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Abstract
We show that if among the tested hypotheses the number of true hypotheses is not 
equal to the number of false hypotheses, then Neyman-Pearson theory of testing 
hypotheses does not warrant minimal epistemic reliability (the feature of driving to 
true conclusions more often than to false ones). We also argue that N-P does not 
protect from the possible negative effects of the pragmatic value-laden unequal set-
ting of error probabilities on N-P’s epistemic reliability. Most importantly, we argue 
that in the case of a negative impact no methodological adjustment is available to 
neutralize it, so in such cases the discussed pragmatic-value-ladenness of N-P inevi-
tably compromises the goal of attaining truth.

Keywords  Frequentism · Predictive value · Statistical test · Reliability · Context · 
Pragmatic values

1  Introduction

Many people are inclined to believe that the scientific method should be a relia-
ble tool for reaching the aim of maximizing truth and minimizing falsity in a body 
of assertions. J. Neyman and E. Pearson’s (see e.g. Neyman 1952) conception of 
hypothesis testing (N-P hereafter) may appear to be designed to address this goal by 
demonstrating the reliability of research methods to reach the truth in the long run. 
This supposed reliability is captured by error probabilities that reflect how often, 
given an iterated use of the method, the research process would end up with a false 
assertion. Nevertheless, the epistemic adequacy of N-P account is challenged by 
several philosophical-methodological problems raised by both philosophers (e.g. 
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Sprenger 2013) and scientists (e.g. Ioannidis 2005). These problems undermine the 
possible attribution of truth-conduciveness of N-P and by that its scientificness. Not 
without reason has the method been conceptually interpreted by its designers as a 
decision-theoretic tool (e.g. Neyman 1957), which means a tool for drawing practi-
cal conclusions (decisions) from a mixture of epistemic and non-epistemic (social, 
cultural, economic, ethical, etc.) premises. Nonetheless, as long as N-P remains to 
be used as an element of the scientific method, the expectation of epistemic merit 
may remain valid. Perhaps the existence of the explicitly present pragmatic (social, 
economic, ethical, etc.) preferences for avoiding one type of error more than another 
in the N-P testing procedure (pragmatic value-ladenness) (see Sect. 2) makes N-P 
a more socially responsive method. But the question remains if it is worth the epis-
temic loss which stems, for example, from some kind of pragmatically motivated 
bias. In this paper, we examine whether N-P can be seen as principally satisfying, in 
a minimal sense, some general epistemic standards and how pragmatic value-laden 
uneven setting of error probabilities can influence it.

One may repel the problems of N-P’s questionable epistemic value by simply 
treating N-P as a decision-theoretic framework, like Neyman himself vehemently 
did. Another means of defense would be to abstract from the pragmatic aspect of 
N-P and defend it as being truth-directed by modifying it and granting it a special 
philosophical interpretation (see e.g. Mayo, Spanos 2010). A different approach to 
defending the epistemic viability of N-P might be to admit that the epistemic reli-
ability (ER hereafter) of the method is not the same as the epistemic interpretation 
of its outcome (Rochefort-Maranda, 2013). Additionally, the ER of N-P can be ana-
lyzed in the context of the relation between the pragmatic and the epistemic aspects 
of N-P. A combination of the last two ways is the route we follow in this paper.

A general reassessment of N-P’s epistemic credibility is partially motivated by 
the inadequacy of the existing epistemic evaluations of frequentist hypothesis testing 
when applied to N-P. This inadequacy may be caused by the fact that the most com-
mon procedure used for testing data nowadays is an amalgamation of N-P and Fish-
er’s procedures (see Peregonzales 2015). Consider the most general and basic analy-
sis of ER of frequentist hypothesis testing conducted by greately cited Ioannidis’ 
(2005) work. His evaluation counts mistakes only among rejected nulls and there-
fore is more asymmetric than the original N-P, which also justifies accepting nulls1. 
Moreover, Ioannidis evaluates the performance of hypothesis testing in the context 
of manifold biases that accompany a practical use of statistical methods. These 
biases are not inherent elements of these methods, but are, for example, effects of 
the wrong use of the methods. Thirdly, he does not scrutinize the uneven impor-
tance of different types and sizes of errors from the epistemic perspective. Lastly, 

1  In the asymmetric approach, a rejection (with known error risk) can go only in one direction—that 
of rejecting H , but no such thing as a rejection of an alternative hypothesis and acceptance of H is vali-
dated. N-P also includes rejection of an alternative and acceptance of H with predefined error probabil-
ity. This aspect should not be conflated with the aspect of asymmetric avoidance of errors of different 
type.
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Ioannidis does not take into account the specific influence of pragmatic preferences 
on N-P’s reliability, which is an inherent element of the method in the case of N-P.

Issues mentioned above indicate that there is an urgent need to re-examine the 
ER of N-P, which would: (I) be based on an adequate criterion for measuring ER, 
(II) measure the nominal reliability of N-P without taking into account biases that 
are external to the method, (III) evaluate the original version of N-P, not a modified 
or misinterpreted one, and (IV) account for N-P’s pragmatic value-ladenness in the 
form of the unequal setting of error probabilities. Considering the fact that there is 
no such analysis in the literature, its outcome would provide a new—more basic and 
more complete—basis for discussions on the ER of N-P. We aim to conduct such 
an analysis of the credibility of N-P in tracking the truth that satisfies these four 
demands.

First, we review some rudimentary facts about N-P (Section 2). Then, we clarify 
the notion of ER and the intended scope of our assessment (Section 3). Next, we 
put forth the methodological assumptions of our analysis (Section  4) and provide 
an analysis of the ER of N-P (Section 5). Subsequently, we discuss the problem of 
uneven pre-study odds of true alternative hypotheses to true hypotheses tested (Sec-
tion 6) and analyze the dependence of ER of N-P on the pragmatic values imple-
mented in the form of the asymmetric setting of error probabilities (Section  7). 
Section  8 concludes by offering comments from a broader methodological-philo-
sophical perspective.

2 � Neyman‑Pearson Hypothesis Testing

While we assume that the reader is already familiar with the contents of N-P, we 
overview some rudimentary facts with an emphasis on the uneven pragmatic impor-
tance of two types of errors assumed by N-P.

The application of a statistical test may result in four possible situations, two of 
which are unsatisfactory: (a) H is true whereas the action taken is B , or (b) its com-
plement Hc is true, while the action is A (see Neyman 1950, 261) (Table 1).

Table 1 shows that there are two kinds of random errors2 associated with the two 
types of unsatisfactory situations:

a. error of the Ist type � = P(rejectH|histrue) , and
b. error of the IInd type � = P

(
acceptH|h�istrue

)3

where h is a simple hypothesis being a particular instance of H or being equivalent 
to H (simple hypothesis h′ being a particular instance of HC or identical with it), 

2  The verdict on taking a particular action is random because it depends on the random variable(s) deter-
mining the position of the sample point. Due to this, there is no inconsistency in considering the prob-
ability of the verdict having a certain property, such as being erroneous (Neyman 1950, 56-57).
3  Today it is standard to use “ � ” to represent the probability of making an error of the IInd type but in 
N-P’s original notation “ 1 − � ” was used to denote it while “ � ” denoted power. We use contemporary 
notation to enhance readability and ease-of-comparison with other work in the area.
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and 1 − � is the probability that, given h′ 4, the sample point will fall in the rejec-
tion region specified for h5. This means the probability that the test will detect the 
falsehood of H (reject it) when the true hypothesis is c—is what Neyman called the 
power of a test (Neyman 1952a, 55; Neyman 1950, 267–268)6. Power, as a func-
tion of the point hypothesis from possible hypothesis space, is the essential category 
used for assessing which test to choose.

It is important to distinguish statistical hypotheses, which are mathematical mod-
els, from physical hypotheses, which are propositions belonging to some field of 
science. A physical hypothesis is a statement about physical reality as seen from the 
perspective of a definite scientific discipline (and its language) within which testing 
is performed7. The statistical hypothesis is a statement expressed in statistical terms 
that are assumed to represent mathematically the physical hypothesis in question. 
An example is the statement that a die is fair, as compared to the statement that the 
model of sampling probability distribution under experimental design used to verify 
the statement has such and such parameter(s) value(s). The latter is meant to repre-
sent the former, but the same statistical hypothesis—definite model of probability 
(density) distribution—may stand for different physical hypotheses belonging to dif-
ferent fields of science,8. Still, a definite probability (density) distribution has the 
same mathematical properties regardless of what it denotes in the physical world. 
This means that it can be analyzed regardless of its semantic interpretation related 
to the physical context of a particular test. The same holds for the particular types of 
error: statistical laws can be applied to analyze them regardless of the physical con-
texts of a particular testing situations to which the errors apply. These two facts are 
important for our analyses.

Keeping the value of � error at the desired nominal (theoretical) level is unprob-
lematic, as the researcher decides before the research under what significance level 
� a test procedure will be executed. The � nominal error probability depends in turn 
on a fixed instance of the alternative hypothesis, the distribution of a test statistic—
which is determined by values of sample size and population variance—and obvi-
ously on the chosen value of � that determines the rejection region. One important 

8  Whether we speak of the statistical hypothesis, or the physical hypothesis (assumed to be represented 
by an adequate statistical hypothesis) should be clear from the context.

4  Symbols H and HC refer to sets of values (of sampling distribution model’s parameter(s)), h , and h′  
to particular values of it. Keep in mind that the meaning of H and of h is not limited the so-called “no 
effect” hypothesis, although, dependent on the case, they may denote this type of statement.
5  The presented concept of errors is the most general approach that covers various test cases (e.g. with 
different distributions) and interval estimation. It does not cover errors of a different nature, like meas-
urement instrument’s errors, biases, or model assumption errors (like false normality or independence 
assumption).
6  The value of power refers to departure from H that is today understood also as the “expected minimum 
effect size” (Peregonzales 2015); this understanding is a consequence of the fashion of identifying H 
with the substantial hypothesis of “no effect”, “no difference”, etc., which is not necessary as far as N-P 
is considered. The cited phrase means: the value of the alternative hypothesis’ parameter that represents 
minimal value of the departure from the hypothesis tested that is of the researcher’s interest (assuming 
the test statistic is ubiased).
7  In the literature, it is also called “scientific hypothesis” (Hurlbert, Lombardi 2009, 313)
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consequence of that is, at least in N-P, that, all other things being equal, an increase 
of � results in a decrease of � for any particular parameter value belonging to HC.

Thus these two types of error probabilities will not necessarily have equal values 
and the difference will reflect a pragmatic discrimination of the importance of each 
type. Neyman considered this fact as consistent with the realm of application, where 
the importance of avoiding these two types of error is strikingly unequal:

“The adoption of hypothesis H when it is false is an error qualitatively differ-
ent from the error consisting of rejecting H when it is true. This distinction is very 
important because, with rare exceptions, the importance of the two errors is differ-
ent, and this difference must be taken into consideration when selecting the appro-
priate test” (Neyman 1950, 261).

3 � The Epistemic Goal and the Intended Scope of our Assessment

Our understanding of the goal of attaining the truth is quite general: we consider it 
as the end-point of the epistemic process of scientific cognition. Although this goal 
may pose an unattainable ideal (see e.g. Rescher 1999), many philosophers would 
agree that scientific claims are rational because a method of scientific justification 
reliably gets us closer to the ideal situation. The truth goal as cast in terms of ER 
of a test procedures and measured by the frequency of true acceptances/ rejections, 
would thus mean that:

For all H s considered by S (individual scientist or a community) during a spe-
cific sequence of empirical studies in which N-P is used to perform a test, if H 
is true, then S accepts that H , and S accepts that H only if H is true.9

N-P’s characteristics may be insufficient to ensure that the actual error probabili-
ties are satisfactorily close to the expected outcomes of a reliable method—the 
extent to which this reliability is close to the ideal of the above-defined truth goal. 
This means, for example, that a small α-error-rate rate may not in fact yield a small 
error probability, if disturbing biases from outside the method (e.g. a bias of the 
measurement tool) are present. That is why we think of N-P’s error probabilities 
as nominal error probabilities. In this paper, we concentrate on the investigation of 
the nominal ER. We assume that intuitive, absolutely minimal nominal epistemic 

Table 1.   Four possible 
outcomes of a statistical test

True Hypothesis H H
C

Action taken Description of the situation
A : accept H Satisfactory Error
B : reject H Error Satisfactory

9  Obviously, this statement is categorical but statistical inference always has an uncertain, probabilistic 
element therein. The truth goal is an ideal, to which closeness can be assessed by measuring a statistical 
method’s efficacy. See also David (2001).



590	 Axiomathes (2022) 32:585–604

1 3

requirement for a method of statistical inference would be that it will not lead to 
false assertions more often than to true ones, as well as that its ER will not remain at 
the level of a random guess. The difference between actual and nominal ER reveals 
that the critical examination of the ER of N-P can fall into one of the following 
general categories. First, (i) it can be an investigation of the epistemic adequacy of 
N-P procedures as such (e.g. Jaynes 2003). (ii) It may focus on phenomena and/or 
circumstances that affect the use of the method, for instance the effect of the publi-
cation bias (e.g. Dickersin 1990) or researchers’ ignorance of the method and/or its 
(mis-)application (e.g. Gigerenzer, Merewski 2015). In general, this kind of analysis 
examines socio-psychological factors that are a non-inherent part of the N-P itself. 
(iii) Such an examination can concern the methodological insufficiency of the N-P. 
It may include, for example, issues of the need for complementary statistical tools 
that address the emerging new specific research circumstances, the need for some 
additional tools for amalgamating outcomes, or the issue of formulating the seman-
tic content (physical denotation/interpretation) of considered statistical hypotheses, 
for which individual disciplines are responsible.

We wish to stress that in our examination we do not intend to touch upon the 
problems related to (ii) and (iii). We believe the topic we address here is more rudi-
mentary and can be investigated independently from (ii) and (iii). Obviously, the 
nominal epistemic reliability of N-P is a necessary, but insufficient condition for a 
successful realization of the epistemic goal. Several other conditions belonging to 
(ii) and (iii) must be met as well, but they should not be treated as stemming directly 
from the inherent features of the method as such. By concentrating on (i) we, for 
example, do not consider problems of the amalgamation of outcomes related, for 
instance, to the socio-psychological file drawer effect (cf. Rosenthal 1979), a type of 
bias where “negative outcomes” (nulls) remain unpublished. We also do not aim to 
solve the problem of formulating the semantic content of hypotheses (within this or 
that discipline), which would be consistent with the physical theory in force (issue 
of type iii). Certainly, the influence of pragmatic values, in general, also embraces 
the issue of the influence on the semantic content of hypotheses/theories. One of 
the most striking examples is how Lysenkoism (natural sciences subjected to Marx-
ist-Leninist philosophy) impeded the development of biological disciplines in the 
Soviet Union (see e.g. Soyfer 1994). This and similar circumstances seem to suggest 
that social values may interfere with scientific research by promoting false hypoth-
eses and false theories. Yet, the indicated cases of societal influences apply to the 
semantic content of admissible, or accepted, hypotheses—they refer to the empirical 
interpretation of mathematical statements. By contrast, the type of influence consid-
ered here is the influence of values on the epistemic performance of a procedure as 
captured by error probabilities linked to different types of error.

No less important clarification of our goal is to specify what kind of examination 
of (i)-type (evaluation of epistemic adequacy of N-P as such) we do not follow in this 
paper, and to narrow the scope of the possible (i)-type topics that we concentrate on. 
We do not intend to evaluate N-P on particular evidence, as N-P is essentially con-
centrated on pre-trial reliability (see Graves 1978, 6-7). This does not mean that this 
evaluative perspective could not be adopted. For example, Spielman (1973) defines 
reliability indexes as the posterior probability of a correct action given a definite 
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outcome. A more recent example of such an epistemic interpretation of the single 
outcome of the N-P procedure is exposed by Deborah Mayo (1996) accompanied by 
Aris Spanos (e.g. Mayo, Spanos 2006), who presented the most current epistemic 
reading of N-P and philosophical defense of the frequentist statistical paradigm (see 
Mayo 2018). Following the argumentation of Rochefort-Maranda (2013), we never-
theless stress that an epistemic interpretation of N-P’s single outcome (a measure of 
evidential support for a particular case of application) differs from an assessment of 
the epistemic credibility of the procedure. The strength of evidence for or against a 
particular hypothesis is a result of the quality of the test and its output. According 
to Rochefort-Maranda, “[o]ne way to distinguish both concepts (level of evidential 
support and level of its credibility) is to realize that the credibility of the support 
does not depend on the actual output of the instrument whereas the degree of sup-
port does” (Rochefort-Maranda 2013, 11). Rather than solve what could be a post-
experimental epistemic interpretation of a particular outcome we seek to analyze 
N-P’s general epistemic credibility.

As for narrowing down the scope of our analysis, we do not intend to examine 
any of the existing (i)-type issues relating to an analysis of N-P in comparison to 
other frequentist approaches, like Fisher’s (1956) asymmetric frequentism, or Bayes-
ian approaches (see Romeijn 2017). We intend to take a closer look at N-P itself, 
without deciding which of the approaches is better in any respect.

4 � Methodological Assumptions of the Analysis

Given Neyman’s view on N–P as a theory of how one should make decisions and 
not a theory of how one should change beliefs (see e.g. Neyman 1957) the ER of 
N-P may seem irrelevant. Pragmatic evaluation is based on pragmatic purposes and 
the methodology of N-P testing itself: a well-defined N-P test has determinate error 
probabilities, and the question of whether a given N-P test is sufficiently useful for a 
given pragmatic purpose is easily answered by consulting its error probabilities and 
comparing them to the criteria of sufficiency that the purpose at hand warrants. Nev-
ertheless, if an epistemic evaluation of N-P’s performance is viable then it require 
the perspective from outside, not inside, the method. A classic example of an outside 
evaluation of the ER of frequentist hypothesis testing10 is Ioannidis’ (2005) assess-
ment. It took into account an undefined within the frequentist framework pre-study 
probability of the hypothesis being true and used the concepts of positive predictive 
value and pre-study bias to assess the performance of the testing procedure.

At the outset, we use the same criterion for the analysis of the epistemic perfor-
mance of N-P as Ioannidis, namely the probability that the alternative hypothesis 
would turn out to be true once it has been accepted with statistical significance; this 
is called its “positive predictive value”11 ( PPV  ) (2005, 696). PPV is dependent on 

10  Although not exactly of N-P, as noted in the Introduction.
11  Instead of using the term “alternative”, Ioannidis spoke of the hypothesis of the existence of an effect 
in contrast to the hypothesis of no effect, which is colloquially called the “null” hypothesis.
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the values of both types of error, as well as on the ratio R of alternative hypotheses 
that are true to the alternative ones which are false among those investigated in the 
respective field of science12:

PPV  is a concept used in medical statistics and its counterpart is the concept of 
“negative predictive value” ( NPV  ), i.e. the probability that the tested hypothesis 
would turn out to be true once it has been accepted with statistical significance (see 
Altman, Bland 1994):

while Ioannidis uses only PPV  , we are going to use PPV  and NPV  because of the 
symmetry N-P is in accepting hypotheses.13

We assess N-P’s credibility from the perspective of PPV  and NPV  , assuming 
Neyman and Pearson’s important requirement that

(A1) a test should be at least unbiased.
A test is unbiased when its power against any alternative point hypothesis is at 

least as high as the type I error (see Neyman, Pearson 1936, 210–211). The basic 
rationale of an unbiased test is that it avoids cases where the probability of accepting 
h when it is false (and the true hypothesis is h′ ) would be higher than the probability 
of accepting it when it is true (see Neyman, Pearson 1936, 210–211).

The case of 1 − � = � can be plausibly identified as a value corresponding to the 
case of probability of detecting infinitely small departure from H (or committing 
infinitely small error of the IInd type). Power ( 1 − � ) is the probability of obtain-
ing an outcome that falls under the � rejection interval given the assumption that 
the unknown quantity has one definite value belonging to the admissible hypothesis’ 
parameter space. In the case of an unbiased test, the closer this true value is to H , 
the lower is the probability of observing an outcome that falls under the � interval. 
This probability is lowest when it is equal to � , which is the case if the true value is 
identical to the value of H for which � rejection interval was set, or if the departure 
of the value of H (for which � rejection interval was set) from the truth is infinitely 
small. In sum, considering possible situations of a value of power to detect the dis-
crepancy of an accepted H from the true value that is an instance of HC , the case of 
the lowest possible power (equal to � ) can be plausibly understood as standing for an 
infinitely small error of false acceptance of H . Below we argue that it is not mean-
ingful epistemically to consider this case in the evaluation of the ER of N–P.

If standards for avoiding errors are very stringent the goal of attaining the truth 
is promoted, but at the same time it is blocked at a more fundamental level (Steel 
2010): very exacting standards suspend conclusions; devoting more and more 
resources to make the judgment more and more accurate not only suspends making 

(1)PPV = P
(
HC|acceptHC

)
= (1 − �)R∕((1 − �)R + �).

(2)NPV = P(H|acceptH) = (1 − �)∕((1 − �) + �R).

12  The pre-study probability that the alternative is true ( P
(
HC

)
 ) is therefore R∕(R + 1) (see Ioannidis 

2005, 696).
13  See footnote 2.
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that judgment but also deprives the researcher of potential cognitive resources to 
be used for other research questions. Because our cognitive resources are limited, 
a trade-off arises between the need to avoid mistakes and the need to be able to 
effectively scrutinize hypotheses in finite time by limited resources. Setting the 
threshold for being wrong but acceptably close to the truth allows the researcher 
to continue testing other hypotheses; differentiated error probabilities reflect such 
a trade-off between the stringency of a test and the need to test the hypothesis in a 
finite time and concerning available resources in a given research context. For differ-
ent research contexts, this balance can be different due to the differences in limiting 
resources connected to pragmatic contexts of particular research (see Steel 2010, 
27–28). The conclusion of that argument is that minimizing errors exaggeratedly in 
a given test is epistemically unfavorable; in particular, making an effort to minimize 
errors to an infinitely small level to secure infinitely high accuracy of conclusions 
(which means to secure perfectly errorless/accurate conclusions) is epistemically 
irrational. Therefore, when the ER of N-P is evaluated14 taking into account the pos-
sible cases of infinitely small errors of the second type is meaningless. As we argued 
in the previous paragraph, consideration of this type of error would mean considera-
tion of 1 − � being equal to � , thus

(C1) taking into account the case of 1 − � = � in the valuation of N-P’s ER is 
meaningless.

Cases of infinitely small errors can be treated as epistemically meaningless. The 
minimal reliability does not need to be achieved in these cases—PPV  and NPV  val-
ues for them can be ruled out as being epistemically irrelevant. Therefore, epistemi-
cally relevant cases to be investigated are those when 1 − 𝛽 > 𝛼.

We wish to address two emerging issues concerning the use of PPV  and NPV  
as indicators of N-P’s ER. The first problem is the use—after Ioannidis15—of the 
concept of prior probability in our assessment of PPV  and NPV  . The use of prior 
probabilities is not an element of N-P. But to measure the method’s ER one does 
not have to stick to the tools and concepts that are part of the method itself. By anal-
ogy, one cannot use a rocket’s engine to measure this engine’s noise level. Also, it 
is not a goal of an engine to make noise. But it does not mean that engine does not 
make noise measurable by a suitable tool. The use of priors in the assessment of ER 
of N-P does not assume the use of priors in the N-P inferential procedures itself, so 
frequentist arguments for N-P as such should have no force as a potential critique of 
our approach, which is taken from an outside perspective.

Perhaps for orthodox frequentists, like Neyman himself, our analysis may appear 
irrelevant or uninteresting due to their decision-theoretic interpretation of the goal 
of N–P and thus the sole interest in its decision-theoretic, not epistemic, reliabil-
ity. But since an assessment of N-P from an epistemic, outside perspective is still 

14  Additionally, in the simplest case where the sampling distributions of H and an alternative hypoth-
esis are of the same type and have common variance, the test is uninformative as there is no separation 
between sampling distributions (they coincide) when 1 − � = �.
15  What we already signalled, Ioannidis derived pre-study probability that the alternative is true from R.
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possible, its outcome may be interesting for unorthodox frequentist philosophers 
of science and statisticians, as well as for Bayesians. The perspective we adopt is 
Bayesian-like because of reference to the pre-study probability of a hypothesis yet it 
is not Bayesian for two reasons. Firstly, from the Bayesian perspective, the hypoth-
esis’ probability could be different from case to case, provided one employs more 
specific information that allows assessing the prior probability of the hypothesis in 
a particular case. In our analysis, as in Ioannidis’, a general method’s performance 
is analyzed, making precise assumptions concerning the prior probability that refer 
to the context of individual research would only allow us to infer ceteris paribus 
conclusions for particular research cases. A minimal assumption about R—whether 
it is equal to, greater or smaller than 1—allows for sufficiently general statements 
about N-P’s reliability, and at the same time to distinguish types of cases that are 
relevant for the goal of analyzing the influence of pragmatic value-ladenness. There-
fore, in our analysis, we assume that the only—but also sufficient and adequate for 
our purposes—knowledge at hand is that R for the type (e.g. discipline) to which the 
research belongs is equal, greater, or smaller than 1.

In the light of this type of scarce information, all that can be said (and is adequate 
from the perspective of the purpose of our analysis) is that the pre-study probability 
of the hypothesis tested during the research of the given type is equal to, smaller or 
greater than 0.5 . Ioannidis considered cases of R smaller, or bigger than 1 depend-
ent on scientific discipline considered. This is covered by our analysis. Yet, one may 
also want to consider N-P’s reliability in the broadest possible sense—as applied 
in manifold research situations. Following Ioannidis, let us assume that for some 
branches, or types of studies, R is smaller, and for some other, greater, than 1 . The 
reference class of disciplines in such a case is so broad that one has no reason to 
think that most possible hypotheses tested are true, nor that most of them are false. 
We assume, that in such a case the most plausible move would be to refer to the 
principle of indifference and assume that the pre-study odds are equal to 1 , which is 
the third case covered by our analysis.

The second difference from Bayesian approach is that in our analysis we do not 
refer to the concept of probability of the hypothesis given definite evidence: PPV  
and NPV  do not inform about the probability of a hypothesis being true given the 
evidence obtained but given the fact of acceptance of the hypothesis. Following the 
interpretative assumptions as described above we will use R and P(H) as admissibly 
equivalent measures of testing conditions.

The second problem concerning the use of PPV  and NPV  as indicators of N-P’s 
ER that we wish to address is the following. A definite predictive value, for exam-
ple PPV  , always refers to a point hypothesis that corresponds to definite values of 
error probabilities of � and � so the alternative hypothesis, to which PPV  refers, is 
not a composite, but a point alternative hypothesis that corresponds to the value of 
� . Hence is of a definite distance from the point hypothesis that corresponds to the 
value of � . That is why, strictly speaking, the probabilities used to calculate PPV  
and NPV  only refer to those two particular possible values of point hypotheses that 
are the instances of H and HC.

In our analysis, we assume that the prior probabilities (on which we operate when 
talking about definite predictive values) refer not only to parameter values for which 



595

1 3

Axiomathes (2022) 32:585–604	

values of � and � stand but to them taken jointly with more extreme parameter val-
ues, that is to those values that are farther from the hypothetical falsely accepted 
value in the case of a given type of error. Owing to this, the situation is as follows: 
when speaking of the value of NPV  , we are thinking of a statement about the pre-
dictive value under the assumption that a true value of the parameter is within the 
bounds of a range that corresponds to error probability equal to � or error probabili-
ties smaller than � . Similarly, in case of the value of NPV  we speak of the true value 
of the parameter being the one that corresponds to an error probability that equals 
� or to smaller error probabilities. Additionally, we assume that for all the more 
extreme parameter values error probabilities � (and � , respectively) that correspond 
to these values are equal to those particular values of � and � that are considered to 
be the basis for calculating definite values of PPV  and NPV .16 Error probabilities 
for these more extreme parameter values are, by standard, smaller, but for computa-
tional simplicity such a simplifying assumption may suffice. Under this assumption, 
particular values of � and � are the upper bounds of nominal error probabilities for 
the considered possible ranges of true values of the unknown parameter, assumed 
under the stated values of � and � . So the predictive values ( PPV  and NPV  ) calcu-
lated from those stated error probabilities and some stated value of R are the lower 
bounds for the predictive values.

5 � The Epistemic Reliability of N–P

Ioannidis was particularly worried about the low value of PPV  in the case of some 
disciplines that are, according to him, characterized by a low R and underpowered 
study designs. Consider � = 0.01 , very low power 1 − � = 0.02 (N-P’s unbiased-
ness condition is satisfied), and very small pre-study odds R = 0.02 . In such a case 
PPV ≅ 0.04 , so it is indeed very low, but at the same time NPV ≅ 0.98 , which is 
very high. As a consequence, if such a testing condition is present in an iterated 
use of N-P, one will not commit errors very often. The fraction of true acceptances 
among all the acceptances will be approximately equal to 0.97 , hence quite satisfac-
tory despite the very low PPV  . If power was higher, the overall error rate could only 
be smaller.

Cases like the ones above cannot be properly captured if one separately uses NPV  
and PPV  as indicators of epistemic credibility. To be able to grasp the described 
case and thus evaluate the reliability of N-P itself, rather than a hybrid of N-P with 
the Fisherian approach, one has to consider NPV  and PPV  jointly17. It is possible 
by looking at the value of the total probability of accepting a true statement ( Pt ). It 
equals the sum of the probabilities of two mutually exclusive events. first, the case of 
H being true and H being accepted, and, second, the case of HC being true and HC 

16  This is analogical to Ioannidis’ simplifying assumption of equal power to find all the true effects exist-
ing in the field of study.
17  It is consistent with the symmetric approach of N-P to treat both rejection and acceptance of H as a 
research outcome.
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being accepted. This concept, by the definition of conditional probability, (1) and 
(2), yields18

By the definition of the conditional probability Pt can be restated as

Given N-P’s symmetry Pt appears to be the most intuitive, simple, and adequate 
measure of ER of N-P that is anchored in standard PPV  and NPV  measures. Its 
usage can be illustrated by a simple example. Imagine the situation of tests of 
hypotheses with � = 0.05 wherein half of the cases the hypothesis tested is false 
( P(H) = 0.5 ) and true values are at some distance from the hypothesis tested not 
smaller than a certain value that marks 1 − � , say, 0.1 . Then Pt will be equal to 
0.525 , which means that, for example, if 1000 hypotheses were tested, the nominally 
expected number of true research findings would be at least 525.

As postulated in Section 3, the minimal epistemic requirement for a method of 
statistical inference is that it will not lead to false assertions more often than to true 
ones, as well as that its ER will not remain at the level of a random guess. Therefore, 
the condition of minimal ER is that

Given (A1) and (C1) the condition of minimal epistemic reliability (5) 
holds for any test when R = 1 ( P(H) = 0.5 ). That is because if (1 − 𝛽) > 𝛼 then 
{(1 − �) + (1 − �)}∕2 is greater than 1∕2 . Alas, condition (5) is not satisfied when 
R < 1 ( P(H) > 0.5 ). For example, if P(H) = 0.95 , � = 0.55 and 1 − � = 0.99 , then 
Pt = 0.48 . In this example, the probability of error of the Ist type is greater than 0.5 , 
but the maximal admissible level of � was not stipulated by Neyman and Pearson. 
Moreover, Neyman claimed that it may in some cases be treated as the less impor-
tant type of error (Neyman 1971, 4)19. Condition (5) is not satisfied also when R > 1 
( P(H) < 0.5 ). For example, if P(H) = 0.33 , � = 0.05 and � = 0.94 , 20then Pt = 0.35 . 
The conclusion is that condition (5) holds only for R = 1 ( P(H) = 0.5).

(3)Pt = P(acceptH)NPV + P
(
acceptHC

)
PPV .

(4)Pt = (1 − �)P(H) + (1 − �)P
(
HC

)
.

(5)P
t
> 0.5 for any testing situation under the assumption of (A1) and condition (C1)

18  The reader may keep in mind that PPV  and NPV  do not inform about the probability of a hypothesis 
given the evidence obtained, but given the acceptance of the hypothesis.
19  What one might arguably assert as the principle that stipulates a lower bound for � in such a case is 
unbiasedness applied in a reversed form, namely 1 − � must be at least as high as � ; this condition is ful-
filled by the example given.
20  Note that this example represents the case of an underpowered test, but is, still, consistent with (A1) 
and (C1).
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6 � Asymmetry of Errors, Hypothesis’ Probability, and Epistemic 
Reliability

Securing the desired level of the Ist type of error can be arbitrary, easier than secur-
ing the level of the IInd type of error21. Therefore, in practice 1 − � is greater than 
1 − � , and then the greater P(H) is, the greater is also Pt . It then appears that it 
would be better epistemically to test a hypothesis that is deemed to be true rather 
than false22. It turns out that the supplementation of N-P with a pre-experimental 
assumption about the probability of the tested hypothesis is supported by Neyman 
and Pearson’s suggestion expressed in one of N-P’s foundational papers. The sug-
gestion they made is that a researcher usually has reasons for believing the tested 
hypothesis is true or that the true value differs from the point hypothesis stated “in 
certain directions only”, which means that a definite composite hypothesis is true:

“the hypothesis whose probability we wish to test is that Σ is a random sample 
from Π ” (Neyman, Pearson 1928, 178) and “[i]t is true that in practice when 
asking whether Σ can have come from Π , we have usually certain à priori 
grounds for believing that this may be true, or if not so, for expecting that Π� 
differs from Π in certain directions only” (186).

The suggestion can be expressed as:

(A2) A researcher usually has a priori grounds to believe that point or compos-
ite hypothesis being tested is true

This can be understood as a contextual assumption about the prior degree of 
belief in the hypothesis being tested. It can be translated into the probabilistic state-
ment: P(H) is higher than P

(
HC

)
 . Although the assumption is not implemented in 

the statistical inference scheme itself (N-P does not operate on the prior or posterior 
probability of a hypothesis), it can be understood as a precondition under which the 
method is used. Making this assumption does not lead to inconsistency with N-P. 
After all the assumption (A2) does not entail the technical application of its proba-
bilistic statement in the method’s procedures itself. Additionally, an evaluation that 
ignores the pre-assumed proper context of use would, for instance, resemble an 
assessment of the performance of binoculars at night, while it is known that they 
are presumed to be used in the presence of light. Hence, evaluation in the context 
of (A2) seems more adequate in the sense of taking into account Neyman and Pear-
son’s concept as a whole, thus as a proposal of certain methods working under a 

21  For example, 1 − � is dependent on the variance of the studied quantity in the population.
22  In scientific practice the tested hypothesis H is often associated with the “null” hypothesis, which 
states that the size of an effect being investigated is equal to 0 . But, when scientists perform regression 
analyses, for example, they usually suspect that it is not equal to 0 . In such cases, it is possible to perform 
data transformation so that the hypothesis they suspect to be true becomes the “null” hypothesis. For 
example, there are usually maximal and minimal values possible to be observed within a given experi-
mental scheme. One can mathematically reverse these values. This will change the way particular out-
comes are labeled by values of the random variable and therefore change the way the tested statistical 
hypothesis is defined, but will not change the physical meaning of the redefined statistical hypothesis.
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certain assumed condition. In any case, even if (A2) was not stated as a normative 
circumstance (that must be met if one wants to use the method), it can be assumed 
to be conceived by Neyman and Pearson as the inherent part of the usual research 
practice.

Whether this assumption is representative of what happens in practice falls into 
the already distinguished set (ii) (phenomena and/or circumstances that affect the 
use of the method; see Section  3) of issues that we do not intend to answer. But 
let us briefly address this question. It seems fairly natural to admit that in general, 
when one comes up with a physical hypothesis to be investigated, one suspects that 
the state of affairs postulated might be true rather than false. This can be realized in 
two ways: either the hypothesis is a consequence of a theory that has been accepted 
so far as the most compelling, therefore rather true than false, or the researcher’s 
background knowledge prompts her to suspect that some epistemically interesting 
fact might be the case, which pushes them toward formulating a new hypothesis. 
Some scientists might then make the effort to transform variables so that the intui-
tively true hypothesis becomes the alternative hypothesis: because the hypothesis 
tested then becomes—so to speak—counterfactual in the researcher’s eyes, there is 
a greater hope that the observation will yield a substantial result. If, on the other 
hand, the researcher expected the tested hypothesis to be true, they would expect 
the observation to speak in favor of the tested hypothesis, which would mean she 
would expect a result difficult to be published (see Rosenthal 1979); this, of course, 
assumes an asymmetric approach, which is not the case in N-P.

Regardless of whether it can be affirmed that assumption (A2) is met in practice, 
(A2) can be regarded as a normative requirement that specifies the basic state of 
affairs that constitutes the presumption about the typical context of the application 
of N-P. This presumption can be satisfied using N-P. Firstly, a researcher can indi-
cate, before the research, whether the hypothesis under investigation is expected to 
be true or rather false23, without providing a more a precise probability statement 
and thus without including it in the statistical inference. Secondly, even if the alter-
native is more probable, it is in principle possible to mathematically redefine the 
alternative as the hypothesis to be tested through a transformation of the test or data, 
and without any loss of empirical adequacy. In particular, it is easy to do that in the 
case of directional tests of a composite hypothesis. Nevertheless, in the case of test 
of a point hypothesis, when the set of admissible hypotheses is continuous, the only 
reasonable precondition appears to be R ≥ 1 : to assume that the prior probability 
of H is greater than the prior probability of its complement seems mathematically 
incorrect in such a case.

23  This is what happens in scientific practice. Usually, some formerly justified theory existing within a 
discipline, or an expert’s intuition, foresee some hypotheses to be true, and the role of testing is to check 
whether the suspected state of affairs is indeed the case.
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7 � The Pragmatic Factor and Epistemic Reliability

From what we just have discussed it follows that pragmatically driven asymme-
try of probabilities of two types of error might seem naturally epistemically ben-
eficial under the condition (A2) assumed by Neyman and Pearson. It seems that 
from an epistemic perspective it would be better to select for testing a hypothesis 
deemed to be rather true. But at the same time, pragmatic asymmetry in avoid-
ing the two types of error, along with the fact of the relative ease of controlling 
� (technically, its value can be freely set) as compared to � justifies N-P’s recom-
mendation to design the tested hypothesis as one of the possible alternatives of 
which erroneous rejection would be pragmatically worse. That is why “[i]n an 
example of testing a medical risk, Neyman says he places ‘a risk exists’ as the test 
hypothesis since it is worse (for the consumer) to erroneously infer risk absence” 
(Mayo 2018, 341). This means that from the epistemic perspective it would be 
better if this pragmatically driven decision on which of the alternatives to place 
as the hypothesis tested coincided with the hypothesis that is regarded the more 
probable as compared to the alternative. Or, more generally, it would be better if 
the more probable physical hypothesis is at the same time the one of which false 
rejection should be more avoided than the false rejection of an alternative consid-
ered. The crucial question is then if this coincidence naturally occurs or can be 
stipulated. Below we argue that such coincidence is not sufficient for an increase 
of Pt and that such coincidence is haphazard and cannot be stipulated.

In some cases, pragmatic value-laden asymmetric error risk setting can 
directly improve the ER of N-P. Assuming (4), (A1) and (A2), one might expect 
that, with resources fixed, an increase of 1 − � , at the cost of a decrease of 1 − � , 
should improve the ER of N-P. Pt increases if the modulus of the magnitude of 
the increase of 1 − � , multiplied by P(H) , is greater than the modulus of the mag-
nitude of the decrease of 1 − � , multiplied by P

(
HC

)
 , but such a case is not a rule. 

Holding sample size fixed the rise of Pt would be guaranteed only if the loss of 
power was at most as big as the gain of 1 − � , but this will not typically be the 
case. For example, if the distribution of a sampling statistic is close to the normal 
distribution and the 1 − � integral gets larger, it does so at a lower rate than the 
power integral diminishes. Because of that, for Pt to rise P (H) would have to be 
sufficiently high so that the modulus of the magnitude of the increase of 1 − � , 
multiplied by P(H) , is greater than the modulus of the magnitude of the decrease 
of 1 − � multiplied by P

(
HC

)
 . Therefore, the discussed coincidence is not suf-

ficient for Pt to rise. This means that the promotion of avoidance of erroneous 
rejections of a more probable hypothesis by a pragmatically driven asymmetry in 
error probability does not suffice to improve ER of N-P: P(H) would have to be 
sufficiently high for the improvement to take place.

Even if the probability of a more probable hypothesis would be sufficiently 
high, there remains the earlier mentioned problem of lack of (the possibility 
of stipulating) the discussed convergence. Even if the more probable physical 
hypothesis is mathematically defined as the one that is tested ( H ) it will not nec-
essarily coincide with it being the one of which false rejection should be more 
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avoided than the false rejection of the alternative, from a pragmatic perspective. 
First of all, the concept of a more important error as such is not uniquely con-
nected to errors of the first kind. Whether it will be the more probable hypothesis 
of which wrong rejection will be more important to avoid depends on the context 
of research. There may be cases for which one will prefer to avoid an error of 
the IInd type (Neyman 1971), while the hypothesis tested will be believed to be 
rather true. Neyman’s simple example of a research context for which a IInd type 
of error would be more important was an investigation of quality control:

“Practical situation of this sort may be illustrated by the case of production in a 
factory. As long as the process of manufacture is characterized by the mean value 
� ≤ �0 of a certain characteristic X of the product, the situation is satisfactory and 
no changes are necessary. On the other hand, if the mean value of X becomes 𝜉 > 𝜉0 , 
it is imperative to stop the process and to readjust the machines” (Neyman 1971, 4).

Suppose that the characteristic of interest is, for example, tolerance of a resistor 
(its departure from nominal values of resistance). Imagine H to be the statement that 
the tolerance of resistors produced by a particular line does not, on average, exceed 
�0 . The manufacturer is expected to produce resistors of the given maximal tolerance 
as a part of a contract with a large company that needs them to produce laboratory 
devices in which precision is crucial. The contract specifies that H must be satisfied. 
Otherwise, a very high fine is anticipated, which jointly with the loss of the mar-
ket’s trust in the manufacturer would almost surely ruin their whole business. If the 
manufacturer suspects H to be false, they may withdraw the batch of resistors and 
readjust the machines, which is assumed to generate a reasonably low economic loss 
compared to selling a product that did not meet the standard. In such circumstances, 
the more important error to avoid is the error of falsely asserting H when it is not 
the case. Having in mind that this error is the additive complement of the power to 
detect the falsity of H (for a given h′ ), “(…) the desirable property of the test of H 
is as high a power as practicable, perhaps with some neglect of the probability of 
rejecting H when true” (Neyman 1971, 4).

At the same time, it seems that under the above type of research context the 
default assumption here is that H is rather true. Otherwise, the manufacturer would 
not sustain the production of probably useless resistors in the first place. The idea 
of such research is that although the production process is in principle expected to 
yield usable resistors there is always a minor risk of something going wrong with it 
and because of this risk that iterative control is needed. Even if one made the alter-
native hypothesis to be the tested one and by that error of the first type to be more 
important, the redefined tested hypothesis could not be any more regarded as the 
more probable one.

A possible lack of the required correspondence can also occur in research cases 
different from quality control. For example consider the test of whether a newly cre-
ated, improved version of a drug is non-toxic. In this type of research, the IInd type 
of error may be regarded as more important from the perspective of the role of out-
comes of medical research for society. Simultaneously, if the previous version of the 
drug was confirmed non-toxic, the drug to be tested might be regarded as rather non-
toxic too. Moreover, researchers would not create a version of an old drug that they 
would expect to be rather toxic but seek for such an improvement of an old one that 
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yields, based on their prior knowledge, a non-toxic version. Therefore, again, there 
is a lack of convergence of higher pre-study probability of the hypothesis tested 
and the greater importance to avoid the error of falsely rejecting it. This pre-study 
belief that the physical hypothesis that the drug is non-toxic is rather true would 
remain valid even if one reformulated it as the alternative statistical hypothesis (and 
place the hypothesis of toxicity as the tested one). In such a case the more probable 
hypothesis would be the alternative, but then the importance of the IInd type of error 
would also change: it would become the error that is less important to avoid.

The negative influence of the above-discussed lack of convergence on Pt can be 
numerically illustrated as follows. Assume, for example, that P(H) = 0.6 , � = 0.05 
and � = 0.1 , then Pt equals 0.93 . Now, should � be recognized as more important 
to avoid at the cost of an increase of � , for example, � = 0.05 and � = 0.1 , then Pt 
would equal 0.72 . The symmetric situation will take place when P(H) is lower than 
one half and the error of the Ist type becomes more important to be avoided. The 
high discrepancy between P(H) and the importance of error of falsely rejecting H 
(e.g. low probability of the hypothesis and high importance of � compared to � ) 
can make N-P unreliable epistemically. The example discussed in Section 5 suffices 
to show this: if P(H) = 0.33 and the more important error is � , say, � = 0.05 and 
� = 0.94,24 then Pt would equal 0.35 and in such a case, N-P’s reliability will fail 
to meet the minimal level, hence the method would incline a researcher to a false 
assertion. The test would be at least minimally reliable only if P(H) was sufficiently 
high under the assumption of the above-given error probabilities, or if the error of 
the IInd type was not that much less important compared to the error of the Ist type 
(under the assumption of the above-given hypothesis’ probability).

8 � Conclusions and Final Remarks

With the use of the concept of the predictive value, we checked whether N-P is at 
least minimally epistemically reliable for any possible and epistemically relevant 
situations of � , � and ratio R ( P(H) alternatively), and we analyzed how pragmatic 
value-laden, asymmetric setting of error probabilities can influence this reliability 
and whether this influence can be controlled to have a non-negative impact. We 
found that N-P is incapable of warranting minimal epistemic reliability, except for 
the case of R = 1 ( P(H) = 0.5 ). We also concluded that the character of influence of 
pragmatic value-laden asymmetry in magnitudes of error rates on the ER of N-P is 
accidental and impossible to be stipulated as principally positive.

The first finding of our study—certainty of at least minimal ER of N-P in every 
possible and epistemically relevant case only under the assumption of R = 1 is a 
potentially interesting philosophical problem for those who would expect a method 
of formulating scientific conclusions to lead more often to the truth than to false-
hood by default. As we have shown if R ≠ 1 warranty of at least minimal ER of N-P 
is impossible. Nevertheless, for users of N-P, this problem is not insurmountable 

24  Note that this represents the case of an underpowered, but, still, unbiased test.
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because the method does not hinder the improvement of reliability by taking care 
of other aspects beyond the method itself. The level of Pt depends especially on an 
experimental scheme (sample size) and the character of the studied phenomenon 
(its variance). A satisfactory reliability level is achievable by the use of the proper 
experimental scheme with a sufficient amount of data.

The second finding of our study regarding the impact of pragmatic value-lad-
enness on N-P’s ER has both potential philosophical and methodological conse-
quences. It contributes to the topic of the role of values in science (see e.g. Elliott, 
Richards 2017). N-P captures the cognitive and non-cognitive factors that contribute 
to the research process, which has become the central topic of interest in post-Kuh-
nian theories of science. Within this approach, trends are developing that emphasize 
the fact that cognitive and social dynamics are inseparable elements of the cognitive 
act and the dynamics of scientific knowledge development (see Collins, Evans 2002; 
Kawalec 2020). An important example of such a direction is the so-called Mode 2 
science paradigm, which emphasizes social and economic factors in the formation 
of knowledge, in contrast with Mode 1, in which the formulation of scientific knowl-
edge is motivated by the cognitive context alone (see e.g. Nowotny et al. 2001). N-P 
captures pragmatic factors as an element of the research process and by that, it is a 
classic example of how the general philosophical stance may be applied in precise 
methodological solutions.

We have shown how these pragmatic factors implemented in the form of the une-
qual setting of error probabilities may have a neutral, positive, or negative impact 
on the ER of N-P depending on the case of the physical hypothesis tested and the 
assumption about R . More importantly, we have shown that in the case of negative 
impact no methodological adjustment is available to neutralize it so in such cases the 
discussed pragmatic value-ladenness of N-P inevitably compromises the truth goal.

If epistemic and pragmatic aspects are assumed to be inseparable in the formation 
of knowledge and are implemented in statistical methodology in this type of tight 
relation, then a researcher has to challenge the fact that they inevitably are in mutual 
tension in some cases. Awareness of it is vital if a researcher wants to assess whether 
she wants to compromise or to give a higher rank to one of the two types of aspects 
and to communicate it to the society.

Even if a researcher intends to use N-P as a decision-theoretic tool and the gen-
eral epistemic reliability indicator is not of primary concern, the outcomes of our 
study remain valid. In a decision-theoretic interpretation, they could be seen as an 
analysis of how often the method will, in the most general sense, lead to an errone-
ous decision, thus pragmatically not satisfactory in some way. Such an indication 
is certainly simplified, as it discerns no difference between the two types of prag-
matic burden of an erroneous decision, but from what we have argued it follows 
that in N-P avoiding making extremely wrong decisions is in some cases inevitably 
conflicting with avoiding wrong decisions in general. This fact might, for example, 
serve as a justification of interpreting N-P as a type of minimax (minimization of 
worst possible loss) decision rule and by that to repel some doubts of whether N-P is 
a decision theory (see e.g. Szaniawski 1998) that rest on impossibility of calculating 
expectation of pragmatic loss.
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