
ate gestures.2

The original motivation for the Scott-Strachey approach included using denota-
tional meanings as a standard against which to assess correctness of implementa-
tion, for example of a compiler. This is what normally is taken to be the normative

� = ��. if [[�]]� then �([[�]]�) else �

2 Gestures have increasingly been recognized as playing a fundamental cognitive role in the constitution
of mathematical objects: I expect that this applies even more appropriately to computing. On this, see
(Longo 2005) and the references cited therein.

1 3

Global Philosophy (2023) 33:13 Page 5 of 15 13

role of semantics, the yardstick allowing to recognize those cases where some kind
of miscomputation must have taken place, originating for example from systematic
misunderstandings between language designers and implementers. This normative
value fails in two extreme cases of denotational specifications. First, as I have tried
to argue above, for very basic instructions like those of the wittgensteinian example,
because it is the intuitive meaning of an instruction like → that allows to under-
stand the denotational interpretation of → , and not the other way around. Second, for
real programming languages with, say, a rich type discipline, higher-order functions,
modules and other common paraphernalia, because the semantic clauses involved in
the interpretation of their constructs lack the perspicuity that is needed to guarantee
the stability of meanings by applying the recursive clauses of the semantic defini-
tion. In these cases very early we need to rely upon programmed tools that help in
calculations, and from an epistemological standpoint this raises the same debates as
the use of computer in mathematical proofs like that of the four color theorem, see
(Tymoczko 1979) for an early discussion.

That denotational semantics cannot be the target of a reductive explanation of
meaning for programs was, in a sense, clear from the start. A possible way out is to
regard denotational specifications as means of associating mathematical objects to
programming constructs in such a way as to be able to formally reason about the lat-
ter, for example the denotational meaning of the while instruction as a (least) fixed
point makes possible to prove its properties by means of fixed-point induction and
related techniques (Manna and Vuillemin 1972).

But here a new problem arises, namely that of guaranteeing that the denotational
values of program phrases coincide with what is to be expected from executing
them, their operational semantics. While the original project of denotational seman-
tics eschewed any reference to implementation of programs, ultimately it is with the
outcome of running a program on a machine that its denotational value must con-
form. Of course, not a physical machine but a mathematical model of it, an alterna-
tive source of normativity.

2.3 Operational and Denotational Semantics

In the field of programming semantics, the coexistence of the denotational and oper-
ational approaches has been granted since the dawn of the subject (Scott 1970b):

the operational aspects cannot be completely ignored. The reason is obvious:
in the end the program still must be run on a machine – a machine which does
not possess the benefit of “abstract” human understanding, a machine that
must operate with finite configurations.

What is needed is a formalism for operational semantics that is abstract enough as
to hide irrelevant details of the underlying machine, and this has eventually been
found in the structural operational semantics described in (Plotkin 2004b).3 Here

3 See (Plotkin 2004a) for a historical introduction.

 Global Philosophy (2023) 33:13

1 3

13 Page 6 of 15

the interpretation is expressed by means of rules allowing to infer judgements of the
form

where � is an instruction and �, �′ are states, or of the form

where � is an expression (in particular, a boolean expression) and v is a value (in
particular one of the boolean values true or false). Then we can specify as fol-
lows the interpretation of the while instruction:

Clearly these rules capture the intended behavior of the while instruction and min-
imize the reference to abstract mathematical entities, although there is an implicit
assumption of a mathematical nature in the background, namely that rules are inter-
preted as giving an inductive definition of the true judgements, which corresponds to
taking, also in this case, the least fixed point of a monotonic set-theoretic operator.

The required harmony of the denotational and the operational semantic specifica-
tions can now be made formal, by considering a fundamental relation between the
two: clearly we must have for any � that

The converse property is adequacy: whenever the denotational semantics of an
instruction gives a value, it must be possible to obtain that same value by applying
the operational rules:

The strictest property is full abstraction, which states the coincidence of two equiva-
lence relations on instructions induced by the denotational and operational seman-
tics, respectively. The first relation is easily defined, by setting �1 ≈den �2 if and only
if [[�1]]� = [[�2]]� for all states � . Operational equivalence between instructions �1
and �2 , written �1 ≈op �2 holds precisely when, for all contexts C[] in which we
can plug these instructions getting a program we have

where the assumption that C[] yields a program allows us to omit the state param-
eter (think of a closed formula in first-order logic).4

(1)(�, �)⇓ ��

(2)(�, �)⇓ v

(�, �)⇓ ���� (�, �)⇓ �� (����� (�) �� �, ��)⇓ ���

(����� (�) �� �, �)⇓ ���

(�, �)⇓ �����

(����� (�) �� �, �)⇓ �

(�, �)⇓ �� ⇒ [[�]]� = ��

[[�]]� = �� ⇒ (�, �)⇓ ��

C[�1]⇓ � ⇔ C[�2]⇓ �

4 There is a huge literature on full abstraction, follow the references in (Cardone 2021).

1 3

Global Philosophy (2023) 33:13 Page 7 of 15 13

A fully abstract denotational semantics would be completely justified operation-
ally, and would allow to use the mathematical techniques made available by domain
theory to prove operational properties. It turns out that full abstraction fails for the
natural denotational interpretation of a very general model of (functional) program-
ming language closely related to the typed lambda-calculus proposed by Scott as a
formalism for computable functions (Scott 1969b, a), which is the subject of the two
fundamental studies (Milner 1977; Plotkin 1977). The attempts at solving the prob-
lem have stimulated efforts to understand the foundations of denotational semantics
and the intuitive justification of its formal tools, which I take to be its most signifi-
cant contribution.5

3 The Foundations of Denotational Semantics

There were two themes that merged in Scott’s project of denotational semantics. On
the one hand, there was the aim of providing a mathematical basis to the calculations
needed in the compositional interpretation of programming language constructs
defined in (Strachey 2000; Scott and Strachey 1971). This included the equations
between semantic domains required by the interpretation of higher-order proce-
dures, in particular the equation D = [D → D] , where [D → D] is a suitable domain
of endofunctions of D. The solution to this equation is needed for the interpretation
of the type-free lambda-calculus into which, as the work of Peter Landin (1965) had
shown in the meantime, can be encoded most constructs of languages such as Algol
60. This equation allows to consider every element d ∈ D as a function from D to
itself, making possible the application d(d) of d to itself. Scott’s solution was a very
nice and successful piece of conceptual analysis whose steps are worth summarizing
and comparing with the contrasting view of Haskell B. Curry concerning the inter-
pretation of type-free theories of functions like the lambda-calculus or the theory of
combinators. This is the second theme in denotational semantics, namely the foun-
dational concerns about the interpretation of such type-free formalisms by means
of ordinary mathematics: it is well-known that Scott regarded them as mathemati-
cally flawn, and indeed devoted a series of papers to a reconstruction of higher-order
computability by means of typed lambda-calculi (Scott 1969b, a). Ultimately, the
contrast between the ideas of Scott and Curry lies in a basic philosophical disagree-
ment on giving meaning to formal notions.

3.1 Curry on Formal Systems

Curry developed throughout his lifetime a formalist approach to the philosophy of
mathematics (Curry 1951) based on a notion of formal system that is the object of

5 The difficulty of building fully abstract models of programming languages has suggested an alternative
approach that tries to carve approximation (pre)order and (some) limits from operational semantics and
reformulate from these the proof principles that hold for domains (Pitts 1997).

 Global Philosophy (2023) 33:13

1 3

13 Page 8 of 15

many of his publications, summarized in (Curry 1963, §3C).6 Some of the remarks
that Curry made in relation to formal systems are relevant to semantical issues. First
of all, it should be kept in mind that, according to Curry, a formal system is an activ-
ity carried out in the language in use, what Curry calls the U language, by extend-
ing it with nouns and operators to designate the objects of the formal system (its
obs). From nouns and verbs one can build sentences that designate statements to
the effect that the predicate designated by a verb applies to a sequence of obs des-
ignated by nouns. The theorems are statements obtained by means of rules allowing
to infer one conclusion from a (possibly empty) set of premises. This duplication of
terminology allows to distinguish grammatical notions of that part of the U language
used to communicate the formal system and their abstract correlates. According to
Curry, they are not linguistic entities (the U language is not a metalanguage) and no
concrete representation is given to them: formal systems are abstract. As an exam-
ple, a formal system for the natural numbers may include an atom 0, an operation S
and elementary statements X = Y where X and Y are formal objects. Here ‘0’ is a
noun in the U language, the language that I am using throughout the present paper,
and ‘S’ is a unary operator, whereas ‘=’ is a verb. ‘0 = 0’ is a sentence designat-
ing the statement that 0 equals itself. The important thing to notice is that no other
language is involved in this communication beyond a suitable extension of the U
language.7 The linguistic presentation of an abstract formal system is akin to that
used for algebraic structures, and indeed Curry’s formalism has been regarded as a
form of structuralism (Seldin 2011). An intepretation of a formal system associates
to its statements contensive propositions, those “which we understand independently
of the formal system in terms of our prior, or at least extrinsic, experience” (Curry
1941, p. 357). The truth criterion for the statements is their derivability according to
the rules, which therefore implicitly define the formal meaning of the obs and of the
statements of the system. When both can be intepreted so that the system turns out
to be applicable to some contensive domain, the system is acceptable (Curry 1953).

The acceptability of a theory is an empirical matter, i.e. we can never be cer-
tain of the acceptability or even the contensive validity of a theory for a pur-
pose related to experience [...] We can only entertain the acceptability of a the-
ory as a hypothesis until the discovery of new facts shows that it is untenable.

Speaking years later about combinatory logic and lambda-calculus (Curry 1980):

While it is true that concocting formalisms entirely without regard to inter-
pretation is probably fruitless, yet it is not necessary that there be “conceptu-
alization” in terms of current mathematical intuitions [...] Combinatory logic
[...] did have an interpretation by which it was motivated. The formation of
functions from other functions by substitution does form a structure, and this
structure it analyzed and formalized.

6 See also (Meyer 1987) for a review of Curry’s philosophy of formal systems.
7 This is explained very clearly in §IV of Meyer’s paper cited above. Curry was always careful in distin-
guishing between use and mention, as far as to include in his (1963) logic textbook a series of exercises
on the proper use of quotation marks.

1 3

Global Philosophy (2023) 33:13 Page 9 of 15 13

We may apply this approach to formal systems to the semantics of a programming
language. In this case we only need a formal system specifying how its phrases are
evaluated, or executed, in order to have a standard against which acceptability can be
assessed. There is no need of a further semantical layer assigning formal meanings
to program phrases beyond the formal truth of statements of operational semantics
of the forms (1) and (2), in particular there is no need of passing through statements
of the form [[�]]� = [[v]] , that makes also necessary to interpret contensively the for-
mal objects [[�]]� . The relation of operational semantics to physical implementation
of the language is then the same as that between a formal system and the contensive
domain which is the target of an interpretation: acceptability takes into account the
possibility of miscomputations due to physical failures and makes the application of
a mathematical framework a matter of use and practice.

3.2 Scott and Set‑Theoretic Semantics

Scott’s analysis sets up a framework, based on an abstract notion of information con-
tent of partial, computable elements of domains, that allows eventually to recover
the syntactic primitives of function calculi (like abstraction and application) as
invariants arising in a natural way from the structure of the category of domains.
The latter can also be regarded as a type theory8 including solutions of equations
like D = [D → D] . The set-theoretic language in which Scott’s axioms for domains
are formulated guarantees that the entire framework complies with the “canons of
type theory”, and “can (and indeed must be) read as a fragment of set theory so
that its theorems can be recognized as valid” (Scott 1969b, p. 414). Set theory is
not a source of meaning in itself, but only in as far as it allows a direct formulation
of a framework that, as a whole, is algebraic and can be instantiated in many ways.
We shall now see how different instantiations have been helpful in clarifying issues
directly relevant to the interpretation of computational phenomena.

The original axioms for domains in (Scott 1970a) were suggested by a picture
of computation as increasing information about partial elements and of comput-
able functions as monotonically preserving the information. This idea of partiality
is related to that of a notion of approximation between elements, which can be natu-
rally expressed as a partial ordering:

[...] we must ask: what exactly is a data type? [...] Suppose x, y ∈ D are two
elements of the data type, then the idea is not immediately to think of them as
being completely separate entities just because they may be different. Instead
y, say, may be a better version of what x is trying to approximate. In fact, let us
write the relationship

to mean intuitively that y is consistent with x and is (possibly) more accurate
than x. [...] thus x ⊑ y means that x and y want to approximate the same entity,

x ⊑ y

8 An “algebra of types” according to (Scott 1969b, p. 412).

 Global Philosophy (2023) 33:13

1 3

13 Page 10 of 15

but y gives more information about it. This means we have to allow “incom-
plete” entities, like x, containing only “partial” information (Scott 1970b).

There is an element ⊥ that does not contribute any information, and the processes
that increase information may be infinite but all chains in the approximation order-
ing are always assumed to converge to an element that cumulates all the information
contained in the elements of the chain. Domain theory is thus a theory of approxi-
mation and limit for a qualitative notion of information.

4 The Meaning of Meaning

How real is this relation of approximation defined on data types? In other words, is
there any operational justification for such a relation? One year before Scott found
his models for the lambda-calculus, James H. Morris completed his MIT thesis on
“Lambda-calculus models of programming languages” (Morris 1968), where he
reformulated for lambda-terms the natural extension relation for partial functions:
B extends A (written A ⪯ B) if, for all contexts C[] such that C[A] reduces to a
normal form, then also C[B] reduces to the same normal form. This is a preorder
on lambda-terms which is preserved by contexts and induces a congruence ≃ in the
usual way: while A ⪯ B means that in any context B contributes to the computation
of a value as much as A and possibly more, A ≃ B means that the two terms are
indistinguishable in as far as we are “ultimately interested only in normal forms” as
results (Morris 1968, p. 52).

The preorder can be generalized to any setting where there is a notion of (pos-
sibly non-terminating) reduction relation over expressions, a well-defined notion
of context that preserves reduction, and a notion of an expression being a value, at
which reduction stops. Take for example a data type of natural numbers, containing
the denotations of numerical expressions. Operationally, there are at least the fol-
lowing choices, depending on what is regarded as a value:

– The “flat” natural numbers: here the reduction of an expression can proceed
indefinitely without ever reaching a value, and expressions whose reductions
have completely defined values of the form n = S(S(S(… (0)…))) . In the associ-
ated data type there is an element ⊥ that corresponds to expressions of the former
kind, that do not contribute any information, and the completely defined numbers
n having maximal information content; the only possible relation of approxima-
tion makes ⊥ ⊑ n.

– The “oblique” natural numbers: here reductions stop at numerical expressions of
the form S(e). The definite information provided by the value of an expression e
can be of the following types:

1. e has no value, so it is mapped to ⊥;
2. e has value 0, and it is mapped to the corresponding element of the data type;
3. e has a value of the form S(e�) : in this case it is mapped to S(d), where d is

the value of e′.

1 3

Global Philosophy (2023) 33:13 Page 11 of 15 13

 In this case there are elements with maximal, therefore incomparable,
information content, 0, S(0), S(S(0)),… , but approximation is finer: we have
⊥ ⊑ 0 and ⊥ ⊑ S(x) for any x, and S(x) ⊑ S(y) whenever x ⊑ y.

This operational analysis of the structure of two possible data types for natural
numbers is not the only way of extracting order-theoretic properties of approxi-
mation. The general technique employed in these investigations consists basically
in the following steps:

– give idealized descriptions of concrete situations in which computationally
interesting dynamics involving information can be identified;

– associate to each of these situations a domain describing an approximation
structure that captures the appropriate patterns of information dynamics;

– prove a representation theorem stating that there is a perfect match between the
structure of idealized situations and that of the appropriate class of domains.

We can instantiate this technique by considering an idealized situation where
the elements of the two data types of natural numbers are given by propositional
information.

– Propositions for the data type of flat natural numbers have the form = � for all
natural numbers n, where = � and = � are inconsistent if n ≠ m . An element of
the data type is given by a consistent set of propositions, therefore it can either
be ⊥ = � or a singleton n = {= �}.

– Propositions for the data type of oblique natural numbers have the forms ⩾ �
and = � . We still have that = � and = � are inconsistent if n ≠ m , but now
we have a non-trivial entailment relation between propositions whereby = �
entails ⩾ � and ⩾ � entails ⩾ � if n ≥ k . Consistent sets of propositions
remain consistent if we add propositions entailed by their elements; we can
identify the elements of this data type with consistent sets of propositions, that
will have one of the following forms:

1. ⊥ = �,
2. Sn(⊥) = {⩾ � ∣ n ≥ k} and
3. Sn(0) = {= �} ∪ {⩾ � ∣ n > k} for n ∈ ℕ.

 Approximation on the data type represented this way is then given by inclu-
sion of sets of propositions. Observe that there is a natural notion of limit of the
sequence of elements of the form Sn(⊥) given by the set ∞ = {⩾ � ∣ k ∈ ℕ}.

Such concrete representation of the information content of natural numbers as
elements of one of these data types developed into a comprehensive conception
of domains as information systems in Scott (1982).

The abstract notion of information and the order-theoretic language used by
Scott in axiomatizing domains encourage the search for categories of domains

 Global Philosophy (2023) 33:13

1 3

13 Page 12 of 15

and suitable morphisms motivated by the analysis of concrete situations of infor-
mation increase for very general notions of computation.9

As one more example, I consider a third way of looking at the data type of oblique
natural numbers as portraying the information content of a different computational
situation. Consider the string rewriting rule

where we allow infinite derivations of the form X0 → X1 → X2 → … We can asso-
ciate information increase to derivations, and take derivations themselves as ele-
ments of the data type. Approximation can be defined by setting 𝜁 ⊑ 𝜉 when � as
a sequence of steps is a prefix of the sequence of steps performed by � , with ⊥ the
empty derivation � . Of course all the derivations having the form N →∗ Sn0 will be
incomparable and maximal under this ordering, but there is an infinite increasing
chain of derivations of the forms:

In this example derivations correspond uniquely to the strings that are their end
points. It is easy to build situations where there are different derivations leading to
the same string that may, however, be regarded as equivalent. Add, for example, the
following productions to the above grammar:

Then rewritings can be performed in parallel when they happen in two different
places, here L and R. Therefore the two derivations

involve the same events of rewriting, only in a different order, and can therefore be
regarded as equivalent. The resulting permutation equivalence is very general and
has important applications in formal language theory (Griffiths 1968), category
theory (Hotz 1966; Benson 1975), reduction theory for the lambda-calculus (Lévy
1978) and term-rewriting systems (Huet and Lévy 1979) and also in the theory of
concurrent computation (Stark 1989). Even more general than this representation in
terms of derivations we can regard the elements of domains as sets of non conflict-
ing events, like in (Nielsen et al. 1981), where

N → 0 ∣ SN

𝜀 ⊑ N → SN ⊑ N →2 SSN ⊑ N →3 SSSN ⊑ …N →𝜔 SSS…

P → LR

L → N

R → N

P → LR → NR → 0R → 0N → 00 and P → LR → LN → L0 → N0 → 00

9 As far as I know, the need of distilling the axioms for categories of domains from the analysis of
“actual computational processes” was first pointed out by John Reynolds (1975), who considered non-
terminating processes that communicate through channels via sets of messages: we take as given a uni-
verse of models and a relation of satisfaction between messages and models, so that the reception of a
new message reduces the set of models that satisfy all the messages received so far along the same chan-
nel: this gives a representation of the original proposal by Scott (1972) of viewing domains as continuous
lattices.

1 3

Global Philosophy (2023) 33:13 Page 13 of 15 13

an event is imagined to occur at a fixed point in space and time; conflict
between events is localised in that two conflicting events are enabled at the
same time and are competing for the same point in space and time

which allows to apply domain structures to another very general approach to com-
putation, namely Petri nets, whose foundational relevance has not yet been explored
in sufficient detail.10 For example, we have the event structure of “vertical” natural
numbers, which correspond to ticks of a clock, whereas approximation corresponds
to temporal order,

5 Conclusions

I have tried to provide evidence to my claim that the developments outlined above,
mainly by means of examples, have been the more significant contribution of deno-
tational semantics to the understanding of computational phenomena, in the form of
a mathematical theory of computation as foreshadowed in Scott (1970b). I have con-
trasted this with the received view of denotational semantics as a tool for program
correctness, which was the original way of using it especially in the area of language
definition, where this approach had the advantage of showing that the semantics of
a programming language and its implementation are different things. I have also
tried to suggest that reflection on the conceptual basis of the approach of denota-
tional semantics raises issues of interest for the foundations of computing, proposing
implicitly that this conceptual basis should be explored further, with the hope that
this exploration may contribute to some of the debates analyzed by Primiero (2019),
especially in §7.3 and §11.1.

As a final remark, consider the following quote from (Tarjan 1983, §1.2):

In order to study the efficiency of algorithms, we need a model of computa-
tion. One possibility is to develop a denotational definition of complexity, as
has been done for program semantics [...], but since this is a current research
topic we shall proceed in the usual way and define complexity operationally.

Recently, some of the investigations in denotational semantics have crossed the
bounds of classical domain theory with the invention of game semantics (Abramsky
et al. 2000; Hyland and Ong 2000), motivated by the increasing role played by inter-
activity in computation. This, together with a set of results on the representability
of algorithms in (theoretical) programming languages, along the lines of (Colson
1991), leads to the hope that denotational methods could also be applied to the inves-
tigation of intensional properties of programs (like complexity) and thus provide a

⊥ = no tick ⊑ one tick ⊑ two ticks ⊑ …

10 The work of Carl A. Petri and some of his coworkers dealt at a very early stage with the physics of
computation, reversibility, resource consciousness, anticipating themes that are a focus of current theo-
retical research.

 Global Philosophy (2023) 33:13

1 3

13 Page 14 of 15

different access to other foundational notions that one would like to study “entirely
independently of implementation”, in the same spirit as denotational semantics.

Funding Open access funding provided by Università degli Studi di Torino within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Abramsky S, Jagadeesan R, Malacaria P (2000) Full abstraction for PCF. Inf Comput 163:409–470
Benson DB (1975) The basic algebraic structures in categories of derivations. Inf Control 28(1):1–29
Cardone F (2021) Games, full abstraction and full completeness. In: Zalta EN (ed) The stanford encyclo-

pedia of philosophy, 2021st edn. Stanford University, Stanford
Colson L (1991) About primitive recursive algorithms. Theor Comput Sci 83(1):57–69
Curry HB (1941) Some aspects of the problem of mathematical rigor. Bull Am Math Soc 47:221–241
Curry HB (1951) Outlines of a formalist philosophy of mathematics. North-Holland Co., Amsterdam
Curry HB (1953) Theory and experience. Dialectica 7(2):176–178
Curry HB (1963) Foundations of mathematical logic. McGraw-Hill, New York
Curry HB (1980) Some philosophical aspects of combinatory logic. In: Barwise J, Keisler HJ, Kunen K

(eds) The kleene symposium. North-Holland Co., Amsterdam, pp 85–101
Griffiths TV (1968) Some remarks on derivations in general rewriting systems. Inf Control 12(1):27–54
Hotz G (1966) Eindeutigkeit und mehrdeutigkeit formaler sprachen. Elektron Inf Verarb Kybern

2(4):235–246
Huet G, Lévy JJ (1979) Call by need computations in non-ambiguous linear term rewriting systems. Rap-

port Laboria
Hyland JME, Ong CHL (2000) On full abstraction for pcf: I, II, and III. Inf Comput 163(2):285–408
Landin PJ (1965) A correspondence between ALGOL 60 and Church’s lambda notation. Commun ACM

8(89–101):158–165
Levy JJ (1978) Reductions correctes et optimales dans le �-calcul. University Paris, Paris
Longo G (2005) The cognitive foundations of mathematics: human gestures in proofs and mathemati-

cal incompleteness of formalisms. In: Okada M (ed) Images and reasoning. Keio University Press,
Tokyo, pp 105–134

Manna Z, Vuillemin J (1972) Fix point approach to the theory of computation. Commun ACM
15(7):528–536

Meyer RK (1987) Curry’s philosophy of formal systems. Australas J Philos 65(2):156–171
Milner R (1977) Fully abstract models of typed �-calculi. Theor Comput Sci 4:1–22
Morris JH (1968) Lambda-calculus models of programming languages. Massachusetts Institute of Tech-

nology, Cambridge
Nielsen M, Plotkin G, Winskel G (1981) Petri nets, event structures and domains, part I. Theor Comput

Sci 13:85–108
Pitts A (1997) Operationally-based theories of program equivalence. In: Pitts AM, Dybjer P (eds) Seman-

tics and logics of computation. Publications of the Newton Institute, Cambridge University Press,
Cambridge, pp 241–298

Plotkin GD (1977) LCF considered as a programming language. Theor Comput Sci 5:223–257

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Global Philosophy (2023) 33:13 Page 15 of 15 13

Plotkin GD (2004) The origins of structural operational semantics. J Log Algebr Program 60–61:3–15
Plotkin GD (2004) A structural approach to operational semantics. J Log Algeb Program 60–61:17–139
Primiero G (2019) On the foundations of computing. Oxford University Press, Oxford
Reynolds JC (1975) On the interpretation of scott domains. Symposia mathematica. Syracuse University,

Syracuse, New York, pp 123–135
Scott DS (1969a) A theory of computable functions of higher type. In: Informally distributed, notes for a

november 1969 seminar, Oxford university press
Scott DS (1969) A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor Comput Sci

121(1–2):411–420
Scott DS (1970a) Constructive validity. In: Laudet M, Lacombe D, Nolin L, Schützenberger M (eds)

Symposium on automatic demonstration, Lecture Notes in Mathematics, vol 125, Springer, Berlin,
pp 237–275

Scott DS (1970b) Outline of a mathematical theory of computation. In: Proceedings of the fourth annual
princeton conference on information sciences and systems, Department of Electrical Engineering,
Princeton University, pp 169–176

Scott DS (1972) Continuous lattices. In: Lawvere FW (ed) Toposes, algebraic geometry and logic.
Springer, Berlin, pp 97–136

Scott DS (1982) Domains for denotational semantics. In: Nielsen M, Schmidt E (eds) Automata, lan-
guages and programming, ninth international colloquium. Springer, Berlin, pp 577–613

Scott DS, Strachey C (1971) Toward a mathematical semantics for computer languages. In: Fox J (ed)
Proceedings of the symposium on computers and automata, Polytechnic Institute of Brooklyn Press,
New York, pp 19–46

Seldin JP (2011) Curry’s formalism as structuralism. Log Univers 5(1):91–100
Stark E (1989) Connections between a concrete and an abstract model of concurrent systems. Mathemati-

cal foundations of programming semantics. Springer, Berlin, pp 53–79
Strachey C (2000) Fundamental concepts in programming languages. High Order Symb Comput

13(1/2):11–49
Tarjan RE (1983) Data structures and network algorithms. Society for Industrial and Applied Mathemat-

ics, Philadelphia, USA
Tymoczko T (1979) The four-color problem and its philosophical significance. J Philos 76(2):57–83
Wittgenstein L (1936) The Brown Book. Blackwell, Oxford
Wittgenstein L (1956) Bemerkungen über die grundlagen der mathematik. Blackwell, Oxford

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	On Giving Meanings to Programs
	Abstract
	1 Introduction
	2 The Semantical Problem for Programming Languages
	2.1 A Simple Language and its Denotational Semantics
	2.2 Meaning, Correctness and Implementation
	2.3 Operational and Denotational Semantics

	3 The Foundations of Denotational Semantics
	3.1 Curry on Formal Systems
	3.2 Scott and Set-Theoretic Semantics

	4 The Meaning of Meaning
	5 Conclusions
	References

