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Abstract
In a short section on the semantics of programs within his discussion of program 
correctness, Primiero seems to endorse the received view on the Scott-Strachey 
approach to denotational semantics as directly related to correctness. While this is 
true to some extent, I argue that the mathematical entities associated with programs 
play a lesser role in reasoning on program correctness, while the mathematical foun-
dations of denotational semantics, namely the theory of domains, have contributed 
significantly to the conceptual understanding of programming and of computation in 
general

Keywords Foundations of computing · Denotational semantics · Scott domains

1 Introduction

I would like to focus on a tiny part of Primiero’s monograph, namely his mention 
of denotational semantics in Chapter 7. This is due in part to autobiographical rea-
sons, as I have been working for a few decades along the lines of the denotational 
approach, mostly in its applications to type theories for programming languages. 
Leaving aside this sentimental motivation, I would like to comment extensively 
on a statement (Primiero 2019, p. 96) which summarizes the received view of the 
Scott-Strachey contribution and starts a short section on semantics as one of several 
approaches to correctness:

To establish a precise correspondence between programs and mathemati-
cal entities entirely independently of implementation was also the task of the 
denotational semantics developed by Scott and Strachey in the 1960s.

My purpose in this paper will be to argue that the mathematical entities associated with 
programs play a lesser role as practical tools for reasoning on program correctness, 
while the mathematical foundations of denotational semantics, namely the theory of 
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domains, have contributed significantly to the conceptual understanding of program-
ming and of computation in general. This will also give us the occasion to touch on 
several foundational issues that recur throughout Primiero’s book, such as implementa-
tion, miscomputation and correctness.

2  The Semantical Problem for Programming Languages

2.1  A Simple Language and its Denotational Semantics

In order to give an idea of the denotational approach, I start from a miniature language 
whose purpose is not only to give an idea of the general method, but also to expose 
some of what I regard as foundational weaknesses in that approach.

The example is suggested by §33 of Wittgenstein’s Brown Book (1936), and con-
sists of basic instructions for moving one step in each direction N, S, E and W along a 
grid with integer coordinates. The basic instructions can then be composed to describe 
paths: we can imagine this as a toy instruction language for a robot, or a fragment of a 
language for choreography; a path is then an algorithm for reaching the end point from 
the starting point.

It is easy to interpret these instructions operationally, each as the performance of the 
corresponding move. The denotational semantics of an instruction is defined as a func-
tion that maps the starting point of the corresponding path to its end point:

The interpretation is extended to all finite instruction sequences by structural 
recursion:

Observe that this extension makes the interpretation, literally, compositional: the 
meaning of a compound instruction is computed as a function of the meanings of its 
components. For example, we have

as a consequence of the following steps:

[[↑]](x, y) = (x, y + 1),

[[↓]](x, y) = (x, y − 1),

[[→]](x, y) = (x + 1, y),

[[←]](x, y) = (x − 1, y).

[[S1;S2]](x, y) = [[S2]](x
�, y�), where (x�, y�) = [[S1]](x, y).

[[↑ ; → ; ↓]](x, y) = (x + 1, y)
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These calculations show the equivalence of the compound instruction ↑ ; → ; ↓ with 
the basic instruction → : indeed, for all (x, y), we have

Observe that this equivalence follows from the decision to regard instructions, exten-
sionally, as transformations from initial to final points. The intepretation of instruc-
tions as whole paths is closer to an operational, intensional viewpoint, and makes 
the equivalence above fail, because the paths

have the same endpoints but consist of disjoint moves.
Our simple language exhibits several familiar features of programming lan-

guages: it consists of instructions that are interpreted as state transformations (here 
states are points on the cartesian plane with integer coordinates); instructions can 
be composed and the interpretation of instructions is compositional; interpretation 
automatically defines semantical equivalence of instructions. Furthermore, there is a 
constrast between paths as intensional meanings of instructions and their extensional 
traces consisting of the coordinates of their extremities. My claim is that, despite its 
simplicity, the contemplation of this language exposes general foundational prob-
lems of the denotational approach.

2.2  Meaning, Correctness and Implementation

A first question concerning this toy language is whether the denotational interpreta-
tion that I have sketched is helpful in defining an implementation of the language.1 
Observe that implementation here may consist in several different things, according 
to the level of abstraction. It might consists in a human performing the instructions 
according to their interpretations, or in programming a robot to obey the instruc-
tions, or in a robot obeying the instructions. In any case, implementation has to pass 
through a semantic interpretation specifying the meaning of instructions.

[[↑ ; → ; ↓]](x, y) =

= [[→ ; ↓]][[↑]](x, y)

= [[→ ; ↓]](x, y + 1)

= [[↓]][[→]](x, y + 1)

= [[↓]](x + 1, y + 1)

= (x + 1, y)

[[↑ ; → ; ↓]](x, y) = (x + 1, y) = [[→]](x, y)

1 There is a considerable amount of literature on this topic in the philosophy of computing, summarized 
and discussed in (Primiero 2019, Ch. 11).



 Global Philosophy (2023) 33:13

1 3

13 Page 4 of 15

Now, one basic observation is that these meanings have been specified by means 
of transformations of pairs of integer numbers, but these pairs in themselves do not 
have any geometric significance. Their geometric rendering presupposes that we 
already know what it means, for example, to move one step right, i.e., assumes that 
the meaning of the instruction → is already understood, hence that it is more basic, 
for the clause [[→]](x, y) = (x + 1, y) to make any sense. Indeed, how could we teach 
this language by explaining the meaning of the instructions by means of this denota-
tional interpretation?

The same applies to the interpretation of ordinary programming constructs. Con-
sider for example the while instruction: 

 where b is a boolean expression and S an instruction. Intuitively, this instruction is 
executed by performing the following actions starting form a state � : 

1. evaluate b in �;
2. if the result is true, then execute S from � and go to 1; otherwise stop.

Denotationally, we must interpret this instruction as a state transformation 
� = [[����� (�) �� �]] that satisfies the fixed point equation

This fixed point is the mathematical representation of the process of repeatedly per-
forming � until � becomes false. Therefore this example is subject to the same circu-
larity as before: understanding the interpretation of the while instruction amounts 
to having grasped the technique of iterating a transformation, which is the intuitive 
meaning of this instruction.

Consider Wittgenstein’s criticism of Russell’s attempt to reduce the practice of 
decimal arithmetic to its unary encoding (Wittgenstein 1956, §II 3): I believe that 
the same arguments can be turned against any attempt to reduce the meaning of 
programming constructs to a denotational specification of their interpretation, if 
meaning has to be what allows us to teach a language to people who haven’t seen 
it before. Instead, it is most likely that teaching such a basic language as that in the 
example can be achieved by developing a practice that consists in making appropri-
ate gestures.2

The original motivation for the Scott-Strachey approach included using denota-
tional meanings as a standard against which to assess correctness of implementa-
tion, for example of a compiler. This is what normally is taken to be the normative 

� = ��. if [[�]]� then �([[�]]�) else �

2 Gestures have increasingly been recognized as playing a fundamental cognitive role in the constitution 
of mathematical objects: I expect that this applies even more appropriately to computing. On this, see 
(Longo 2005) and the references cited therein.
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role of semantics, the yardstick allowing to recognize those cases where some kind 
of miscomputation must have taken place, originating for example from systematic 
misunderstandings between language designers and implementers. This normative 
value fails in two extreme cases of denotational specifications. First, as I have tried 
to argue above, for very basic instructions like those of the wittgensteinian example, 
because it is the intuitive meaning of an instruction like → that allows to under-
stand the denotational interpretation of → , and not the other way around. Second, for 
real programming languages with, say, a rich type discipline, higher-order functions, 
modules and other common paraphernalia, because the semantic clauses involved in 
the interpretation of their constructs lack the perspicuity that is needed to guarantee 
the stability of meanings by applying the recursive clauses of the semantic defini-
tion. In these cases very early we need to rely upon programmed tools that help in 
calculations, and from an epistemological standpoint this raises the same debates as 
the use of computer in mathematical proofs like that of the four color theorem, see 
(Tymoczko 1979) for an early discussion.

That denotational semantics cannot be the target of a reductive explanation of 
meaning for programs was, in a sense, clear from the start. A possible way out is to 
regard denotational specifications as means of associating mathematical objects to 
programming constructs in such a way as to be able to formally reason about the lat-
ter, for example the denotational meaning of the while instruction as a (least) fixed 
point makes possible to prove its properties by means of fixed-point induction and 
related techniques (Manna and Vuillemin 1972).

But here a new problem arises, namely that of guaranteeing that the denotational 
values of program phrases coincide with what is to be expected from executing 
them, their operational semantics. While the original project of denotational seman-
tics eschewed any reference to implementation of programs, ultimately it is with the 
outcome of running a program on a machine that its denotational value must con-
form. Of course, not a physical machine but a mathematical model of it, an alterna-
tive source of normativity.

2.3  Operational and Denotational Semantics

In the field of programming semantics, the coexistence of the denotational and oper-
ational approaches has been granted since the dawn of the subject (Scott 1970b):

the operational aspects cannot be completely ignored. The reason is obvious: 
in the end the program still must be run on a machine – a machine which does 
not possess the benefit of “abstract” human understanding, a machine that 
must operate with finite configurations.

What is needed is a formalism for operational semantics that is abstract enough as 
to hide irrelevant details of the underlying machine, and this has eventually been 
found in the structural operational semantics described in (Plotkin 2004b).3 Here 

3 See (Plotkin 2004a) for a historical introduction.
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the interpretation is expressed by means of rules allowing to infer judgements of the 
form

where � is an instruction and �, �′ are states, or of the form

where � is an expression (in particular, a boolean expression) and v is a value (in 
particular one of the boolean values true or false). Then we can specify as fol-
lows the interpretation of the while instruction:

Clearly these rules capture the intended behavior of the while instruction and min-
imize the reference to abstract mathematical entities, although there is an implicit 
assumption of a mathematical nature in the background, namely that rules are inter-
preted as giving an inductive definition of the true judgements, which corresponds to 
taking, also in this case, the least fixed point of a monotonic set-theoretic operator.

The required harmony of the denotational and the operational semantic specifica-
tions can now be made formal, by considering a fundamental relation between the 
two: clearly we must have for any � that

The converse property is adequacy: whenever the denotational semantics of an 
instruction gives a value, it must be possible to obtain that same value by applying 
the operational rules:

The strictest property is full abstraction, which states the coincidence of two equiva-
lence relations on instructions induced by the denotational and operational seman-
tics, respectively. The first relation is easily defined, by setting �1 ≈den �2 if and only 
if [[�1]]� = [[�2]]� for all states � . Operational equivalence between instructions �1 
and �2 , written �1 ≈op �2 holds precisely when, for all contexts C[ ] in which we 
can plug these instructions getting a program we have

where the assumption that C[ ] yields a program allows us to omit the state param-
eter (think of a closed formula in first-order logic).4

(1)(�, �)⇓ ��

(2)(�, �)⇓ v

(�, �)⇓ ���� (�, �)⇓ �� (����� (�) �� �, ��)⇓ ���

(����� (�) �� �, �)⇓ ���

(�, �)⇓ �����

(����� (�) �� �, �)⇓ �

(�, �)⇓ �� ⇒ [[�]]� = ��

[[�]]� = �� ⇒ (�, �)⇓ ��

C[�1]⇓ � ⇔ C[�2]⇓ �

4 There is a huge literature on full abstraction, follow the references in (Cardone 2021).



1 3

Global Philosophy (2023) 33:13 Page 7 of 15 13

A fully abstract denotational semantics would be completely justified operation-
ally, and would allow to use the mathematical techniques made available by domain 
theory to prove  operational properties. It turns out that full abstraction fails for the 
natural denotational interpretation of a very general model of (functional) program-
ming language closely related to the typed lambda-calculus proposed by Scott as a 
formalism for computable functions (Scott 1969b, a), which is the subject of the two 
fundamental studies (Milner 1977; Plotkin 1977). The attempts at solving the prob-
lem have stimulated efforts to understand the foundations of denotational semantics 
and the intuitive justification of its formal tools, which I take to be its most signifi-
cant contribution.5

3  The Foundations of Denotational Semantics

There were two themes that merged in Scott’s project of denotational semantics. On 
the one hand, there was the aim of providing a mathematical basis to the calculations 
needed in the compositional interpretation of programming language constructs 
defined in (Strachey 2000; Scott and Strachey 1971). This included the equations 
between semantic domains required by the interpretation of higher-order proce-
dures, in particular the equation D = [D → D] , where [D → D] is a suitable domain 
of endofunctions of D. The solution to this equation is needed for the interpretation 
of the type-free lambda-calculus into which, as the work of Peter Landin (1965) had 
shown in the meantime, can be encoded most constructs of languages such as Algol 
60. This equation allows to consider every element d ∈ D as a function from D to 
itself, making possible the application d(d) of d to itself. Scott’s solution was a very 
nice and successful piece of conceptual analysis whose steps are worth summarizing 
and comparing with the contrasting view of Haskell B. Curry concerning the inter-
pretation of type-free theories of functions like the lambda-calculus or the theory of 
combinators. This is the second theme in denotational semantics, namely the foun-
dational concerns about the interpretation of such type-free formalisms by means 
of ordinary mathematics: it is well-known that Scott regarded them as mathemati-
cally flawn, and indeed devoted a series of papers to a reconstruction of higher-order 
computability by means of typed lambda-calculi (Scott 1969b, a). Ultimately, the 
contrast between the ideas of Scott and Curry lies in a basic philosophical disagree-
ment on giving meaning to formal notions.

3.1  Curry on Formal Systems

Curry developed throughout his lifetime a formalist approach to the philosophy of 
mathematics (Curry 1951) based on a notion of formal system that is the object of 

5 The difficulty of building fully abstract models of programming languages has suggested an alternative 
approach that tries to carve approximation (pre)order and (some) limits from operational semantics and 
reformulate from these the proof principles that hold for domains (Pitts 1997).
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many of his publications, summarized in (Curry 1963, §3C).6 Some of the remarks 
that Curry made in relation to formal systems are relevant to semantical issues. First 
of all, it should be kept in mind that, according to Curry, a formal system is an activ-
ity carried out in the language in use, what Curry calls the U language, by extend-
ing it with nouns and operators to designate the objects of the formal system (its 
obs). From nouns and verbs one can build sentences that designate statements to 
the effect that the predicate designated by a verb applies to a sequence of obs des-
ignated by nouns. The theorems are statements obtained by means of rules allowing 
to infer one conclusion from a (possibly empty) set of premises. This duplication of 
terminology allows to distinguish grammatical notions of that part of the U language 
used to communicate the formal system and their abstract correlates. According to 
Curry, they are not linguistic entities (the U language is not a metalanguage) and no 
concrete representation is given to them: formal systems are abstract. As an exam-
ple, a formal system for the natural numbers may include an atom 0, an operation S 
and elementary statements X = Y  where X and Y are formal objects. Here ‘0’ is a 
noun in the U language, the language that I am using throughout the present paper, 
and ‘S’ is a unary operator, whereas ‘=’ is a verb. ‘0 = 0’ is a sentence designat-
ing the statement that 0 equals itself. The important thing to notice is that no other 
language is involved in this communication beyond a suitable extension of the U 
language.7 The linguistic presentation of an abstract formal system is akin to that 
used for algebraic structures, and indeed Curry’s formalism has been regarded as a 
form of structuralism (Seldin 2011). An intepretation of a formal system associates 
to its statements contensive propositions, those “which we understand independently 
of the formal system in terms of our prior, or at least extrinsic, experience” (Curry 
1941, p. 357). The truth criterion for the statements is their derivability according to 
the rules, which therefore implicitly define the formal meaning of the obs and of the 
statements of the system. When both can be intepreted so that the system turns out 
to be applicable to some contensive domain, the system is acceptable (Curry 1953).

The acceptability of a theory is an empirical matter, i.e. we can never be cer-
tain of the acceptability or even the contensive validity of a theory for a pur-
pose related to experience [...] We can only entertain the acceptability of a the-
ory as a hypothesis until the discovery of new facts shows that it is untenable.

Speaking years later about combinatory logic and lambda-calculus (Curry 1980):

While it is true that concocting formalisms entirely without regard to inter-
pretation is probably fruitless, yet it is not necessary that there be “conceptu-
alization” in terms of current mathematical intuitions [...] Combinatory logic 
[...] did have an interpretation by which it was motivated. The formation of 
functions from other functions by substitution does form a structure, and this 
structure it analyzed and formalized.

6 See also (Meyer 1987) for a review of Curry’s philosophy of formal systems.
7 This is explained very clearly in §IV of Meyer’s paper cited above. Curry was always careful in distin-
guishing between use and mention, as far as to include in his (1963) logic textbook a series of exercises 
on the proper use of quotation marks.
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We may apply this approach to formal systems to the semantics of a programming 
language. In this case we only need a formal system specifying how its phrases are 
evaluated, or executed, in order to have a standard against which acceptability can be 
assessed. There is no need of a further semantical layer assigning formal meanings 
to program phrases beyond the formal truth of statements of operational semantics 
of the forms (1) and (2), in particular there is no need of passing through statements 
of the form [[�]]� = [[v]] , that makes also necessary to interpret contensively the for-
mal objects [[�]]� . The relation of operational semantics to physical implementation 
of the language is then the same as that between a formal system and the contensive 
domain which is the target of an interpretation: acceptability takes into account the 
possibility of miscomputations due to physical failures and makes the application of 
a mathematical framework a matter of use and practice.

3.2  Scott and Set‑Theoretic Semantics

Scott’s analysis sets up a framework, based on an abstract notion of information con-
tent of partial, computable elements of domains, that allows eventually to recover 
the syntactic primitives of function calculi (like abstraction and application) as 
invariants arising in a natural way from the structure of the category of domains. 
The latter can also be regarded as a type theory8 including solutions of equations 
like D = [D → D] . The set-theoretic language in which Scott’s axioms for domains 
are formulated guarantees that the entire framework complies with the “canons of 
type theory”, and “can (and indeed must be) read as a fragment of set theory so 
that its theorems can be recognized as valid” (Scott 1969b, p. 414). Set theory is 
not a source of meaning in itself, but only in as far as it allows a direct formulation 
of a framework that, as a whole, is algebraic and can be instantiated in many ways. 
We shall now see how different instantiations have been helpful in clarifying issues 
directly relevant to the interpretation of computational phenomena.

The original axioms for domains in (Scott 1970a) were suggested by a picture 
of computation as increasing information about partial elements and of comput-
able functions as monotonically preserving the information. This idea of partiality 
is related to that of a notion of approximation between elements, which can be natu-
rally expressed as a partial ordering:

[...] we must ask: what exactly is a data type? [...] Suppose x, y ∈ D are two 
elements of the data type, then the idea is not immediately to think of them as 
being completely separate entities just because they may be different. Instead 
y, say, may be a better version of what x is trying to approximate. In fact, let us 
write the relationship

to mean intuitively that y is consistent with x and is (possibly) more accurate 
than x. [...] thus x ⊑ y means that x and y want to approximate the same entity, 

x ⊑ y

8 An “algebra of types” according to (Scott 1969b, p. 412).
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but y gives more information about it. This means we have to allow “incom-
plete” entities, like x, containing only “partial” information (Scott 1970b).

There is an element ⊥ that does not contribute any information, and the processes 
that increase information may be infinite but all chains in the approximation order-
ing are always assumed to converge to an element that cumulates all the information 
contained in the elements of the chain. Domain theory is thus a theory of approxi-
mation and limit for a qualitative notion of information.

4  The Meaning of Meaning

How real is this relation of approximation defined on data types? In other words, is 
there any operational justification for such a relation? One year before Scott found 
his models for the lambda-calculus, James H. Morris completed his MIT thesis on 
“Lambda-calculus models of programming languages” (Morris 1968), where he 
reformulated for lambda-terms the natural extension relation for partial functions: 
B extends A (written A ⪯ B ) if, for all contexts C[ ] such that C[A] reduces to a 
normal form, then also C[B] reduces to the same normal form. This is a preorder 
on lambda-terms which is preserved by contexts and induces a congruence ≃ in the 
usual way: while A ⪯ B means that in any context B contributes to the computation 
of a value as much as A and possibly more, A ≃ B means that the two terms are 
indistinguishable in as far as we are “ultimately interested only in normal forms” as 
results (Morris 1968, p. 52).

The preorder can be generalized to any setting where there is a notion of (pos-
sibly non-terminating) reduction relation over expressions, a well-defined notion 
of context that preserves reduction, and a notion of an expression being a value, at 
which reduction stops. Take for example a data type of natural numbers, containing 
the denotations of numerical expressions. Operationally, there are at least the fol-
lowing choices, depending on what is regarded as a value:

– The “flat” natural numbers: here the reduction of an expression can proceed 
indefinitely without ever reaching a value, and expressions whose reductions 
have completely defined values of the form n = S(S(S(… (0)…))) . In the associ-
ated data type there is an element ⊥ that corresponds to expressions of the former 
kind, that do not contribute any information, and the completely defined numbers 
n having maximal information content; the only possible relation of approxima-
tion makes ⊥ ⊑ n.

– The “oblique” natural numbers: here reductions stop at numerical expressions of 
the form S(e). The definite information provided by the value of an expression e 
can be of the following types: 

1. e has no value, so it is mapped to ⊥;
2. e has value 0, and it is mapped to the corresponding element of the data type;
3. e has a value of the form S(e�) : in this case it is mapped to S(d), where d is 

the value of e′.
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   In this case there are elements with maximal, therefore incomparable, 
information content, 0, S(0), S(S(0)),… , but approximation is finer: we have 
⊥ ⊑ 0 and ⊥ ⊑ S(x) for any x, and S(x) ⊑ S(y) whenever x ⊑ y.

This operational analysis of the structure of two possible data types for natural 
numbers is not the only way of extracting order-theoretic properties of approxi-
mation. The general technique employed in these investigations consists basically 
in the following steps:

– give idealized descriptions of concrete situations in which computationally 
interesting dynamics involving information can be identified;

– associate to each of these situations a domain describing an approximation 
structure that captures the appropriate patterns of information dynamics;

– prove a representation theorem stating that there is a perfect match between the 
structure of idealized situations and that of the appropriate class of domains.

We can instantiate this technique by considering an idealized situation where 
the elements of the two data types of natural numbers are given by propositional 
information.

– Propositions for the data type of flat natural numbers have the form = � for all 
natural numbers n, where = � and = � are inconsistent if n ≠ m . An element of 
the data type is given by a consistent set of propositions, therefore it can either 
be ⊥ = � or a singleton n = {= �}.

– Propositions for the data type of oblique natural numbers have the forms ⩾ � 
and = � . We still have that = � and = � are inconsistent if n ≠ m , but now 
we have a non-trivial entailment relation between propositions whereby = � 
entails ⩾ �   and   ⩾ � entails ⩾ � if n ≥ k . Consistent sets of propositions 
remain consistent if we add propositions entailed by their elements; we can 
identify the elements of this data type with consistent sets of propositions, that 
will have one of the following forms: 

1. ⊥ = �,
2. Sn(⊥) = {⩾ � ∣ n ≥ k} and
3. Sn(0) = {= �} ∪ {⩾ � ∣ n > k} for n ∈ ℕ.

   Approximation on the data type represented this way is then given by inclu-
sion of sets of propositions. Observe that there is a natural notion of limit of the 
sequence of elements of the form Sn(⊥) given by the set ∞ = {⩾ � ∣ k ∈ ℕ}.

Such concrete representation of the information content of natural numbers as 
elements of one of these data types developed into a comprehensive conception 
of domains as information systems in Scott (1982).

The abstract notion of information and the order-theoretic language used by 
Scott in axiomatizing domains encourage the search for categories of domains 
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and suitable morphisms motivated by the analysis of concrete situations of infor-
mation increase for very general notions of computation.9

As one more example, I consider a third way of looking at the data type of oblique 
natural numbers as portraying the information content of a different computational 
situation. Consider the string rewriting rule

where we allow infinite derivations of the form X0 → X1 → X2 → … We can asso-
ciate information increase to derivations, and take derivations themselves as ele-
ments of the data type. Approximation can be defined by setting 𝜁 ⊑ 𝜉 when � as 
a sequence of steps is a prefix of the sequence of steps performed by � , with ⊥ the 
empty derivation � . Of course all the derivations having the form N →∗ Sn0 will be 
incomparable and maximal under this ordering, but there is an infinite increasing 
chain of derivations of the forms:

In this example derivations correspond uniquely to the strings that are their end 
points. It is easy to build situations where there are different derivations leading to 
the same string that may, however, be regarded as equivalent. Add, for example, the 
following productions to the above grammar:

Then rewritings can be performed in parallel when they happen in two different 
places, here L and R. Therefore the two derivations

involve the same events of rewriting, only in a different order, and can therefore be 
regarded as equivalent. The resulting permutation equivalence is very general and 
has important applications in formal language theory (Griffiths 1968), category 
theory (Hotz 1966; Benson 1975), reduction theory for the lambda-calculus (Lévy 
1978) and term-rewriting systems (Huet and Lévy 1979) and also in the theory of 
concurrent computation (Stark 1989). Even more general than this representation in 
terms of derivations we can regard the elements of domains as sets of non conflict-
ing events, like in (Nielsen et al. 1981), where

N → 0 ∣ SN

𝜀 ⊑ N → SN ⊑ N →2 SSN ⊑ N →3 SSSN ⊑ …N →𝜔 SSS…

P → LR

L → N

R → N

P → LR → NR → 0R → 0N → 00 and P → LR → LN → L0 → N0 → 00

9 As far as I know, the need of distilling the axioms for categories of domains from the analysis of 
“actual computational processes” was first pointed out by John Reynolds (1975), who considered non-
terminating processes that communicate through channels via sets of messages: we take as given a uni-
verse of models and a relation of satisfaction between messages and models, so that the reception of a 
new message reduces the set of models that satisfy all the messages received so far along the same chan-
nel: this gives a representation of the original proposal by Scott (1972) of viewing domains as continuous 
lattices.
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an event is imagined to occur at a fixed point in space and time; conflict 
between events is localised in that two conflicting events are enabled at the 
same time and are competing for the same point in space and time

which allows to apply domain structures to another very general approach to com-
putation, namely Petri nets, whose foundational relevance has not yet been explored 
in sufficient detail.10 For example, we have the event structure of “vertical” natural 
numbers, which correspond to ticks of a clock, whereas approximation corresponds 
to temporal order,

5  Conclusions

I have tried to provide evidence to my claim that the developments outlined above, 
mainly by means of examples, have been the more significant contribution of deno-
tational semantics to the understanding of computational phenomena, in the form of 
a mathematical theory of computation as foreshadowed in Scott (1970b). I have con-
trasted this with the received view of denotational semantics as a tool for program 
correctness, which was the original way of using it especially in the area of language 
definition, where this approach had the advantage of showing that the semantics of 
a programming language and its implementation are different things. I have also 
tried to suggest that reflection on the conceptual basis of the approach of denota-
tional semantics raises issues of interest for the foundations of computing, proposing 
implicitly that this conceptual basis should be explored further, with the hope that 
this exploration may contribute to some of the debates analyzed by Primiero (2019), 
especially in §7.3 and §11.1.

As a final remark, consider the following quote from (Tarjan 1983, §1.2):

In order to study the efficiency of algorithms, we need a model of computa-
tion. One possibility is to develop a denotational definition of complexity, as 
has been done for program semantics [...], but since this is a current research 
topic we shall proceed in the usual way and define complexity operationally.

Recently, some of the investigations in denotational semantics have crossed the 
bounds of classical domain theory with the invention of game semantics (Abramsky 
et al. 2000; Hyland and Ong 2000), motivated by the increasing role played by inter-
activity in computation. This, together with a set of results on the representability 
of algorithms in (theoretical) programming languages, along the lines of (Colson 
1991), leads to the hope that denotational methods could also be applied to the inves-
tigation of intensional properties of programs (like complexity) and thus provide a 

⊥ = no tick ⊑ one tick ⊑ two ticks ⊑ …

10 The work of Carl A. Petri and some of his coworkers dealt at a very early stage with the physics of 
computation, reversibility, resource consciousness, anticipating themes that are a focus of current theo-
retical research.
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different access to other foundational notions that one would like to study “entirely 
independently of implementation”, in the same spirit as denotational semantics.
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